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New semi-causal and noncausal techniques for detection of impulsive

disturbances in multivariate signals with audio applications
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Abstract—This paper deals with the problem of localization
of impulsive disturbances in nonstationary multivariate sig-
nals. Both unidirectional and bidirectional (noncausal) detection
schemes are proposed. It is shown that the strengthened pulse
detection rule, which combines analysis of one-step-ahead signal
prediction errors with critical evaluation of leave-one-out signal
interpolation errors, allows one to noticeably improve detection
results compared to the prediction-only based solutions. The
proposed general purpose approach is illustrated with two
examples of practical applications – elimination of impulsive
disturbances (such as clicks, pops and record scratches) from
archive audio files and robust parametric spectrum estimation.

I. INTRODUCTION

ANALYSIS of multivariate time series plays an important

role in many research areas such as medicine, economics,

seismology, audio processing etc. In many cases the recorded

data are contaminated with short-time impulsive disturbances

such as breathing artifacts in polysomnographic recordings

(caused by patients rapid body movements during sleep)

[1], event-related potentials in multichannel electroencephalo-

graphic (EEG) signals [2], or clicks, pops and scratches

in stereo archive audio recordings (caused by aging and/or

mishandling of the recording medium, e.g. the vinyl or shellac

record) [3]. Localization of noise pulses is needed for diag-

nostic purposes (in the first two cases) or to reconstruct the

original, undistorted signal (in the third case).

The signal processing task of localization, and possibly

removal, of impulsive disturbances is conceptually related to

the problem of detection of outliers, i.e., observations that

are inconsistent with the remainder of the analyzed data

set, broadly discussed in the statistical literature. Detection

of outliers in time series, which can be traced back to the

pioneering work of Fox [4], can be carried out using different

approaches, both parametric (model-based) and nonparametric

(model-free) – see Gupta et al. [5] and references therein.

Most of the parametric methods proposed in the statisti-

cal literature were developed for univariate time series and

are based on critical examination of residuals generated by

autoregressive (AR), autoregressive moving average (ARMA)

or autoregressive integrated moving average (ARIMA) models

of the analyzed signals, with known or unknown parameters

[6], [7], [8], [9], [10], [11], [12]. In the latter case model

parameters and outliers are estimated jointly.
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Even though outliers in multivariate processes can be han-

dled by applying univariate techniques to the component

series, such approach is not the best one as it does not

properly take into account the joint dynamics of the series – the

advantages of studying outliers directly under a multivariate

framework are discussed e.g. in [13], [14] and [3]. The

multivariate extension of the univariate methods are presented

in [14] and [15]. In [16] detection of multivariate outliers is

carried out by testing the judiciously chosen signal projections

– the data are projected in the direction that either maximizes

or minimizes the kurtosis coefficient of the projections. In

[17] a similar task is achieved by applying the independent

component analysis (ICA) technique.

In majority of approaches proposed in the statistical liter-

ature cited above, additive outliers – constituting the class

of disturbances considered in this study – are explicitly or

implicitly assumed to be of the Kronecker-delta type, which

means that they corrupt isolated samples. This stays in contrast

with the signal processing practice where noise pulses are

usually made up of a certain number of outliers, forming

the anomalous waveforms (called outlier patches in [12]) that

corrupt many consecutive signal samples, often measured in

tens or even hundreds.

The second limitation is due to the fact that the proposed

procedures are iterative. Since only one outlier is detected and

removed during an iteration, it may take many iterations to

detect multiple outliers, making the approach unsuitable for

on-line (real-time) processing. Even when operated in the off-

line (batch) processing mode, such sequential detection pro-

cedures become impractical when the length of the processed

data files is counted in millions of samples (as in the case of

EEG or audio recordings), rather than in hundreds of samples

(as in typical economic time-series analyzed in the statistical

literature). Additionally, in the presence of multiple outliers,

sequential detection may suffer from some negative effects

known as outlier masking and outlier smearing (or swamping)

[12], resulting in the false negative and false positive detection

errors, respectively.

To overcome limitations mentioned above, many authors

usually propose to evaluate multi-step-ahead signal prediction

errors, instead of residual errors, to tackle the detection of

impulsive disturbances in univariate signals – see e.g. [18],

[19], [20], [21] and references therein. In contrast, there are

only a few studies of detection techniques for multivariate

signals, such as those presented in the papers [13] and [3],

devoted to the removal of clicks from stereo archive gramo-

phone recordings.

In this paper we propose a new general purpose pulse

detection technique, applicable to multivariate signals, which

is based on joint evaluation of signal prediction errors and
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leave-one-out signal interpolation errors. We show that the

resulting decision rules, which check both forward consistency

of the analyzed signal (consistency of the examined sample

with the preceding samples) and its backward consistency

(consistency of the examined sample with the succeeding

samples), allow one to design detection schemes that are more

sensitive to outliers while, at the same time, less prone to

raising false detection alarms. The advantages of the new

detection technique are demonstrated in two practical cases

– elimination of clicks from archive audio signals and robust

spectrum estimation.

II. PROBLEM STATEMENT

The measured multivariate signal will be denoted by y(t) =
[y1(t), . . . , ym(t)]T, where t = . . . ,−1, 0, 1, . . ., denotes

normalized (dimensionless) discrete time and m denotes the

number of signal components (channels).

We will assume that the signal y(t) can be written down in

the form

y(t) = s(t) + δ(t) (1)

where s(t) = [s1(t), . . . , sm(t)]T denotes the noiseless signal

and δ(t) = [δ1(t), . . . , δm(t)]T is the noise pulse sample. No

specific assumption about the noise pulse sequence will be

made except that it is statistically independent of s(t), and that

the pulses, varying in length and shape, are sparsely distributed

in time. In particular, we will not make an idealistic (and

highly impractical) assumption that pulses are Kronecker-delta

type, i.e., that each one corrupts only one signal sample.

Denote by d(t) the pulse location function

d(t) =

{
1 if δ(t) 6= 0

0 if δ(t) = 0
. (2)

Our goal will be to precisely localize noise pulses, i.e., to

obtain a good estimate d̂(t) of the function d(t).

III. NON-ADAPTIVE DETECTION

A. Vector autoregressive processes

Suppose, for the time being, that the signal s(t) is a zero-

mean stationary vector autoregressive (VAR) process of order

n with known characteristics [22]. Such a process has two

equivalent descriptions: the forward-time (causal) description

s(t) =
n∑

i=1

A
f
i s(t− i) + ηf(t), cov[ηf (t)] = ρf (3)

and the backward-time (anti-causal) one

s(t) =
n∑

i=1

Ab
is(t+ i) + ηb(t), cov[ηb(t)] = ρb (4)

where {ηf(t)} and {ηb(t)} denote the vector white noise

sequences with covariance matrices ρf and ρb, respectively.

Unlike the univariate case (m = 1), the m × m matrices of

forward and backward autoregressive coefficients differ, i.e.,

generally it holds that A
f
i 6= Ab

i , i = 1, . . . , n. Similarly,

ρf 6= ρb.

If the sequence of autocorrelation matrices Ri =
E[s(t)sT(t − i)], i = 0, . . . , n of the process s(t) is known,

which is assumed in this section, parameters of the for-

ward/backward VAR models can be obtained by solving the

set of Yule-Walker equations given in the form

[
I −A

f
1 . . . −A

f
n−1 −Af

n

−Ab
n −Ab

n−1 . . . −Ab
1 I

]
RRR

=

[
ρf O . . . O O

O O . . . O ρb

]
(5)

where I and O denote respectively the identity and null ma-

trices of appropriate dimensions, and RRR is the block Toeplitz

matrix of the form

RRR =




R0 . . . Rn

...
. . .

...

RT
n . . . R0


 .

The spectral density (matrix) function of a VAR process is

given by

S(ω) = A−1
f (ejω)ρfA

−T
f (e−jω)

= A−1
b (ejω)ρbA

−T
b (e−jω) (6)

where j =
√
−1, ω ∈ (−π, π] denotes the normalized angular

frequency and

Af (z) = I−
n∑

i=1

A
f
i z

i

Ab(z) = I−
n∑

i=1

Ab
iz

i.

B. Causal detection

The popular noise pulse detection scheme used in the

univariate case is based on monitoring signal prediction errors:

detection alarm is raised at the instant t0 + 1, after a no

detection period of length n or longer [d̂f (t0 − n + 1) =

. . . = d̂f (t0) = 0] if the absolute value of the one-step-

ahead prediction error ef(t0+1) exceeds µ times its standard

deviation [18]

d̂f (t0 + 1) =

{
1 if |ef (t0 + 1|t0)| > µσf (t0 + 1|t0)
0 elsewhere

(7)

where the multiplier µ is chosen so as to guarantee that

P
(
d̂(t0 + 1) = 1 | d(t0 + 1) = 0

)
= ǫ (8)

and ǫ, 0 < ǫ ≪ 1 denotes the significance level. Under

Gaussian assumptions, for ǫ = 0.003 one obtains µ = 3, which

corresponds to the well-known “3-sigma” rule used to detect

outliers in Gaussian signals.

The multivariate extension of (7) has the form

d̂f (t0 + 1) =

{
1 if αf (t0 + 1|t0) > µ2

0 elsewhere
(9)
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where

αf (t+ 1|t) = eTf (t+ 1|t)Σ−1
f (t+ 1|t)ef(t+ 1|t)

ef (t+ 1|t) = y(t+ 1)− ŷf (t+ 1|t)

ŷf (t+ 1|t) =
n∑

i=1

A
f
i y(t− i+ 1)

(10)

and Σf (t+ 1|t) = ρf .

Note that the decision rule (9) reduces down to (7) when

m = 1. Under Gaussian assumptions it also holds that

P
(
αf (t0 + 1|t0) > µ2 | d(t0 + 1) = 0

)
= ǫ (11)

where µ and ǫ are the same quantities as those appearing in

(9). Once the detection alarm is triggered, the test is extended

to multi-step-ahead predictions. This can be carried out in two

different ways.

1) Open-loop detection (a scalar version of this algorithm

was presented in [21]): Assuming that the measurements

taken at the instants t − n + 1, . . . , t are undistorted [which

means that y(t − i) = s(t − i) for i = 0, . . . , n − 1], the

predicted value of y(t0+k) can be computed recursively using

the formula

ŷf (t+ k|t) =
n∑

i=1

A
f
i ŷf (t+ k − i|t), k = 1, 2, . . . (12)

where ŷf (i|t) = y(i) for i ≤ t. The k-step-ahead predictor

(12) is a concatenation of k one-step-ahead predictors – note

that the unknown “future” samples appearing on the right hand

side of (12) are successfully replaced by their VAR-model

based predictions.

Denote by eof (t+ k|t) the k-step-ahead prediction error

eof (t+ k|t) = y(t+ k)− ŷf (t+ k|t0).

The covariance matrix of the prediction error, further denoted

by Σo
f (t0 + k|t), can be easily evaluated using the following

recursive algorithm see Chapter 2 in [22])

Σo
f (t+ k|t) = Σo

f (t+ k − 1|t) +H
f
k−1ρf [H

f
k−1]

T

H
f
k =

min(k,n)∑

i=1

H
f
k−iA

f
i (13)

k = 1, 2, . . .

with initial conditions set to H
f
0 = I and Σo

f (t|t) = O.

Let

αo
f (t|t0) = [eof (t|t0)]T[Σo

f (t|t0]−1eof (t|t0)

Detection alarm is raised at the instant t0+1 if αo
f (t0+1|t0) >

µ2, and it is terminated at the instant t0 + ko0 + 1, yielding

d̂(t0 +1) = . . . = d̂(t0 + ko0) = 1 and d̂(t0 + ko0 +1) = . . . =
d̂(t0+ko0+n) = 0, if the prediction error at the instant t0+ko0
is excessive αo

f (t0+ko0|t0) > µ2 while the next n consecutive

prediction errors are sufficiently small

αo
f (t|t0) ≤ µ2 (14)

t = t0 + ko0 + 1, . . . , t0 + ko0 + n

or if ko0 reaches its maximum allowable value kmax (which

plays the role of a “safety valve”). As a result of applying the

detection procedure summarized above, one localizes a block

of ko0 corrupted samples y(t0 + 1), . . . ,y(t0 + ko0) preceded

and succeeded by at least n samples classified as uncorrupted.

2) Decision-feedback detection (see [3] for a specialized

two-dimensional version of this algorithm): While the open-

loop scheme detects an entire block of corrupted samples,

the decision-feedback scheme approves/rejects samples in a

sequential way, one by one. In this case the multi-step-ahead

signal prediction and the corresponding covariance matrix of

prediction error at the instant t depend on earlier decisions of

the outlier detector, i.e., on decisions made prior to t. The

decision-feedback algorithm is a robust variant of Kalman

filter derived for the state space description of the VAR signal

xf (t+ 1) =AAAfxf (t) + CCCfηf (t+ 1)

y(t) = CCCT
f xf (t) + δ(t)

where

AAAf =




A
f
1 A

f
2 . . . A

f
n−1 Af

n

I O . . . O O

O I . . . O O
...

. . .

O O . . . I O



, CCCf =




I

O

O
...

O




and xf (t) = [sT(t), . . . , sT(t − n + 1)]T denotes the state

vector. The algorithm, which should be started at the instant

t0 + 1, can be summarized as follows

x̂f (t|t− 1) =AAAf x̂f (t− 1|t− 1)

Qf (t|t− 1) =AAAfQf (t− 1|t− 1)AAAT
f + CCCfρfCCCT

f

Σd
f (t|t− 1) = CCCT

f Qf (t|t− 1)CCCf

edf (t|t− 1) = y(t) −CCCT
f x̂f (t|t− 1)

αd
f (t|t0) = [edf (t|t− 1)]T[Σd

f (t|t− 1)]−1edf (t|t− 1)

if αd
f (t|t0) ≤ µ2 then

Lf (t) = Qf(t|t− 1)CCCf [Σ
d
f (t|t− 1)]−1

x̂f (t|t) = x̂f (t|t− 1) + Lf (t)e
d
f (t|t− 1)

Qf(t|t) = Qf(t|t− 1)− Lf (t)Σ
d
f (t|t− 1)LT

f (t)

if αd
f (t|t0) > µ2 then

x̂f (t|t) = x̂f (t|t− 1)

Qf (t|t) = Qf (t|t− 1) (15)

t = t0 + 1, t0 + 2, . . .

where initial conditions should be set to x̂f (t0|t0) =
[yT(t0), . . . ,y

T(t0 − n+ 1)]T and Qf(t0|t0) = O.

Similar to the open-loop scheme, detection alarm started at

the instant t0 + 1 is terminated at the instant t0 + kd0 + 1 if

αd
f (t0 + kd0 |t0) > µ2 and

αd
f (t|t0) = [edf (t|t− 1)]T[Σd

f (t|t− 1)]−1edf (t|t− 1) ≤ µ2

(16)
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t = t0 + kd0 + 1, . . . , t0 + kd0 + n

or if kd0 reaches kmax.

When αd
f (t|t0) > µ2 for t = t0+1, . . . , t0+ kd0 , the results

yielded by the decision-feedback scheme are identical with

those provided by the open-loop scheme, i.e., ko0 = kd0 = k0
and edf (t|t − 1) = eof (t|t0), Σd

f (t|t − 1) = Σo
f (t|t0) for

t = t0+1, . . . , t0+k0. The results differ when αd
f (t|t0) ≤ µ2

for some t ∈ [t0 + 1, t0 + kd0 ]. Unlike the open-loop scheme,

when αd
f (t|t0) ≤ µ2 the sample y(t) is provisionally ap-

proved and incorporated in prediction of succeeding signal

samples. However, to avoid negative effects of “accidental

approvals”, when detection alarm is terminated according to

(16), both rejected and provisionally approved samples (if

any) are scheduled for reconstruction, i.e., the final form of

the detection alarm is, similarly as in the open-loop case,

d̂(t0 + 1) = · · · = d̂(t0 + kd0) = 1.

C. Signal reconstruction

Corrupted samples can be replaced with their least squares

estimates. When the process is governed by the VAR model

(3), such estimates can be obtained from

{ỹf(t0 + 1), . . . , ỹf (t0 + k0)} = arg min
y(t0+1),...,y(t0+k0)

t0+k0+n∑

l=t0+1

‖ y(l)−
n∑

i=1

A
f
i y(l − i) ‖2 .

(17)

Denote by yc
f = [yT(t0 +1), . . . ,yT(t0 + k0)]

T the vector of

corrupted samples and by yu
f = [(y−

f )
T, (y+

f )
T]T - the vector

of neighboring uncorrupted samples made up of n samples

preceding the corrupted block

y−
f = [yT(t0 − n+ 1), . . . ,yT(t0)]

T

and n samples succeeding the block

y+
f = [yT(t0 + k0 + 1), . . . ,yT(t0 + k0 + n)]T .

According to [23], the closed-form solution to (17) is given

by

ỹc
f = [ỹT

f (t0 + 1), . . . , ỹT
f (t0 + k0)]

T

= −
[(
BBBc

f

)TBBBc
f

]−1 (
BBBc

f

)TBBBu
fy

u
f (18)

where BBBc
f is the (n + k0) × k0 block matrix obtained after

removing the first n block columns and the last n block

columns from the (n+ k0)× (2n+ k0) block matrix

BBBf =




−Af
n −A

f
n−1 . . . I O . . . O O

O −Af
n . . . −A

f
1 I . . . O O

...

O O . . . −A
f
1 I




and BBBu
f is the (n + k0) × 2n block matrix obtained after

removing from BBBf its k0 central block columns.

We note that the reconstruction formula, analogous to (18),

can be based on the backward-time VAR model (4). In this

case the matrix BBBf , made up of the matrices of forward

autoregressive coefficients A
f
i , should be replaced with the

analogously defined matrix BBBb combining matrices of back-

ward coefficients Ab
i . Reconstruction based on the backward-

time model yields results identical with those based on the

forward-time model, i.e., ỹf (t0+i) = ỹb(t0+i), i = 1, . . . , k0.

It can be easily shown that ỹc
f is an unbiased estimate of

yc
f . Actually, note that it holds

BBBc
fy

c
f +BBBu

fy
u
f = BBBfyf = ζf (19)

where

yf = [yT(t0 − n+ 1), . . . ,yT(t0 + k0 + n)]T

ζf = [ηT(t0 + 1), . . . ,ηT
f (t0 + k0 + n)]T.

Combining (18) with (19), one obtains

ỹc
f = −

[(
BBBc

f

)TBBBc
f

]−1 [(
BBBc

f

)T
ζf −

(
BBBc

f

)TBBBc
fy

c
f

]

leading to

yc
f − ỹc

f =
[(
BBBc

f

)TBBBc
f

]−1 (
BBBc

f

)T
ζf .

Consequently, E[yc
f − ỹc

f ] = 0 and

cov[ỹc
f ] = E

[
(ỹc

f − yc
f )(ỹ

c
f − yc

f )
T
]

=
[(
BBBc

f

)TBBBc
f

]−1 (
BBBc

f

)T
ΛfBBBc

f

[(
BBBc

f

)TBBBc
f

]−1

(20)

where Λf = cov[ζf ] = diag{ρf , . . . ,ρf} denotes the

(k0 + n )× (k0 + n) block diagonal matrix.

We note that although derivation of (18) and (20) is analo-

gous to that given in [23], the obtained formulas are different

(since in the multivariate case the least squares solution, pre-

sented above, differs from the maximum likelihood solution,

presented in [23]).

D. Semi-causal detection

The causal detection scheme is based on monitoring of sig-

nal prediction errors. To reduce the number of false alarms we

will introduce an additional condition for triggering detection

alarm, based on analysis of signal interpolation errors. Denote

by ỹ∗
f (t+1) the forward-time VAR model based interpolation

of the sample y(t+1), evaluated in terms of n preceding and n
succeeding signal samples. According to (18) the interpolation

formula can be written down in the form

ỹ∗
f (t+ 1) = −

[
n∑

i=0

[Af
i ]

TA
f
i

]−1 n∑

i=0

[Af
i ]

Tv
f
i (t+ 1)

v
f
i (t+ 1) =

n∑

l=0
l6=i

A
f
i y(t+ i− l + 1), i = 0, . . . , n

(21)

where A
f
0 = I.

Denote by

e∗f (t+ 1) = y(t+ 1)− ỹ∗
f (t+ 1)

the interpolation error. The additional condition that will be

required to trigger detection alarm at the instant t0+1 can be

stated as follows

βf (t0 + 1) > µ2 (22)
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where

βf (t+ 1) =[e∗f (t+ 1)]T[Σ∗
f (t+ 1)]−1e∗f (t+ 1)

Σ∗
f (t+ 1) = ρ∗

f

(23)

and, according to (20),

ρ∗
f =

[
n∑

i=0

[Af
i ]

TA
f
i

]−1

×
[

n∑

i=0

[Af
i ]

TρfA
f
i

][
n∑

i=0

[Af
i ]

TA
f
i

]−1

.

(24)

The strengthened alarm triggering rule can be defined as

follows

d̂f (t0 + 1) =





1 if αf (t0 + 1|t0) > µ2

and βf (t0 + 1) > µ2

0 elsewhere
. (25)

Since the detection scheme based on (25) incorporates n
“future” signal samples y(t0 + 2), . . . ,y(t0 + n + 1), it will

be referred to as semi-causal.

Once detection alarm is triggered, both prediction error

based and interpolation error based statistics are updated and

combined to decide upon the termination point. The alarm

started at the instant t0+1 is terminated at the instant t0+k∗0+1
if

αf (t0 + k∗0 |t0) > µ2

αf (t0 + k∗0 + i|t0) ≤ µ2, i = 1, . . . , n

or

βf (t0 + k∗0) > µ2

βf (t0 + k∗0 + i) ≤ µ2, i = 1, . . . , n

(26)

or if k∗0 = kmax. Depending on whether the open-loop

or decision-feedback detection scheme is used, one should

set αf (t|t0) in (26) to αo
f (t|t0) or to αd

f (t|t0), respectively.

According to (26), when the prediction alarm lasts longer than

the interpolation one, the termination point t0+k∗0+1 coincides

with the end of the interpolation alarm.

Note that, similar to (14) and (16), the stopping rule

(26) introduces latency of kmax + n sampling intervals and

therefore the semi-causal detector, based on joint evaluation of

prediction errors and leave-one-out signal interpolation errors,

does not introduce an extra processing delay. Owing to this, it

is suitable for real-time (or, strictly speaking, nearly real-time)

processing.

E. Anticausal and semi-anticausal detection

If the analyzed signal is pre-recorded, i.e., its entire history

y(1), . . . ,y(N) is available, detection of impulsive distur-

bances can be carried out in reverse time, based on the

backward-time model (4). In this case detection process is

started at the instant t = N , i.e., at the end of the recording,

and stopped at t = 1, so this solution is obviously not

suitable for real-time processing. The backward-time decision

rules (anticausal and semi-anticausal) can be defined anal-

ogously as their forward-time (causal and semi-causal), the

only difference being that all quantities such as prediction and

interpolation errors, and the corresponding covariance matrices

are calculated in terms of the matrices Ab
1, . . . ,A

b
n and ρb

that characterize the backward-time model (4). For example,

the backward-time triggering rule, which is the counterpart of

(9), can be written down as follows

d̂b(t0 − 1) =

{
1 if αb(t0 − 1|t0) > µ2

0 elsewhere
(27)

where

αb(t− 1|t) = eTb (t− 1|t)Σ−1
b (t− 1|t)eb(t− 1|t)

eb(t− 1|t) = y(t− 1)−
n∑

i=1

Ab
iy(t+ i− 1)

(28)

and Σb(t− 1|t) = ρb.

F. Noncausal detection

Consider any causal or semi-causal detection alarm of the

form

d̂f (t) = 1 for t ∈
[
tif , t

i

f

]
= T i

f .

We note that due to the adopted stopping rules, each alarm

is preceded and succeeded by at least n no-alarm decisions.

One should realize that the beginning tif of the forward alarm

is usually determined more precisely than its end t
i

f . This

effect is caused by the fact that the accuracy of multi-step-

ahead signal predictions gradually decreases as the prediction

horizon increases, which makes the outlier detector more and

more “tolerant”, i.e., prone to accept large departures of the

signal from its expected (predicted) path.

The opposite happens in the case of anticausal or semi-

anticausal detection alarms given by

d̂b(t) = 1 for t ∈
[
tjb, t

j

b

]
= T j

b .

This time the ending point t
j

b of the detection alarm (i.e., its

starting point in the reverse-time framework) is determined

more precisely than its starting point tjb. Therefore, if the

forward and backward alarms at least partially overlap, i.e.

T i
f ∩ T j

b 6= ⊘ (29)

the combined forward-backward detection alarm can be de-

fined as follows [21]

d̂fb(t) = 1 for t ∈
[
tif , t

j

b

]
= T ij

fb. (30)

Similar arguments can be used to justify cancellation of all

isolated detection alarms, i.e., all forward/backward alarms

that do not obey (29) for some choice of j/i.

IV. ADAPTIVE DETECTION

So far we have been assuming that parameters of the for-

ward/backward VAR models are constant and known. If the an-

alyzed VAR signal is nonstationary, but its parameters slowly

vary with time, detection of noise pulses can be based on

local signal models obtained via signal identification. Denote

by Â
f
i (t), i = 1, . . . , n, the local estimates of the forward-

time VAR model parameters based on the past and present

measurements {y(i), i ≤ t}, and by Âb
i (t), i = 1, . . . , n

– the analogous estimates based on the present and future

measurements {y(i), i ≥ t} (if available).
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A. Estimation of signal parameters

The least squares type estimates of VAR parameters can

be easily derived after vectorizing the models (3) and (4).

Denote by α
f
ij the 1×m vector made up of the autoregressive

coefficients that constitute the j-th row of the matrix A
f
i

A
f
i =




af11,i . . . af1m,i

...
...

afm1,i . . . afmm,i


 =




α
f
i1
...

α
f
im


 .

Let θ
f
j = [αf

1j , . . . ,α
f
nj ]

T be the mn × 1 vector of

parameters characterizing the j-th channel, and let ϕf (t) =
[yT(t − 1), . . . ,yT(t − n)]T denote the vector of regression

variables (the same for all channels). Note that (3), in the

absence of outliers, can be rewritten in the form

yj(t) = ϕT
f (t)θ

f
j + ηfj (t), j = 1, . . . ,m (31)

where yj(t) and ηfj (t) are the j-th components of the vectors

y(t) and ηf(t), respectively.

Parameters of the j-th channel can be tracked using the

method of exponentially weighted least squares (EWLS) – see

e.g. [24], [25]

εfj (t|t− 1) = yj(t)−ϕT
f (t)θ̂

f
j (t− 1)

kf (t) =
Pf (t− 1)ϕf (t)

λ+ϕT
f (t)Pf (t− 1)ϕf (t)

θ̂
f
j (t) = θ̂

f
j (t− 1) + kf (t)ε

f
j (t|t− 1)

Pf (t) =
1

λ

[
I− k(t)ϕT

f (t)
]
Pf (t− 1)

(32)

where λ, 0 < λ < 1, denotes the so-called forgetting constant

which determines the steady state value of the effective

memory of the estimator: Nef = 1/(1 − λ). The value of

Nef should be chosen in accordance with the rate of process

nonstationarity. Small values of Nef (short memory) make the

estimation algorithm “fast” (yielding small tracking bias) but

“inaccurate” (yielding large tracking variance), whereas large

values of Nef (long memory) make it “slow” but “accurate”.

The best results are obtained if Nef is selected so as to match

the degree of nonstationarity of the identified process, trading

off the bias and variance components of the mean square

parameter tracking error [24], [25].

To protect the identification algorithm against outliers, pa-

rameter estimation should be suspended at the beginning of

each detection alarm (t = t0 + 1), and resumed at its end,

as soon as the regression vector ϕf (t) is free of outliers

(t = t0 + k0 + n+ 1).

It should be noted that the gain vector kf (t) does not

depend on j, i.e., it is the same for all channels. Interestingly,

when all channels share the same regression vector ϕf (t), the

local EWLS estimates θ̂
f
j (t), obtained by considering each

channel separately, coincide with the global estimate obtained

by considering all channels jointly – the fact noticed for the

first time in [26] (for LS estimators).

The backward-time EWLS estimates can be obtained in the

analogous way as the forward-time ones.

B. Detection scheme

The adaptive variants of the proposed detection rules can

be obtained by replacing in the corresponding formulas the

true model parameters with their estimates. For example, the

adaptive counterparts of (10) and (22) can be expressed in the

form

αf (t+ 1|t) = εTf (t+ 1|t)Σ̂−1
f (t+ 1|t)εf (t+ 1|t)

βf (t+ 1) = [ε∗f (t+ 1)]T[Σ̂∗
f (t+ 1)]−1ε∗f (t+ 1)

where εf (t + 1|t) and ε∗f (t + 1|t) denote respectively the

vectors of prediction and interpolation errors, obtained when

the true VAR matrices A
f
i are replaced in (10) and (21)

with their estimates Â
f
i (t0). The quantity Σ̂f (t+1|t), which

denotes the estimate of the covariance matrix of the one-step-

ahead prediction error, can be obtained from

Σ̂f (t+ 1|t) =

=





λ0Σ̂f (t|t− 1)

+(1− λ0)εf (t|t− 1)εTf (t|t− 1) if d̂f (t) = 0

Σ̂f (t|t− 1) if d̂f (t) = 1
(33)

where λ0, 0 < λ0 < 1 denotes the forgetting constant,

generally different from the forgetting constant λ used in

the EWLS identification algorithm presented in the previous

subsection.

The estimate of the covariance matrix of interpolation errors

can be obtained using the following formula, based on (24)

Σ̂∗
f (t+ 1) =

[
n∑

i=0

[Âf
i (t)]

TÂ
f
i (t)

]−1

×
[

n∑

i=0

[Âf
i (t)]

TΣ̂f (t+ 1|t)Âf
i (t)

]

×
[

n∑

i=0

[Âf
i (t)]

TÂ
f
i (t)

]−1

.

(34)

Unlike the prediction error covariance (33), which must be

updated in a continuous manner, the interpolation error co-

variance (34) has to be computed only at the instants t where

αf (t + 1|t) > µ2 (to confirm or cancel the prediction based

detection alarm).

Once the detection alarm is triggered at the instant t0 + 1,

the multi-step-ahead prediction statistics can be obtained af-

ter replacing in (13)–(14) or (15) the true values of signal

parameters A
f
i , i = 1, . . . , n and ρf with their estimates

Â
f
i (t0), i = 1, . . . , n and Σ̂f (t0+1), respectively. In the semi-

causal case, for t > t0 the following formula should be used

until detection alarm is terminated

βf (t+ 1) = [ε∗f (t+ 1)]T[Σ̂∗
f (t0 + 1)]−1ε∗f (t+ 1).

C. Remarks on solutions based on disturbance models

The detection/reconstruction methods described in this pa-

per refrain from making any assumptions about the sequence

of noise pulses {δ(t)}, except that it is sparse and independent

of {s(t)}. Analyses that incorporate explicit or implicit models
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of the disturbance may be carried out using the Bayesian

framework, such as the Markov chain Monte Carlo (MCMC)

simulation methods exploited e.g. in [27] and [28]. In this case,

the problem of joint detection and reconstruction of corrupted

samples can be solved by means of Gibbs sampling, i.e., by

iterative approximation of the joint posterior distribution of the

clean signal, its AR-model parameters and noise pulse param-

eters. In [27] disturbance is modeled as a Gaussian process

with time-varying variance and Markov chain pulse activity

(on/off) structure. Since in general a large number of sampling

iterations may be needed for the posterior distribution to reach

its steady state form, the method is highly computationally

intensive. The computational load of the MCMC approach

can be reduced if a more specific, deterministic model is

incorporated. Such an approach was proposed in [28], where

audio clicks were modeled as exponentially decaying pulses

with adjustable location and shape parameters. However, the

computational complexity is still considerable.

In contrast with the aforementioned,, the proposed meth-

ods belong to the class of non-iterative one-pass (causal)

or two-pass (noncausal) procedures with a relatively low

computational requirements. However, in our opinion, there

is not much sense in setting the MCMC approach against the

currently developed one. A much better idea is to use both

approaches jointly, e.g. to use the MCMC algorithm described

in [27] to refine the results yielded by one of the noncausal

algorithms proposed in this paper. Such post-processing may

be computationally affordable since, as noted in [27], only

a few iterations of the MCMC algorithm are usually needed

when the starting point is close to the final solution. Al-

ternatively, Gibbs sampling can be used only to reconstruct

the corrupted fragments [29]. This may make a difference in

the case of long noise pulses as it allows one to avoid the

covariance defect typical of maximum likelihood and least

squares reconstructions [23] (“collapse” of the reconstructed

material in the middle of large gaps).

Another example of a synergetic approach is given in our

recent paper [30], which describes the computationally cheap

disturbance localization method based on template matching.

This method can be used when noise pulses have highly

repetitive shapes that match several typical “patterns” or

templates. To localize noise pulses, the appropriately modified

disturbance templates are correlated with the sequence of one-

step-ahead prediction errors. However, such a strategy can be

used only in cases where the detected pulse has a typical shape,

matching one of the templates. Otherwise (for atypical dis-

turbance waveforms) the classical general purpose AR-model

based localization technique must be applied. This means

that, rather than competing, both techniques complement each

other.

V. SIMULATION RESULTS

In this section we will show how the proposed methods

can be used to solve two practical problems - elimination of

impulsive disturbances from archive audio signals (part A),

and robust parametric spectrum estimation (part B).

550 600 650 700 750 800
−0.02

0

0.06

y(
t)

550 600 650 700 750 800
−0.02

0

0.06

δ(
t)

t

Fig. 1: A fragment of an archive gramophone recording

corrupted by impulsive disturbances (clicks).

A. Restoration of audio recordings

The proposed detection rules were evaluated and compared

in the two-dimensional case – they were used to localize im-

pulsive disturbances in stereo audio signals. To obtain realistic

test signals, 40 = 4 × 10 clean audio recordings representing

4 music categories (jazz, choir, opera, classical), lasting for

about 22 seconds each, were sampled at the rate of 48 kHz

with 16-bit resolution and corrupted by means of adding a

sequence of real click waveforms extracted from silent parts

of a real archive stereo gramophone recording – see Fig. 1.

The total number of pulses added to each recording (the same

sequence in all cases) was equal to 1853: 467 pulses corrupting

the left channel only, 454 pulses corrupting the right channel

only, and 932 pulses corrupting both channels (different pulses

in different channels). The total number of corrupted samples

was equal to 15650, which constitutes 1.48% of all samples.

The width of noise pulses (picked at random from the stereo

click database containing 710 waveforms) ranged from 3

samples to 41 samples and their location was random.

Quite obviously, detection efficiency depends on how well

the decision sequence d̂(t) matches the “ground truth” pulse

location function d(t). We will use three measures which

quantify discrepancy/similarity between d̂(t) and d(t): degree

of underfitting, degree of overfitting and degree of overlapping.

Denote by

Dtrue = {t : d(t) = 1}
the set showing location of all outliers1 added to clean signals

(the same for all recordings), and by

Dneg = {t : d(t) = 1 ∧ d̂(t) = 0}
the set indicating location of samples classified as not-outliers

(false negatives). Similarly, let

Dpos = {t : d(t) = 0 ∧ d̂(t) = 1}
be the set showing location of samples incorrectly classified

as outliers (false positives). The degrees of underfitting ξu and

overfitting ξo can be defined as follows

ξu =
card{Dneg}
card{Dtrue}

(35)

1Since each noise pulse is a sequence of outliers, the number of outliers is
several times greater than the number of noise pulses.
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ξo =
card{Dpos}
card{Dtrue}

(36)

where card{X} denotes cardinality (number of elements) of

the set X . Both performance measures quantify inaccuracy

of the detection process (the smaller, the better), including

such detection errors as failure to detect existing noise pulses

(ξu), detection of nonexistent noise pulses (ξo) and imprecise

localization of the pulse beginning and/or end points (ξu, ξo).

Finally, denote by Dint and Dunion the sets corresponding

to the “intersection” and “union” of d̂(t) and d(t)

Dint = {t : d(t) = 1 ∧ d̂(t) = 1}
Dunion = {t : d(t) = 1 ∨ d̂(t) = 1}.

The degree of overlapping, defined as follows

κ =
card{Dint}

card{Dunion}
(37)

takes its maximum value, equal to 1.0, when d̂(t) ≡ d(t), i.e.,

when both sequences coincide. Note that the degree of over-

lapping also takes into account detection errors such as false

positives and false negatives [both increase the denominator

in (37)].

Localization of impulsive disturbances in archive audio

signals is not the ultimate goal of processing – the real goal

is to restore the original (undistorted) audio material or, more

precisely, to create audio that sounds like the original one. This

means that the differences between the original (clean) audio

signal and its restored version that are not audible are tolerable.

One should realize that, depending on the audio context (i.e.,

on local characteristics of the corrupted audio signal), some

even very “small” disturbances may be audible (e.g. when the

signal is narrowband), while some relatively “large” ones may

be not audible (e.g. when the corrupted signal is wideband).

This means that overlooking (not detecting) noise pulses may

have but must not have perceptual consequences. Similar is

the situation with detection of nonexistent pulses – when the

AR-model based signal reconstruction is of high quality, many

false alarms do not yield audible signal distortions (although,

in general, large number of false alarms – especially the long

ones – causes degradation of the restored signal). For this

reason simply counting false positives and false negatives does

not make much sense.

In the case considered the most meaningful test of pulse

detection efficiency is via assessment of the perceptual quality

of the restored audio recording. Audio quality can be checked

using listening tests but this is usually a very time-consuming

procedure. Fortunately, our experience has shown that similar

results can be obtained using the PEAQ (Perceptual Evaluation

of Audio Quality) tool (originally designed to measure the

quality of perceptual audio coders) – a specialized software

which scores the restored audio (by comparing it with the

original, noiseless recording) using several perceptual (psy-

choacoustic) criteria [31], [32]. PEAQ scores take negative

values that range from -4 (very annoying distortions) to 0

(imperceptible distortions). In the impulsive noise removal

context, improvement of the PEAQ score by 0.1 (or more)

is usually audible, i.e., perceptually significant.

The results of quantitative and qualitative evaluation of

different detection schemes are summarized in Tables II

and III, respectively. All detectors incorporated VAR models

of order n = 10. Estimation of autoregressive coefficients

A
f
1 (t), . . . ,A

f
10(t) and Ab

1(t), . . . ,A
b
10(t) was carried out

using the EWLS algorithm with forgetting constant λ = 0.999.

The remaining parameters were set to λ0 = 0.993 and

kmax = 50.

Table II shows the average detection scores, evaluated for

all 40 recordings, obtained for 4 unidirectional algorithms (A,

B, C, D) and 4 bidirectional (A∗, B∗, C∗, D∗) algorithms

specified in Table I.

Detection threshold was restricted to the range [3, 4.5].

For the values of µ higher than 4.5 the restoration quality

significantly drops due to a large number of overlooked noise

pulses and/or undersized detection alarms. A similar effect can

be observed for µ < 3 due to a large number of false and/or

oversized detection alarms.

In addition to sample-level statistics, such as degree of

underfitting (Tab. IIa), degree of overfitting (Tab. IIb), and

degree of overlapping (Tab. IIc), we show two pulse-level

statistics: the number of undetected noise pulses and the

number erroneously detected (nonexistent) pulses – see Tab.

IId. Note that each pulse-level decision corresponds to a

sequence of elementary sample-level decisions.

Table III shows the qualitative results (divided into 4 music

categories) obtained using the PEAQ tool. In addition to the

algorithms A, B, C, D, and their bidirectional counterparts

A∗, B∗, C∗, D∗, described above, comparison includes results

obtained when the semi-causal detection rule is incorporated

in the causal (E) and noncausal (E∗) algorithms that were

designed in [3] for the processing of stereo audio files (denoted

there by D and D∗, respectively). The modified algorithm E

is denoted by F and the modified algorithm E∗ – by F∗. The

algorithms E and E∗ were developed to address a specific

problem – elimination of clicks from archive gramophone

recordings – and as such they include several specific mecha-

nisms, absent from the general purpose solutions presented in

this paper:

1) Extension of detection alarms – each forward/backward

detection alarm is shifted back by a small fixed number

of samples (to improve localization of noise pulses with

“soft” edges, typical of archive gramophone recordings).

2) Incorporation of a larger and more diversified set of

fusion rules used to combine forward and backward

detection alarms (established experimentally in [21] for

different detection patterns).

3) Separate treatment of noise pulses detected in only one

of two stereo channels (technique that is difficult to

apply when the number of channels m is larger than

2).

The results summarized in Tables II and III, show clearly

advantages of bidirectional, forward-backward processing (A,

B, C, D, E and F versus A∗, B∗, C∗, D∗, E∗ and F∗,

respectively) and advantages of the decision-feedback strategy

(A versus C, B versus D, A∗ versus C∗, B∗ versus D∗).

Equally importantly, – and this is the main contribution of

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


A – causal, equipped with open-loop detection scheme

B – semi-causal, equipped with open-loop detection scheme

C – causal, equipped with decision-feedback detection scheme

D – semi-causal, equipped with decision-feedback detection scheme

E – causal, equipped with decision-feedback detection scheme,
dedicated to the processing of stereo gramophone recordings

F – semi-causal, equipped with decision-feedback detection scheme,
dedicated to the processing of stereo gramophone recordings

A∗ – noncausal, combining causal and anticausal,
equipped with open-loop detection scheme

B∗ – noncausal, combining semi-causal and semi-anticausal,
equipped with open-loop detection scheme

C∗ – noncausal, combining causal and anticausal,
equipped with decision-feedback detection scheme

D∗ – noncausal, combining semi-causal and semi-anticausal,
equipped with decision-feedback detection scheme

E∗ – noncausal, combining causal and anticausal,
equipped with decision-feedback detection scheme,
dedicated to the processing of stereo gramophone recordings

F∗ – noncausal, combining semi-causal and semi-anticausal,
equipped with decision-feedback detection scheme,
dedicated to the processing of stereo gramophone recordings

TABLE I: Description of the compared detec-

tion/reconstruction algorithms.

this paper – they demonstrate the benefits of applying semi-

causal detection (A versus B, C versus D, A∗ versus B∗, C∗

versus D∗, E versus F, E∗ versus F∗). Note that the specialized

algorithms (E, E∗) perform better than the general purpose

ones (D, D∗), and that the results further improve when semi-

causal detection is applied (F, F∗).

The most important design parameters are the detection

threshold µ and the order of the VAR model n. In audio

applications µ = 4 is usually a good choice. Table IV shows

dependence of the PEAQ scores on the model order. The best

scores were obtained for n = 10. Such result may look as

counterintuitive as one has the right to expect that increasing

the model order should improve both detection of noise pulses

and signal reconstruction. It seems that this does not happen

for at least two reasons. First, since model parameters are

estimated based on a finite amount of past data (determined

by the degree of signal nonstationarity), high order models,

obtained by means of signal identification, may have worse

predictive capabilities than their lower order counterparts, even

though in principle they are more “flexible” – this stems from

the so-called principle of parsimony [25]. Note, for example,

that in the case considered (m = 2) the VAR model of

order n = 40 requires estimation of N = nm2 = 160
coefficients Second, due to adoption of the alarm blocking

strategy (detection alarms that are separated by less that n
samples are clustered), higher order models tend to produce

a larger number of unnecessarily long detection alarms than

lower order models.

Another order-related factor, important from the practical

viewpoint, is computational load of the compared algorithms,

which in all cases is roughly proportional to N2. The average

times needed to process a 22 s recording on a laptop equipped

with a single core 2.6 GHz processor are shown in Table V.

(a) degree of underfitting

µ A B C D A∗ B∗ C∗ D∗

4.5 0.69 0.72 0.27 0.33 0.50 0.57 0.36 0.42
4 0.65 0.68 0.23 0.29 0.44 0.52 0.32 0.38

3.5 0.59 0.63 0.19 0.25 0.36 0.45 0.26 0.33
3 0.50 0.54 0.15 0.18 0.23 0.35 0.16 0.26

(b) degree of overfitting

µ A B C D A∗ B∗ C∗ D∗

4.5 0.62 0.24 0.70 0.35 0.09 0.02 0.12 0.03
4 1.05 0.35 1.17 0.50 0.24 0.03 0.31 0.05

3.5 2.40 0.57 2.46 0.81 0.93 0.07 1.08 0.13
3 7.17 1.22 7.51 1.76 5.69 0.33 6.11 0.61

(c) degree of overlapping

µ A B C D A∗ B∗ C∗ D∗

4.5 0.21 0.25 0.52 0.56 0.46 0.42 0.58 0.56
4 0.19 0.27 0.46 0.56 0.47 0.47 0.57 0.59

3.5 0.14 0.29 0.30 0.53 0.39 0.52 0.46 0.60
3 0.06 0.28 0.11 0.41 0.13 0.52 0.14 0.53

(d) number of erroneously detected (E) and undetected (U)
noise pulses

µ
A B C D

E U E U E U E U

4.5 1294 353 465 538 808 237 211 374
4 2414 300 645 463 1858 195 387 317

3.5 5910 248 1073 384 5328 152 930 256
3 16423 209 2789 289 15213 120 3566 177

µ
A∗ B∗ C∗ D∗

E U E U E U E U

4.5 116 583 8 816 160 354 16 498
4 306 481 19 716 370 297 43 436

3.5 989 356 69 593 1059 224 137 369
3 5029 197 334 434 5203 124 633 272

TABLE II: Detection statistics obtained for 4 unidirectional

(A, B, C, D) and 4 bidirectional (A∗, B∗, C∗, D∗) detection

algorithms described in the paper. All results were obtained

for 40 artificially corrupted audio files.

n A B C D A∗ B∗ C∗ D∗

10 3 5 3 6 8 12 8 13
15 4 9 4 11 12 20 12 24
20 12 20 12 22 34 49 33 54
25 19 31 20 38 49 72 50 86
30 22 44 25 95 57 98 67 180
35 44 118 52 234 88 226 121 492
40 72 220 118 534 187 510 254 1092

TABLE V: Dependence of the average processing times (in

seconds) on the model order n. All results were obtained for

40 artificially corrupted audio files and µ = 4.

B. Robust spectrum estimation

Spectral analysis of experimental data provides useful qual-

itative and quantitative information about their contents. Spec-

tral density (matrix) function of a nonstationary VAR process

can be defined in the following form

S(ω, t) = A−1
f (ejω , t)ρf (t)A

−T
f (e−jω, t) (38)

Af (z, t) = I−
n∑

i=1

A
f
i (t)z

i
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jazz music

n REF A B C D E F A∗ B∗ C∗ D∗ E∗ F∗

4.5

-2.99

-2.15 -1.88 -1.56 -0.98 -1.06 -0.88 -0.94 -0.78 -1.01 -0.71 -0.77 -0.52
4 -2.43 -1.85 -2.01 -1.16 -1.40 -0.96 -1.36 -0.76 -1.44 -0.74 -1.19 -0.58

3.5 -2.95 -2.03 -2.72 -1.54 -1.90 -1.21 -2.27 -0.84 -2.29 -0.95 -1.73 -0.83
3 -3.52 -2.45 -3.45 -2.22 -2.86 -1.73 -3.43 -1.31 -3.44 -1.55 -3.06 -1.43

choir music

n REF A B C D E F A∗ B∗ C∗ D∗ E∗ F∗

4.5

-3.82

-3.73 -3.71 -0.63 -0.69 -0.50 -0.58 -1.53 -1.74 -0.58 -0.74 -0.21 -0.21
4 -3.71 -3.66 -0.73 -0.66 -0.50 -0.52 -1.60 -1.43 -0.60 -0.65 -0.34 -0.20

3.5 -3.70 -3.59 -1.18 -0.67 -0.59 -0.50 -2.18 -1.18 -0.90 -0.61 -0.70 -0.29
3 -3.75 -3.51 -2.91 -0.95 -1.64 -0.53 -3.32 -1.02 -3.01 -0.72 -3.25 -1.38

opera music

n REF A B C D E F A∗ B∗ C∗ D∗ E∗ F∗

4.5

-3.79

-3.78 -3.75 -0.90 -0.93 -0.61 -0.75 -1.64 -1.82 -0.74 -0.96 -0.54 -0.35
4 -3.78 -3.74 -1.07 -0.88 -0.62 -0.67 -1.97 -1.62 -0.76 -0.86 -0.65 -0.44

3.5 -3.77 -3.68 -1.80 -0.89 -0.89 -0.60 -2.29 -1.37 -1.21 -0.78 -1.66 -0.61
3 -3.80 -3.65 -3.52 -1.49 -2.14 -0.87 -3.63 -1.27 -3.47 -1.00 -3.62 -1.39

classical music

n REF A B C D E F A∗ B∗ C∗ D∗ E∗ F∗

4.5

-3.11

-2.46 -2.28 -0.69 -0.58 -0.54 -0.48 -0.87 -0.79 -0.58 -0.54 -0.56 -0.26
4 -2.48 -2.22 -0.83 -0.59 -0.57 -0.46 -0.93 -0.75 -0.63 -0.52 -0.56 -0.50

3.5 -2.75 -2.15 -1.40 -0.68 -0.76 -0.50 -1.36 -0.72 -1.14 -0.57 -1.28 -0.60
3 -3.45 -2.18 -2.94 -1.09 -1.52 -0.66 -2.93 -0.91 -2.94 -0.98 -2.88 -0.99

TABLE III: Comparison of the average PEAQ scores obtained for 6 unidirectional (A, B, C, D, E, F) and 6 bidirectional

(A∗, B∗, C∗, D∗, E∗, F∗) detection/reconstruction algorithms described in Table I. All results were obtained for 40 artificially

corrupted audio files divided into 4 music categories. REF denotes the average score of the input (corrupted) recordings.

n A B C D A∗ B∗ C∗ D∗

10 -3.10 -2.87 -1.16 -0.82 -1.46 -1.14 -0.86 -0.69
15 -3.15 -2.92 -1.34 -0.94 -1.50 -1.18 -0.99 -0.71
20 -3.17 -2.95 -1.53 -1.23 -1.70 -1.27 -1.12 -0.78
25 -3.22 -2.98 -2.03 -1.86 -1.88 -1.57 -1.35 -1.19
30 -3.49 -3.32 -2.57 -2.59 -2.04 -1.81 -1.96 -2.01
35 -3.33 -3.30 -2.34 -2.30 -2.62 -2.39 -3.15 -3.07
40 -3.28 -3.36 -2.30 -2.48 -3.23 -2.95 -3.47 -3.43

TABLE IV: Dependence of the mean PEAQ scores, evaluated for 8 detection/reconstruction algorithms described in the paper,

on the model order n. All results were obtained for 40 artificially corrupted audio files and µ = 4.

where A
f
i (t), i = 1, . . . , n, and ρf (t) denote the time-varying

parameters of the VAR model (an equivalent definition can

be based on the backward-time VAR signal representation).

The quantity (38) can be interpreted as the spectrum of a

stationary process “tangent”, at time t, to the nonstationary

process under study. As shown by Dalhaus in his seminal

work on locally stationary stochastic processes [33], [34], [35],

under pretty weak assumptions imposed on the time-varying

VAR model (parameter trajectories of bounded variation2,

uniform stability) such a definition of a time-varying spectrum

is theoretically well justified.

The parametric spectrum estimate can be obtained by re-

placing in (38) the true parameters with their estimates

Ŝ(ω, t) = Â−1
f (ejω , t)ρ̂f (t)Â

−T
f (e−jω , t) (39)

2A function of bounded variation may have countably many jumps with
absolutely summable jump sizes; it is continuous in between the jumps.

Âf (z, t) = I−
n∑

i=1

Â
f
i (t)z

i.

The EWLS algorithm for estimation/tracking of autoregressive

coefficients A
f
i , i = 1, . . . , n, was already presented in Section

IV. The EWLS estimator of ρf (t) can be expressed in the

following (steady state) form (cf. equations (9), (12) and (13)

in [3])

ρ̂f(t) = λρ̂f (t− 1)

+ (1− λ)
[
1− kT

f (t)ϕf (t)
]
εf (t|t− 1)εTf (t|t− 1) (40)

where εf (t|t− 1) = [εf1(t|t− 1), . . . , εfm(t|t− 1)]T and kf (t)
are the quantities updated in (32).

In the presence of impulsive disturbances the results of

spectral analysis can be seriously degraded unless noise pulses

are localized and removed.

Our second simulation experiment was designed to check

detection efficiency of selected methods looking at the problem
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Fig. 2: Left channel of the original stereo audio file (top),

synthetic audio file (middle) and its corrupted version (bottom)

obtained by adding impulsive disturbances.

from the spectrum estimation perspective. To work with “re-

alistic” data, one of the clean stereo audio recordings utilized

in the previous experiment was identified using the EWLS

algorithms (32) and (40). The time-varying “ground truth”

VAR model obtained in this way was next used to generate 20

independent realizations of a synthetic audio signal s(t) with

similar characteristics as the original one – see Fig. 2.

As an instantaneous spectral distortion measure we adopted

the relative entropy rate (RER) [36]

dRER(t) =
1

4π

∫ π

−π

{
tr
[(

S(ω, t)− Ŝ(ω, t)
)
Ŝ−1(ω, t)

]

− log det
[
S(ω, t)Ŝ−1(ω, t)

]}
dω (41)

which is a multivariate extension of the classical Itakura-Saito

measure [37].

During the simulation experiment the true time-varying

spectrum of the synthetic audio signal s(t) and the estimates

obtained by means of processing its corrupted version y(t)
(created by adding impulsive disturbances) were evaluated at

128 equidistant frequencies using the FFT-based procedure.

The mean RER scores (obtained by both time and ensem-

ble averaging), evaluated for 4 causal/semi-causal detection

algorithms (A, B, C, D), are shown in Tab. VI. Note huge

improvement of estimation accuracy observed when the open-

loop detection scheme (used in A and B) is replaced with the

decision-feedback one (used in C and D).

The benefits of applying the robust spectral estimation

technique are demonstrated in Fig. 3. Spectral estimates shown

µ A B C D

4.5 1.325 1.315 0.099 0.101
4 1.238 1.227 0.099 0.099

3.5 1.130 1.112 0.103 0.099
3 1.018 0.964 0.157 0.101

TABLE VI: Comparison of the mean RER scores evaluated

for 4 causal/semi-causal detection algorithms described in the

paper. All results were obtained for 20 realizations of an

artificial audio signal. The mean score obtained for the input

(corrupted) signal was equal to 2.630, and the mean “ground

truth” score, obtained when location of noise pulses is known

exactly, was equal to 0.073.

Fig. 3: Evolution of the true spectral density function of

a synthetic audio signal (top) and two spectral estimates

obtained by means of processing its corrupted version: without

(middle) and with (bottom) removal of impulsive disturbances.

in Fig. 3 were obtained for a 2 second long excerpt (between

4 and 6 seconds) from the corrupted synthetic audio signal

shown in Fig. 2.

VI. CONCLUSION

Several, both causal and noncausal, decision rules were

presented, allowing one to localize impulsive disturbances

in nonstationary multivariate autoregressive signals. It was

shown that detection quality can be improved if detection is

based on joint evaluation of signal prediction errors and signal

interpolation errors. The paper was illustrated with the results

of processing stereo audio files artificially corrupted with real

impulsive disturbances extracted from archive gramophone

recordings. Both detection statistics and perceptual scores
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obtained using the PEAQ tool show that the strengthened

detection rules, which incorporate signal interpolation errors,

yield better results than the classical rules based on evaluation

of signal prediction errors only. Similar conclusions can be

drawn after comparing the results of spectral analysis of audio

signals corrupted with outliers.
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