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Abstract: Single crystals of the new Ga-rich phases ReGa~5(Sn), ReGa~5(Pb) and ReGa~5(Bi) were
successfully obtained from the flux method. The new tetragonal phases crystallize in the space group
P4/mnc (No. 128) with vertex-sharing capped Re2@Ga14 oblong chains. Vacancies were discovered on
the Ga4 and Ga5 sites, which can be understood as the direct inclusion of elemental Sn, Pb and Bi
into the structure. Heat capacity measurements were performed on all three compounds resulting in
a small anomaly which resembles the superconductivity transition temperature from the impurity
ReGa5 phase. The three compounds were not superconducting above 1.85 K. Subsequently, electronic
structure calculations revealed a high density of states around the Fermi level, as well as non-bonding
interactions that likely indicate the stability of these new phases.

Keywords: endohedral; gallide; clusters

1. Introduction

Endohedral gallium cluster phases are a chemical family that has been sought after for their
various electronic properties arising from the interesting cluster chemistry associated with gallium’s
moderate electronegativity [1,2]. However, because of overly large anionicity, isolated Ga clusters
will very rarely form. This leads to a significant interplay between Ga cluster-cluster interactions, i.e.,
exo-bond formations and the stability of the electronic structures. While moving across the periodic
table, a spectrum of diverse Ga cluster phases can be observed. Beginning with electropositive alkali
metals (A), AmGan compounds most readily form electron precise Zintl phases as a result of the
large electronegativity difference, making a promising candidate for thermoelectric materials [3–5].
In this sense, electrons will be transferred from the alkali metals to Gan clusters to satisfy its valence
electron requirement. Many of these compounds will form deltahedral clusters, as in borane chemistry,
and have skeletal electron counts which will typically follow Wade’s rules [6].

Decreasing the electronegativity difference and transitioning towards actinides and lanthanides
(R), a significant reduction in the band gap is observed and, in some cases is completely diminished,
resulting in metallic behavior. In search of stability, RmGan clusters often distort from ideal deltahedral
symmetries and form exo-bonds [7]. The addition of transition metals into RmGan clusters can
reduce the cluster charge and has led to various intriguing materials such as the unconventional
superconductor PuCoGa5 [8]. Finally, coming to the transition metal (T) gallide clusters, the ionic
behavior becomes more obscure as a result of the similar electronegativities between Ga and transition
metals. In this region, the relationship between electron counts and cluster formation with regards to the
superconductivity transition temperature, unfolds. Currently, the only known TmGan superconductors
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are low-temperature superconductors, making them potential materials for producing high magnetic
fields at low temperatures. This can be observed in the superconductors Mo8Ga41 and Mo6Ga31—as
the electron counts decrease, the Tc increases and the clusters form vertex-sharing interactions rather
than edge-sharing [9]. MnGa4.96 is another Ga-rich cluster which crystallizes into a tetragonal unit cell
with capped face sharing Mn@Ga8 clusters and correspondingly exhibits no superconductivity [10].
Therefore, the stoichiometry and valence electrons from the transition metal of endohedral gallide
clusters play a critical role in the exo-bond formations, i.e., electron-rich clusters prefer edge-sharing
while electron-poor ones prefer vertex-sharing clusters, which as a result, directly affects the Tc.
Considering the significant decrease in Tc from Rh2Ga9 to Ir2Ga9, and contradictorily the increase in Tc

from Cr-Ga to Mo-Ga clusters, the transition of Tc across TmGan clusters can be further analyzed [11–13].
Narrowing the spectrum down to the 5d transition metal gallide clusters below Mn in group 7,

we sought to further investigate the recently discovered ReGa5 superconductor with a Tc of ~2.3 K
and vertex sharing Re@Ga9 clusters [14]. Proceeding to understand the structural characteristics and
electron counts of endohedral Ga clusters on superconductivity and further exploring new Re-Ga
phases, we successfully discovered three new compounds ReGa~5(Sn), ReGa~5(Pb) and ReGa~5(Bi).
Reported here are the heat capacity measurements along with the crystal and electronic structure
characterizations. No superconductivity was found for ReGa~5(Sn), ReGa~5(Pb) and ReGa~5(Bi) down
to 1.85 K.

2. Experimental Section

Synthesis. The new compounds ReGa~5(Sn), ReGa~5(Pb) and ReGa~5(Bi) were synthesized via
flux method using Ga as the self-flux. Elements used include tin granules (99.9%, BTC), lead shots
(99.999%, BTC), bismuth chunks (99.999%, lump, Alfa Aesar), gallium ingot (99.99% (metals basis),
Alfa Aesar) and rhenium powder (−325 mesh, 99.99% (metals basis), Alfa Aesar). The three reactions
were prepared with sample sizes of ~1.5–2.0 g and loading compositions of ReSnGa48, RePb5Ga25 and
ReBi5Ga25. Each sample was placed in an alumina crucible then inside a silica tube. Quartz glass pieces
and quartz wool were packed on top of the crucible as the filter. The silica tube was subsequently
evacuated (<10−5 Torr) and sealed. Samples were heated to 950 ◦C at a rate of 200 ◦C/hr and annealed
there for 24hr then slow cooled at a rate of 10 ◦C/hr for ReGa~5(Sn) and 4 ◦C/hr for ReGa~5(Pb) and
ReGa~5(Bi) to 600 ◦C at which the samples were centrifuged. Excess Ga flux was removed using ~2 M
HCl. All products are found to be stable in air and moisture.

Phase Analysis. For each ReGa~5(Sn), ReGa~5(Pb) and ReGa~5(Bi) sample the phase was identified
and purity verified through a Rigaku MiniFlex 600 powder X-ray diffractometer using Cu Kα radiation
(λKα = 1.5406 Å, Ge monochromator) [15]. A scan speed of 1.25◦/min and step of 0.005◦ were used
over a Bragg angle (2θ) ranging from 5 to 90◦ for ReGa~5(Pb) and ReGa~5(Bi). For ReGa~5(Sn) a scan
speed of 0.6◦/min and step of 0.005◦ were used over a Bragg angle (2θ) ranging from 10 to 90◦. Full
Proof software was used to analyze the phase identification and lattice parameters of the experimental
and theoretical powder patterns for ReGa~5(Sn), ReGa~5(Pb) and ReGa~5(Bi) and the experimental
powder patterns for the impurity phases obtained from ICSD [16].

Structure Determination. Single crystals from ReGa~5(Sn), ReGa~5(Pb) and ReGa~5(Bi) were
picked to perform a structural analysis using a Bruker Apex II diffractometer equipped with Mo
radiation (λKα = 0.71073 Å). Scattering intensity data were collected at room temperature with 0.5◦ per
scan inω and an exposure time of 10s per frame. The crystal structure was solved using a SHELXTL
package with direct methods and full-matrix least-squares on F2 model [17,18].

Scanning Electron Microscopy. A FEI Quanta 3D Field Emission Gun (FEG) Focused Ion Beam
(FIB)/Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDX) were
utilized with the analysis of chemical stoichiometry. For each sample, multiple areas were selected for
spectrum collection with a 20kV accelerating voltage and 100 seconds of scanning time.

Physical Property Measurements. Heat capacity measurements were carried out using the two-τ
time- relaxation method in a Physical Property Measurement System (PPMS). The data was collected
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between 1.85 and 300 K. The sample was mounted to the measuring stage using Apiezon N grease to
ensure good thermal contact.

Tight-Binding, Linear Muffin-Tin Orbital-Atomic Sphere Approximation (TB-LMTO-ASA) [19].
The TB-LMTO-ASA program with Stuttgart code was utilized to calculate the density of states (DOS)
and Orbital Hamiltonian Population (COHP) curves of a hypothetically ordered “ReGa4.5” [20,21].
The convergence criterion was set to 0.05 meV. The Muffin-Tin radius (RMT) for each element includes:
0.995 Å for Re1; 1.40 Å for Ga2; 1.88 Å for Ga3; 0.83 Å for Ga4. The band structure and DOS were both
calculated with a 4 × 4 × 2 k-point in the Brillouin zone [22,23].

3. Results and Discussions

Phase Analysis. As a result of increasing the valence electron count from the orthorhombic ReGa5,
three new tetragonal phases ReGa~5(Sn), ReGa~5(Pb) and ReGa~5(Bi) were revealed. Unreacted Re was
present in all of the three compounds ranging from 5–15% as well as ReGa5 from 0.1–39%, based on the
HighScore Plus software. Unreacted Pb and Bi were also found in both ReGa~5(Pb) and ReGa~5 (Bi) by
approximately 3 and 7%, respectively. A comparison of the three powder patterns, as well as images
of the single crystals, are shown in Figure 1. Individual refined powder patterns of the three phases
can be found in Figure S1 (Supplementary Materials) of the Supporting Information. To confirm the
chemical composition and stoichiometry SEM-EDS was utilized. The determined chemical formulas
are Re1.0(3)Ga5.0(2)Sn0.1(8), Re1.0(2)Ga5.0(2)Pb0.1(5) and Re1.0(2)Ga5.0(2)Bi0.2(4). A complete table of the
SEM-EDS data is shown in Table S2 in the Supporting Information.

Crystals 2019, 9, x FOR PEER REVIEW 3 of 9 

 

collected between 1.85 and 300 K. The sample was mounted to the measuring stage using Apiezon N 
grease to ensure good thermal contact. 

Tight-Binding, Linear Muffin-Tin Orbital-Atomic Sphere Approximation (TB-LMTO-ASA) 
[19]. The TB-LMTO-ASA program with Stuttgart code was utilized to calculate the density of states 
(DOS) and Orbital Hamiltonian Population (COHP) curves of a hypothetically ordered “ReGa4.5” 
[20,21]. The convergence criterion was set to 0.05 meV. The Muffin-Tin radius (RMT) for each element 
includes: 0.995 Å for Re1; 1.40 Å for Ga2; 1.88 Å for Ga3; 0.83 Å for Ga4. The band structure and DOS 
were both calculated with a 4 × 4 × 2 k-point in the Brillouin zone [22,23]. 

3. Results and Discussions 

Phase Analysis. As a result of increasing the valence electron count from the orthorhombic 
ReGa5, three new tetragonal phases ReGa~5(Sn), ReGa~5(Pb) and ReGa~5(Bi) were revealed. Unreacted 
Re was present in all of the three compounds ranging from 5–15% as well as ReGa5 from 0.1–39%, 
based on the HighScore Plus software. Unreacted Pb and Bi were also found in both ReGa~5(Pb) and 
ReGa~5 (Bi) by approximately 3 and 7%, respectively. A comparison of the three powder patterns, as 
well as images of the single crystals, are shown in Figure 1. Individual refined powder patterns of the 
three phases can be found in Figure S1 (Supplementary Materials) of the Supporting Information. To 
confirm the chemical composition and stoichiometry SEM-EDS was utilized. The determined 
chemical formulas are Re1.0(3)Ga5.0(2)Sn0.1(8), Re1.0(2)Ga5.0(2)Pb0.1(5) and Re1.0(2)Ga5.0(2)Bi0.2(4). A complete table 
of the SEM-EDS data is shown in Table S2 in the Supporting Information. 

 
Figure 1. (a,b) Pictures of the ReGa~5(Sn) single crystals. (c) Powder XRD patterns for ReGa~5(Sn), 
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Table 1. Single crystal refinement data for ReGa4.96(Sn), ReGa5.08(Pb) and ReGa5.13(Bi). 

Refined Formula  ReGa4.96(9)(Sn)  ReGa5.08(5)(Pb) ReGa5.13(5)(Bi) 
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V (Å3)  425.29(15)  429.9(2)  428.0(3)  
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θ range (°)  3.734–33.135  3.721–33.166  3.726–33.240  

Figure 1. (a,b) Pictures of the ReGa~5(Sn) single crystals. (c) Powder XRD patterns for ReGa~5(Sn),
ReGa~5(Pb) and ReGa~5(Bi).

Crystal Structure. Single crystal X-ray diffraction was utilized to further understand the effect of
atomic size and electron counts on the stability of Ga-rich phases. As a result of the increase in valence
electron counts induced from the elements Sn, Pb and Bi, a tetragonal structure with space group
P4/mnc (No. 128) was formed. A table of the single crystal refinement data as well as atomic coordinates
and equivalent isotropic displacement parameters are given in Tables 1 and 2. The three new phases
ReGa~5(Sn), ReGa~5(Pb) and ReGa~5(Bi) consist of two face-sharing square antiprismatic Re@Ga8

polyhedra capped by four Ga atoms, or five Ga atoms when considering ReGa~5(Sn), on the remaining
free square faces. Consequently, these clusters form networks of vertex sharing capped Re2@Ga14
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oblong chains, similar to MnGa4.96. The Re@Ga8 clusters in ReGa~5(Sn), ReGa~5(Pb) and ReGa~5(Bi)
resemble the geometry of the Re@Ga9 endohedral clusters found in the ReGa5 orthorhombic structure,
however, in this case, the polyhedra are more than singly capped. Conversely, the Re@Ga9 clusters in
ReGa5 are vertex sharing, while ReGa~5(Sn), ReGa~5(Pb) and ReGa~5(Bi) not only have vertex sharing
but also face sharing polyhedra, which resultantly produces the capped Re2@Ga14 oblong chains. As
seen in the decrease in Tc from the superconductor Mo8Ga41 to Mo6Ga31 the exo-bond formation, as
well as the additional electron counts, may be a key factor causing the loss of superconductivity in
ReGa~5(Sn), ReGa~5(Pb) and ReGa~5(Bi). Initially, atomic vacancies were tested and revealed vacancies
on the Ga4 and Ga5 sites. The Ga4 site vacancies were found to vary significantly depending on the
electron count. After further inspection of the change in atomic distances with varying electron count,
it was found that the Re-Ga4 distance experiences the most significant change. A table of atomic
distances for each new phase is given in Table 3. This occurrence may have been understood by
the Re@Ga8 polyhedra undergoing stretching and compression due to the various applied chemical
pressures. However, the atomic distances in the Re@Ga8 polyhedra appear to remain relatively
consistent. The changes in distance experienced by Re-Ga4 resulted from the vacancies on the Ga4 site.
As the vacancies decrease, the Ga4 site merges two atoms into one and the Re-Ga4 distance increases.
This occurs as the structure changes from Sn to Bi to Pb, where ReGa~5(Sn) and ReGa~5(Bi) have Ga4
on the 4e site while ReGa~5(Pb) has Ga4 on the 2a site. As a result, the Ga4 and Ga5 vacancies can
be realized as Sn, Pb and Bi giving a mixture of Ga and Sn, Pb or Bi on the Ga4 and Ga5 sites, as
shown in Figure 2d. Therefore, considering both the atomic size and electron count of Sn, Pb and Bi
the changing Ga4 vacancies and Re-Ga4 distance can be well understood. Taking into account that
the most significant changes are resulting from the Re-Ga4 and the Ga5-Ga5 distances (diagonally
along the b axis) then both can be recognized as contributing factors to the change in structure between
the three compounds. The four Ga5 atoms that sit on either side of the Ga4 site seem to open and
compress, in sync with the Ga5 occupancies as the Ga4 atomic vacancy and site location changes,
subsequently pushing Ga4 from the 4e to the 2a site. This then increases the Re-Ga4 distance as the
structures transition from ReGa~5(Sn) to ReGa~5(Bi) to ReGa~5(Pb).Crystals 2019, 9, x FOR PEER REVIEW 5 of 9 
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Figure 2. Shown in this image is the structure of ReGa~5(Sn) (Re, purple; Ga, blue; Sn, grey) displaying
a unit cell of the capped square antiprismatic Re@Ga8 polyhedra projection on the (a) bc plane and (b)
ab plane. (c) Crystal structure of ReGa~5(Sn) showing the networks of capped Re2@Ga14 oblong chains.
(d) Image comparing the capped Re2@Ga14 oblong chain of ReGa~5(Sn), ReGa~5(Pb) (Pb, purple) and
ReGa~5(Bi) (Bi, orange).
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Table 1. Single crystal refinement data for ReGa4.96(Sn), ReGa5.08(Pb) and ReGa5.13(Bi).

Refined Formula ReGa4.96(9)(Sn) ReGa5.08(5)(Pb) ReGa5.13(5)(Bi)

FW (g/mol) 532.19 540.55 543.86
Space group; Z P 4/m n c; 4 P 4/m n c; 4 P 4/m n c; 4

a (Å) 6.4680(9) 6.4830(13) 6.474(2)
c (Å) 10.166(2) 10.229(2) 10.213(4)

V (Å3) 425.29(15) 429.9(2) 428.0(3)
Extinction Coefficient 0.0017(4) 0.0037(3) 0.0044(3)

θ range (◦) 3.734–33.135 3.721–33.166 3.726–33.240
No. reflections; Rint 5007; 0.0646 5731; 0.0700 5798; 0.1039

No. independent reflections 429 436 438
No. parameters 30 29 30

R1; ωR2 (I > 2δ(I)) 0.0397; 0.0932 0.0284; 0.0552 0.0263; 0.0464
Goodness of fit 1.311 1.197 0.999

Diffraction peak and hole
(e−/Å3) 2.713; −2.981 1.572; −2.359 1.822; −1.863

Table 2. Atomic coordinates and equivalent isotropic displacement parameters for ReGa4.96(Sn),
ReGa5.08(Pb) and ReGa5.13(Bi) (Ueq is defined as one-third of the trace of the orthogonalized Uij

tensor (Å2)).

Atom Wyck. x y z Occ. Ueq

ReGa4.96(9)(Sn)

Re 4e 0 0 0.3451(1) 1 0.008(1)
Ga2 8h 0.4535(3) 0.1808(3) 0 1 0.016(1)
Ga3 8g 0.7431(3) 0.2431(3) 1

4 1 0.045(1)
Ga4 4e 0 0 0.051(3) 0.18(3) 0.021(8)
Ga5 16i 0.0426(18) 0.096(2) 0.0947(8) 0.20(1) 0.028(4)

ReGa5.08(5)(Pb)

Re 4e 0 0 0.3453(1) 1 0.007(1)
Ga2 8h 0.4622(2) 0.1816(2) 0 1 0.016(1)
Ga3 8g 0.7462(2) 0.2462(2) 1

4 1 0.040(1)
Ga4 2a 0 0 0 0.75(1) 0.022(1)
Ga5 16i 0.0389(11) 0.0883(19) 0.0970(5) 0.18(1) 0.024(2)

ReGa5.13(5)(Bi)

Re 4e 0 0 0.3451(1) 1 0.006(1)
Ga2 8h 0.4692(1) 0.1821(1) 0 1 0.018(1)
Ga3 8g 0.7467(1) 0.2467(1) 1

4 1 0.033(1)
Ga4 4e 0 0 0.0318(3) 0.62(1) 0.012(1)
Ga5 16i 0.039(2) 0.079(5) 0.1001(6) 0.13(1) 0.027(3)

Table 3. List of atomic distances for ReGa4.96(Sn), ReGa5.08(Pb) and ReGa5.13(Bi).

ReGa4.96(Sn)

Atom1 Atom2 Distances (Å)
Re Ga2 2.614(2)
Re Ga3 2.484(2)
Re Ga4 2.99(4)
Re Ga5 2.635(9)

Ga5 Ga5 1.36(3) (diagonally along the b axis)
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Table 3. Cont.

ReGa5.08(Pb)

Atom1 Atom2 Distances (Å)
Re Ga2 2.612(1)
Re Ga3 2.491(1)
Re Ga4 3.5322(6)
Re Ga5 2.616(6)

Ga5 Ga5 1.25(1) (diagonally along the b axis)

ReGa5.13(Bi)

Atom1 Atom2 Distances (Å)
Re Ga2 2.604(1)
Re Ga3 2.487(1)
Re Ga4 3.200(4)
Re Ga5 2.566(8)

Ga5 Ga5 1.14(4) (diagonally along the b axis)

Physical Properties. To evaluate the impact of chemical pressure on superconductivity, specific
heat measurements were carried out. Figure 3a,c,e show the specific heat data plotted as, CP/T versus
T2, and Figure 3b,d,f display CP versus T for ReGa~5(Sn), ReGa~5(Pb) and ReGa~5(Bi), respectively.
The low-temperature experimental data (obtained under field of 0.3 T) were fitted using Cp/T = γ +

βT2, where the first and second terms are attributed to the electronic (Cel) and lattice contributions
(Cph) to the specific heat, respectively. The fit, represented by the red solid line (see Figure 3a,c,e), gives
the Sommerfeld coefficient,γ,4.0(1), 3.4(1), and 3.5(2) mJ mol−1 K−2 and β equals to 0.39(2), 0.55(1)
and 0.84(3) mJ mol−1 K−4 for ReGa~5(Sn), ReGa~5(Pb) and ReGa~5(Bi), respectively. Furthermore,

the Debye temperature ΘD can be determined using the simple Debye model: ΘD =
(

12π4

5β nR
)1/3

,

where R = 8.31 J mol−1K−1. The calculated Debye temperature ΘD is 309(4), 275(1) and 239(1) K for
compounds with elemental Sn, Pb and Bi, respectively. The obtained values of the Sommerfeld
coefficient and Debye temperature are significantly lower when compared with ReGa5 (γ = 4.68(7) mJ
mol−1 K−2 and ΘD = 314(2)K). A small anomaly at around 2.2 K, is observed for each phase in the
specific heat data measured under zero field, that resembles the critical superconducting temperature
of ReGa5 (not shown here). This is consistent with the high concentration of ReGa5 present in each
compound. Thus, we conclude that no phase transition was observed for ReGa~5(Sn), ReGa~5(Pb) and
ReGa~5(Bi), indicating that the effect of the valence electron counts on the ReGa5 system resulted not
only in a change of the crystal structure but also a loss of superconductivity. The whole temperature
range Cp(T), see Figure 3b,d,f, shows a typical behavior and at high temperature, Cp approaches the
expected Dulong–Petit value (3nR ≈ 150 J mol−1 K−1), where n is the number of atoms per formula
unit (n = 6) and R is the gas constant (R = 8.31 J mol−1 K−1).
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stoichiometry of Sn, Pb and Bi determined from the SEM/EDS data, the electron counts of 
ReGa4.96Sn0.1, ReGa5.08Pb0.1 and ReGa5.13Bi0.2 were calculated to be 22.28, 22.64 and 23.39 valence 
electrons (VE) per Re, respectively. The Fermi energy level is indicated for each compound in Figure 
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is located in a pseudo gap in the DOS, which is thought to play a role in the structural stability [24]. 
However, no von Hove singularities are found in the electronic structure of ReGa4.96(Sn), ReGa5.08(Pb) 
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Figure 3. (a,c,e) Heat capacity (Cp(T)/T ~ T2) range 1.85 to 300 K for ReGa~5(Sn), ReGa~5(Pb) and
ReGa~5(Bi) to obtain the Sommerfeld parameter (γ) and Debye temperature (θD). (b,d,f) Heat capacity
(Cp(T) ~ T) range 1.85 to 300 K for ReGa~5(Sn), ReGa~5(Pb) and ReGa~5(Bi).

Electronic Structure. To evaluate the influence of the electronic structure on ReGa~5(Sn),
ReGa~5(Pb) and ReGa~5(Bi), TB-LMTO-ASA calculations were performed to analyze the density
of states (DOS), Crystal Orbital Hamiltonian Population (-COHP) curves and band structures. Due to
the Ga vacancies and close proximity with regards to other atoms, a hypothetical “ReGa4.5” was utilized
to calculate the electronic structure, these plots are shown in Figure 4a–c. Based on the stoichiometry of
Sn, Pb and Bi determined from the SEM/EDS data, the electron counts of ReGa4.96Sn0.1, ReGa5.08Pb0.1

and ReGa5.13Bi0.2 were calculated to be 22.28, 22.64 and 23.39 valence electrons (VE) per Re, respectively.
The Fermi energy level is indicated for each compound in Figure 4. As seen with ReGa5 and other
endohedral gallide cluster superconductors, the Fermi energy level is located in a pseudo gap in the
DOS, which is thought to play a role in the structural stability [24]. However, no von Hove singularities
are found in the electronic structure of ReGa4.96(Sn), ReGa5.08(Pb) and ReGa5.13(Bi) around the Fermi
level [25]. Consequently, this could be a key factor in the loss of superconductivity in these gallide
clusters. This is consistent with the band structure calculation, Figure 4c, which indicates metallic
behavior and shows no sign of flat bands near the Fermi energy. The DOS at the Fermi energy increases
from ReGa5.08(Pb) to ReGa5.13(Bi) to ReGa4.96(Sn) suggesting the stability of the structures may come
from the degree of Ga4 vacancies. -COHP curves, shown in Figure 4b, were calculated to analyze the
interactions between Re and Ga in ReGa~5(Sn), ReGa~5(Pb) and ReGa~5(Bi). The -COHP shows the
Fermi levels tend to move from strong antibonding interactions to the non-bonding interactions. This
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could be strongly related to the structural stability of these distorted phases and a major influence on
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4. Conclusions

The understanding of Ga-rich TmGan endohedral clusters was further assessed through three new
phases: ReGa~5(Sn); ReGa~5(Pb) and ReGa~5(Bi) presented here. The crystal structure characterization
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