Non-isolating 2-bondage in graphs

By Marcin Krzywkowski

(Received Dec. 14, 2010)
(Revised Apr. 30, 2011)

Abstract

A 2-dominating set of a graph $G=(V, E)$ is a set D of vertices of G such that every vertex of $V(G) \backslash D$ has at least two neighbors in D. The 2-domination number of a graph G, denoted by $\gamma_{2}(G)$, is the minimum cardinality of a 2 -dominating set of G. The non-isolating 2 -bondage number of G, denoted by $b_{2}^{\prime}(G)$, is the minimum cardinality among all sets of edges $E^{\prime} \subseteq E$ such that $\delta\left(G-E^{\prime}\right) \geq 1$ and $\gamma_{2}\left(G-E^{\prime}\right)>\gamma_{2}(G)$. If for every $E^{\prime} \subseteq E$, either $\gamma_{2}\left(G-E^{\prime}\right)=\gamma_{2}(G)$ or $\delta\left(G-E^{\prime}\right)=0$, then we define $b_{2}^{\prime}(G)=0$, and we say that G is a γ_{2}-non-isolatingly strongly stable graph. First we discuss the basic properties of non-isolating 2 -bondage in graphs. We find the nonisolating 2 -bondage numbers for several classes of graphs. Next we show that for every non-negative integer there exists a tree having such non-isolating 2-bondage number. Finally, we characterize all γ_{2}-non-isolatingly strongly stable trees.

1. Introduction.

Let $G=(V, E)$ be a graph. By the neighborhood of a vertex v of G we mean the set $N_{G}(v)=\{u \in V(G): u v \in E(G)\}$. The degree of a vertex v, denoted by $d_{G}(v)$, is the cardinality of its neighborhood. By a leaf we mean a vertex of degree one, while a support vertex is a vertex adjacent to a leaf. We say that a support vertex is strong if it is adjacent to at least two leaves. Let $\delta(G)$ mean the minimum degree among all vertices of G. The path (cycle, respectively) on n vertices we denote by P_{n} (C_{n}, respectively). A wheel W_{n}, where $n \geq 4$, is a graph with n vertices, formed by connecting a vertex to all vertices of a cycle C_{n-1}. Let T be a tree, and let v be a vertex of T. We say that v is adjacent to a tree H if there is a neighbor of v, say x, such that the tree resulting from T by removing the edge $v x$, and which contains the vertex x, is a tree H. Let $K_{p, q}$ denote a complete bipartite graph the partite sets of which have cardinalities p and q. By a star we mean a connected graph in which exactly one vertex has degree greater than one. By a double star we mean a graph that can be obtained from a star by joining a positive number of vertices to one of the leaves.

[^0]A subset $D \subseteq V(G)$ is a dominating set of G if every vertex of $V(G) \backslash D$ has a neighbor in D, while it is a 2-dominating set, abbreviated 2DS, of G if every vertex of $V(G) \backslash D$ has at least two neighbors in D. The domination (2-domination, respectively) number of a graph G, denoted by $\gamma(G)\left(\gamma_{2}(G)\right.$, respectively), is the minimum cardinality of a dominating (2-dominating, respectively) set of G. Note that 2-domination is a type of multiple domination in which each vertex, which is not in the dominating set, is dominated at least k times for a fixed positive integer k. Multiple domination was introduced by Fink and Jacobson [3], and further studied for example in [1], [13]. For a comprehensive survey of domination in graphs, see [7], [8].

The bondage number $b(G)$ of a graph G is the minimum cardinality among all sets of edges $E^{\prime} \subseteq E$ such that $\gamma\left(G-E^{\prime}\right)>\gamma(G)$. If for every $E^{\prime} \subseteq E$ we have $\gamma\left(G-E^{\prime}\right)=\gamma(G)$, then we define $b(G)=0$, and we say that G is a γ-strongly stable graph. Bondage in graphs was introduced in [4], and further studied for example in [2], [5], [6], [9], [10], [11], [12] and [14].

We define the non-isolating 2-bondage number of a graph G, denoted by $b_{2}^{\prime}(G)$, to be the minimum cardinality among all sets of edges $E^{\prime} \subseteq E$ such that $\delta\left(G-E^{\prime}\right) \geq 1$ and $\gamma_{2}\left(G-E^{\prime}\right)>\gamma_{2}(G)$. Thus $b_{2}^{\prime}(G)$ is the minimum number of edges of G that have to be removed in order to obtain a graph with no isolated vertices, and with the 2-domination number greater than that of G. If for every $E^{\prime} \subseteq E$, either $\gamma_{2}\left(G-E^{\prime}\right)=\gamma_{2}(G)$ or $\delta\left(G-E^{\prime}\right)=0$, then we define $b_{2}^{\prime}(G)=0$, and we say that G is a γ_{2}-non-isolatingly strongly stable graph.

First we discuss the basic properties of non-isolating 2 -bondage in graphs. We find the non-isolating 2-bondage numbers for several classes of graphs. Next we show that for every non-negative integer there exists a tree having such non-isolating 2-bondage number. Finally, we characterize all γ_{2}-non-isolatingly strongly stable trees.

2. Results.

We begin with the following observations.
Observation 1: Every leaf of a graph G is in every $\gamma_{2}(G)$-set.
Observation 2: If $H \subseteq G$ and $V(H)=V(G)$, then $\gamma_{2}(H) \geq \gamma_{2}(G)$.
Observation 3: For every positive integer n we have $\gamma_{2}\left(K_{n}\right)=\min \{2, n\}$.
Observation 4: If n is a positive integer, then $\gamma_{2}\left(P_{n}\right)=\lfloor n / 2\rfloor+1$.
Observation 5: For every integer $n \geq 3$ we have $\gamma_{2}\left(C_{n}\right)=\lfloor(n+1) / 2\rfloor$.

Observation 6: For every integer $n \geq 4$ we have

$$
\gamma_{2}\left(W_{n}\right)= \begin{cases}2 & \text { if } n=4,5 ; \\ \lfloor(n+1) / 3\rfloor+1 & \text { if } n \geq 6 .\end{cases}
$$

Observation 7: Let p and q be positive integers such that $p \leq q$. Then

$$
\gamma_{2}\left(K_{p, q}\right)= \begin{cases}\max \{q, 2\} & \text { if } p=1 \\ \min \{p, 4\} & \text { if } p \geq 2 .\end{cases}
$$

Since the definition of the non-isolating 2-bondage does not allow isolated vertices in the searched subgraphs of a given graph, in this paper, we do not consider removing edges that produces an isolated vertex.

First we find the non-isolating 2-bondage numbers of complete graphs.
Remark 8. For every positive integer n we have

$$
b_{2}^{\prime}\left(K_{n}\right)= \begin{cases}0 & \text { if } n=1,2,3 \\ \lfloor 2 n / 3\rfloor & \text { otherwise } .\end{cases}
$$

Proof. Of course, $b_{2}^{\prime}\left(K_{1}\right)=0, b_{2}^{\prime}\left(K_{2}\right)=0$, and $b_{2}^{\prime}\left(K_{3}\right)=0$. Now assume that $n \geq 4$. Let $E\left(K_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let G be a graph with at least two vertices. Let us observe that $\gamma_{2}(G)=2$ if and only if G has two vertices which are both adjacent to every vertex other than they. Let $E^{\prime} \subseteq E\left(K_{n}\right)$. Let us observe that $\gamma_{2}\left(K_{n}-E^{\prime}\right)>2$ if and only if at most one vertex of K_{n} is not incident to any edge of E^{\prime}, and every edge of E^{\prime} is adjacent to some other edge of E^{\prime}. We want to choose a smallest set $E^{\prime} \subseteq E\left(K_{n}\right)$ satisfying the condition above while $\delta\left(K_{n}-E^{\prime}\right) \geq 1$. Let us observe that the most efficient way of choosing edges of K_{n} is to choose for example edges $v_{1} v_{2}, v_{2} v_{3}, v_{4} v_{5}, v_{5} v_{6}$, and so on. In this way no vertex becomes isolated. Let k be a positive integer.

If $n=3 k$, then we remove $2 k$ edges. Thus $b_{2}^{\prime}\left(K_{3 k}\right)=2 k=\lfloor 2 n / 3\rfloor$. If $n=3 k+1$, then we also remove $2 k$ edges as one vertex can remain universal. We have $b_{2}^{\prime}\left(K_{3 k+1}\right)=2 k=\lfloor 2 k+2 / 3\rfloor=\lfloor 2(3 k+1) / 3\rfloor=\lfloor 2 n / 3\rfloor$. Now assume that $n=3 k+2$. If we remove the edges $v_{1} v_{2}, v_{2} v_{3}, v_{4} v_{5}, v_{5} v_{6}, \ldots, v_{2 k-2} v_{2 k-1}, v_{2 k-1} v_{2 k}$, then the vertices $v_{3 k+1}$ and $v_{3 k+2}$ remain universal. Therefore $b_{2}^{\prime}\left(K_{3 k+2}\right)>2 k$. Let us observe that removing the edges $v_{1} v_{2}, v_{2} v_{3}, v_{4} v_{5}, v_{5} v_{6}, \ldots, v_{2 k-2} v_{2 k-1}$, $v_{2 k-1} v_{2 k}, v_{2 k} v_{2 k+1}$ increases the 2 -domination number. This implies that $b_{2}^{\prime}\left(K_{3 k+2}\right)=2 k+1=\lfloor 2 k+4 / 3\rfloor=\lfloor 2(3 k+2) / 3\rfloor=\lfloor 2 n / 3\rfloor$.

Now we calculate the non-isolating 2-bondage numbers of paths.

Remark 9. If n is a positive integer, then

$$
b_{2}^{\prime}\left(P_{n}\right)= \begin{cases}0 & \text { for } n=1,2,3 \\ 1 & \text { for } n \geq 4\end{cases}
$$

Now we investigate the non-isolating 2-bondage in cycles.
Remark 10. For every integer $n \geq 3$ we have

$$
b_{2}^{\prime}\left(C_{n}\right)= \begin{cases}0 & \text { if } n=3 \\ 1 & \text { if } n \text { is even } \\ 2 & \text { otherwise }\end{cases}
$$

Now we calculate the non-isolating 2-bondage numbers of wheels.
Remark 11. For every integer $n \geq 4$ we have

$$
b_{2}^{\prime}\left(W_{n}\right)= \begin{cases}1 & \text { if } n=5 \\ 2 & \text { if } n \neq 3 k+2 \\ 3 & \text { otherwise }\end{cases}
$$

Proof. Let $E\left(W_{n}\right)=\left\{v_{1} v_{2}, v_{1} v_{3}, \ldots, v_{1} v_{n}, v_{2} v_{3}, v_{3} v_{4}, \ldots, v_{n-1} v_{n}, v_{n} v_{2}\right\}$. Since $W_{4}=K_{4}$, by Remark 8 we get $b_{2}^{\prime}\left(W_{4}\right)=b_{2}^{\prime}\left(K_{4}\right)=\lfloor 8 / 3\rfloor=2$. By Observation 6 we have $\gamma_{2}\left(W_{5}\right)=2$. Let us observe that $\gamma_{2}\left(W_{5}-v_{2} v_{3}\right)=3>2=\gamma_{2}\left(W_{5}\right)$. Thus $b_{2}^{\prime}\left(W_{5}\right)=1$. Now let us assume that $n \geq 6$. If we remove an edge incident with v_{1}, say $v_{1} v_{2}$, then we get $\gamma_{2}\left(W_{n}-v_{1} v_{2}\right)=\gamma_{2}\left(W_{n}\right)$ as we can construct a $\gamma_{2}\left(W_{n}\right)$-set that contains the vertices v_{1} and v_{2}; such set is also a 2DS of the graph $W_{n}-v_{1} v_{2}$. If we remove an edge non-incident with v_{1}, say $v_{2} v_{3}$, then we get $\gamma_{2}\left(W_{n}-v_{2} v_{3}\right)=\gamma_{2}\left(W_{n}\right)$ as we can construct a $\gamma_{2}\left(W_{n}\right)$-set that does not contain the vertices v_{2} and v_{3}; such set is also a 2 DS of the graph $W_{n}-v_{2} v_{3}$. This implies that $b_{2}^{\prime}\left(W_{n}\right)=0$ or $b_{2}^{\prime}\left(W_{n}\right) \geq 2$. First assume that $n=3 k$ or $n=3 k+1$. Let us remove the edges $v_{n-1} v_{n}$ and $v_{n} v_{2}$. We find a relation between the numbers $\gamma_{2}\left(W_{n}-v_{n-1} v_{n}-v_{n} v_{2}\right)$ and $\gamma_{2}\left(W_{n-1}\right)$. Let D be any $\gamma_{2}\left(W_{n}-v_{n-1} v_{n}-v_{n} v_{2}\right)$ set. By Observation 1 we have $v_{n} \in D$. Let us observe that $D \backslash\left\{v_{n}\right\}$ is a 2 DS of the graph W_{n-1}. Therefore $\gamma_{2}\left(W_{n-1}\right) \leq \gamma_{2}\left(W_{n}-v_{n-1} v_{n}-v_{n} v_{2}\right)-1$. Using Observation 6 we get $\gamma_{2}\left(W_{n}-v_{n-1} v_{n}-v_{n} v_{2}\right) \geq \gamma_{2}\left(W_{n-1}\right)+1=\lfloor n / 3\rfloor+2=$ $\lfloor(n+1) / 3\rfloor+2>\lfloor(n+1) / 3\rfloor+1=\gamma_{2}\left(W_{n}\right)$. Therefore $b_{2}^{\prime}\left(W_{n}\right)=2$ if $n=3 k$ or $n=3 k+1$. Now assume that $n=3 k+2$. It is not difficult to verify that now removing any two edges does not increase the 2 -domination number. This implies
that $b_{2}^{\prime}\left(W_{n}\right)=0$ or $b_{2}^{\prime}\left(W_{n}\right) \geq 3$. Let us remove the edges $v_{n-2} v_{n-1}, v_{n-1} v_{n}$, and $v_{n} v_{2}$. We find a relation between the numbers $\gamma_{2}\left(W_{n}-v_{n-2} v_{n-1}-v_{n-1} v_{n}-v_{n} v_{2}\right)$ and $\gamma_{2}\left(W_{n-2}\right)$. Let D be any $\gamma_{2}\left(W_{n}-v_{n-2} v_{n-1}-v_{n-1} v_{n}-v_{n} v_{2}\right)$-set. By Observation 1 we have $v_{n-1}, v_{n} \in D$. Let us observe that $D \backslash\left\{v_{n-1}, v_{n}\right\}$ is a 2 DS of the graph W_{n-2}. Therefore $\gamma_{2}\left(W_{n-2}\right) \leq \gamma_{2}\left(W_{n}-v_{n-2} v_{n-1}-v_{n-1} v_{n}-v_{n} v_{2}\right)-2$. Now we get $\gamma_{2}\left(W_{n}-v_{n-2} v_{n-1}-v_{n-1} v_{n}-v_{n} v_{2}\right) \geq \gamma_{2}\left(W_{n-2}\right)+2=\lfloor(n-1) / 3\rfloor+3=$ $\lfloor(n+2) / 3\rfloor+2>\lfloor(n+1) / 3\rfloor+1=\gamma_{2}\left(W_{n}\right)$. Therefore $b_{2}^{\prime}\left(W_{n}\right)=3$ if $n=3 k+2$.

Now we investigate the non-isolating 2-bondage in complete bipartite graphs.
Remark 12. Let p and q be positive integers such that $p \leq q$. Then

$$
b_{2}^{\prime}\left(K_{p, q}\right)= \begin{cases}3 & \text { if } p=q=3 \\ 5 & \text { if } p=q=4 \\ p-1 & \text { otherwise }\end{cases}
$$

Proof. Let $E\left(K_{p, q}\right)=\left\{a_{i} b_{j}: 1 \leq i \leq p\right.$ and $\left.1 \leq j \leq q\right\}$. If $p=1$, then obviously $b_{2}^{\prime}\left(K_{p, q}\right)=0=p-1$ as removing an edge gives us an isolated vertex. Now assume that $p=2$. By Observation 7 we have $\gamma_{2}\left(K_{2, q}\right)=2$. Let us observe that $\gamma_{2}\left(K_{2, q}-a_{1} b_{1}\right)=3$ as the vertex b_{1} has to belong to every 2DS of the graph $K_{2, q}-a_{1} b_{1}$. Thus $b_{2}^{\prime}\left(K_{2, q}\right)=1=p-1$.

Now let us assume that $p=3$. By Observation 7 we have $\gamma_{2}\left(K_{3, q}\right)=3$. Let us observe that removing one edge does not increase the 2-domination number. This implies that $b_{2}^{\prime}\left(K_{3, q}\right)=0$ or $b_{2}^{\prime}\left(K_{3, q}\right) \geq 2$. If $q=3$, then it is easy to verify that removing any two edges does not increase the 2-domination number. This implies that $b_{2}^{\prime}\left(K_{3,3}\right)=0$ or $b_{2}^{\prime}\left(K_{3, q}\right) \geq 3$. Let us observe that $\gamma_{2}\left(K_{3,3}-a_{1} b_{1}-\right.$ $\left.a_{1} b_{2}-a_{2} b_{1}\right)=4>3=\gamma_{2}\left(K_{3,3}\right)$. Therefore $b_{2}^{\prime}\left(K_{3,3}\right)=3$. Now assume that $q \geq 4$. We have $\gamma_{2}\left(K_{3, q}-a_{1} b_{1}-a_{2} b_{1}\right)=4$ as the vertex b_{1} has to belong to every 2DS of the graph $K_{3, q}-a_{1} b_{1}-a_{2} b_{1}$. Thus $b_{2}^{\prime}\left(K_{3, q}\right)=2$ if $q \geq 4$.

Now assume that $p \geq 4$. By Observation 7 we have $\gamma_{2}\left(K_{p, q}\right)=4$. If $q=4$, then it is not difficult to verify that removing any four edges does not increase the 2-domination number. This implies that $b_{2}^{\prime}\left(K_{4,4}\right)=0$ or $b_{2}^{\prime}\left(K_{4,4}\right) \geq 5$. We have $\gamma_{2}\left(K_{4,4}-a_{1} b_{1}-a_{1} b_{2}-a_{1} b_{3}-a_{2} b_{1}-a_{3} b_{1}\right)=5$ as the vertices a_{1} and b_{1} have to belong to every 2 DS of the graph $K_{4,4}-a_{1} b_{1}-a_{1} b_{2}-a_{1} b_{3}-a_{2} b_{1}-a_{3} b_{1}$. Thus $b_{2}^{\prime}\left(K_{4,4}\right)=5$. Now assume that $q \geq 5$. Let us observe that removing any $p-2$ edges does not increase the 2-domination number. This implies that $b_{2}^{\prime}\left(K_{p, q}\right)=0$ or $b_{2}^{\prime}\left(K_{p, q}\right) \geq p-1$. We have $\gamma_{2}\left(K_{p, q}-a_{1} b_{1}-a_{2} b_{1}-\cdots-a_{p-1} b_{1}\right)=5$ as the vertex b_{1} has to belong to every 2DS of the graph $K_{p, q}-a_{1} b_{1}-a_{2} b_{1}-\cdots-a_{p-1} b_{1}$. Therefore $b_{2}^{\prime}\left(K_{p, q}\right)=p-1$ if $p \geq 4$ and $q \geq 5$.

A paired dominating set of a graph G is a dominating set of vertices whose induced subgraph has a perfect matching. The paired domination number of G, denoted by $\gamma_{p}(G)$, is the minimum cardinality of a paired dominating set of G. The paired bondage number, denoted by $b_{p}(G)$, is the minimum cardinality among all sets of edges $E^{\prime} \subseteq E$ such that $\delta\left(G-E^{\prime}\right) \geq 1$ and $\gamma_{p}\left(G-E^{\prime}\right)>\gamma_{p}(G)$. If for every $E^{\prime} \subseteq E$, either $\gamma_{p}\left(G-E^{\prime}\right)=\gamma_{p}(G)$ or $\delta\left(G-E^{\prime}\right)=0$, then we define $b_{p}(G)=0$, and we say that G is a γ_{p}-strongly stable graph. Raczek [11] observed that if $H \subseteq G$, then $b_{p}(H) \leq b_{p}(G)$. Let us observe that no inequality of such type is true for the non-isolating 2-bondage. Consider the complete bipartite graphs $K_{3,3}, K_{3,5}$, and $K_{4,5}$. Of course, $K_{3,3} \subseteq K_{3,5} \subseteq K_{4,5}$. Using Remark 12 we get $b_{2}^{\prime}\left(K_{3,3}\right)=3>2=b_{2}^{\prime}\left(K_{3,5}\right)<3=b_{2}^{\prime}\left(K_{4,5}\right)$.

The authors of [4] proved that the bondage number of any tree is either one or two. Let us observe that for every non-negative integer there exists a tree having such non-isolating 2-bondage number. For positive integers k consider trees T_{k} of the form presented in Figure 1. It is not difficult to verify that $b_{2}^{\prime}\left(T_{k}\right)=k-1$.

Figure 1. A tree T_{k} having $5 k+1$ vertices.
Hartnell and Rall [5] characterized all trees with bondage number equaling two. We characterize all trees with the non-isolating 2 -bondage number equaling zero, that is, all γ_{2}-non-isolatingly strongly stable trees.

We have the following property of γ_{2}-non-isolatingly strongly stable trees.
Lemma 13. Let T be a tree with $b_{2}^{\prime}(T)=0$, and let x be a vertex of T which is neither a leaf nor a support vertex. Then $\gamma_{2}(T)=\gamma_{2}(T-x)+1$.

Proof. The neighbors of x we denote by $y_{1}, y_{2}, \ldots, y_{k}$. Let T_{i} mean the component of $T-x$ which contains the vertex y_{i}. Let $E_{0}=\left\{x y_{i}: 3 \leq i \leq k\right\}$, $E_{1}=E_{0} \cup\left\{x y_{2}\right\}$, and $E_{2}=E_{0} \cup\left\{x y_{1}\right\}$. Since $b_{2}^{\prime}(T)=0$, we have $\gamma_{2}(T)=$ $\gamma_{2}\left(T-E_{0}\right)=\gamma_{2}\left(T-E_{1}\right)=\gamma_{2}\left(T-E_{2}\right)$. By T_{i}^{\prime} we denote the component of $T-E_{i}$ which contains the vertex x. For $i=1,2$, let D_{i}^{\prime} be any $\gamma_{2}\left(T_{i}^{\prime}\right)$-set. By Observation 1 we have $x \in D_{i}^{\prime}$. It is easy to observe that $D_{1}^{\prime} \cup D_{2}^{\prime}$ is a 2 DS of the tree T_{0}^{\prime}. Thus
$\gamma_{2}\left(T_{0}^{\prime}\right) \leq \gamma_{2}\left(T_{1}^{\prime}\right)+\gamma_{2}\left(T_{2}^{\prime}\right)-1$. Now let D_{1} be any $\gamma_{2}\left(T_{1}\right)$-set. Of course, $D_{1} \cup\{x\}$ is a 2DS of the tree T_{1}^{\prime}. Thus $\gamma_{2}\left(T_{1}^{\prime}\right) \leq \gamma_{2}\left(T_{1}\right)+1$. Suppose that $\gamma_{2}\left(T_{1}^{\prime}\right)<\gamma_{2}\left(T_{1}\right)+1$. Now we get $\gamma_{2}(T)=\gamma_{2}\left(T-E_{0}\right)=\gamma_{2}\left(T_{0}^{\prime}\right)+\gamma_{2}\left(T_{3}\right)+\gamma_{2}\left(T_{4}\right)+\cdots+\gamma_{2}\left(T_{k}\right) \leq \gamma_{2}\left(T_{1}^{\prime}\right)+$ $\gamma_{2}\left(T_{2}^{\prime}\right)-1+\gamma_{2}\left(T_{3}\right)+\gamma_{2}\left(T_{4}\right)+\cdots+\gamma_{2}\left(T_{k}\right)<\gamma_{2}\left(T_{1}\right)+\gamma_{2}\left(T_{2}^{\prime}\right)+\gamma_{2}\left(T_{3}\right)+\gamma_{2}\left(T_{4}\right)+\cdots+$ $\gamma_{2}\left(T_{k}\right)=\gamma_{2}\left(T-E_{2}\right)=\gamma_{2}(T)$, a contradiction. Therefore $\gamma_{2}\left(T_{1}^{\prime}\right)=\gamma_{2}\left(T_{1}\right)+1$. Now we get $\gamma_{2}(T)=\gamma_{2}\left(T-E_{1}\right)=\gamma_{2}\left(T_{1}^{\prime}\right)+\gamma_{2}\left(T_{2}\right)+\gamma_{2}\left(T_{3}\right)+\cdots+\gamma_{2}\left(T_{k}\right)=$ $\gamma_{2}\left(T_{1}\right)+\gamma_{2}\left(T_{2}\right)+\cdots+\gamma_{2}\left(T_{k}\right)+1=\gamma_{2}(T-x)+1$.

We have the following sufficient condition for that a subtree of a γ_{2}-nonisolatingly strongly stable tree is also γ_{2}-non-isolatingly strongly stable.

Lemma 14. Let T be a γ_{2}-non-isolatingly strongly stable tree. Assume that $T^{\prime} \neq K_{1}$ is a subtree of T such that $T-T^{\prime}$ has no isolated vertices. Then $b_{2}^{\prime}\left(T^{\prime}\right)=$ 0 .

Proof. Let E_{1} mean the minimum subset of the set of edges of T such that T^{\prime} is a component of $T-E_{1}$. Now let E^{\prime} be a subset of the set of edges of T^{\prime} such that $\delta\left(T^{\prime}-E^{\prime}\right) \geq 1$. The assumption $b_{2}^{\prime}(T)=0$ implies that $\gamma_{2}\left(T-E_{1}-E^{\prime}\right)=$ $\gamma_{2}(T)$. We have $T-E_{1}-E^{\prime}=T^{\prime}-E^{\prime} \cup\left(T-T^{\prime}\right)$, and consequently, $\gamma_{2}\left(T-E_{1}-E^{\prime}\right)=$ $\gamma_{2}\left(T^{\prime}-E^{\prime}\right)+\gamma_{2}\left(T-T^{\prime}\right)$. Now we get $\gamma_{2}\left(T^{\prime}-E^{\prime}\right)=\gamma_{2}\left(T-E_{1}-E^{\prime}\right)-\gamma_{2}\left(T-T^{\prime}\right)=$ $\gamma_{2}(T)-\gamma_{2}(T)+\gamma_{2}\left(T^{\prime}\right)=\gamma_{2}\left(T^{\prime}\right)$. This implies that $b_{2}^{\prime}\left(T^{\prime}\right)=0$.

Now we prove that attaching a path P_{3} by joining it through the support vertex increases the 2-domination number of any graph by two.

Lemma 15. Let G be a graph, and let H obtained from G by attaching a path P_{3} by joining the support vertex to any vertex of G. Then $\gamma_{2}(H)=\gamma_{2}(G)+2$.

Proof. Let $v_{1} v_{2} v_{3}$ mean the attached path. Let D^{\prime} be any $\gamma_{2}(G)$-set. It is easy to see that $D^{\prime} \cup\left\{v_{1}, v_{3}\right\}$ is a 2 DS of the graph H. Thus $\gamma_{2}(H) \leq \gamma_{2}(G)+2$. Now let us observe that there exists a $\gamma_{2}(H)$-set that does not contain the vertex v_{2}. Let D be such a set. By Observation 1 we have $v_{1}, v_{3} \in D$. Observe that $D \backslash\left\{v_{1}, v_{3}\right\}$ is a 2DS of the graph G. Therefore $\gamma_{2}(G) \leq \gamma_{2}(H)-2$. This implies that $\gamma_{2}(H)=\gamma_{2}(G)+2$.

Now we need to define trees G_{1} and G_{2}, see Figure 2. The tree G_{1} is a star $K_{1,3}$ and the tree G_{2} is a double star with five vertices.

For the purpose of characterizing all γ_{2}-non-isolatingly strongly stable trees, that is, all trees T such that for every $E^{\prime} \subseteq E$, either $\gamma_{2}\left(T-E^{\prime}\right)=\gamma_{2}(T)$ or $\delta\left(T-E^{\prime}\right)=0$, we introduce a family \mathcal{T} of trees $T=T_{k}$ that can be obtained as follows. Let $T_{1} \in\left\{P_{1}, P_{2}, P_{3}\right\}$. If k is a positive integer, then T_{k+1} can be obtained recursively from T_{k} by one of the following operations.

Figure 2. The trees G_{1} and G_{2}.

- Operation \mathcal{O}_{1} : Attach a vertex by joining it to a strong support vertex of T_{k}.
- Operation \mathcal{O}_{2} : Attach a path P_{3} by joining the support vertex to a leaf of $T_{k} \neq P_{3}$ the neighbor of which has degree at most two.
- Operation \mathcal{O}_{3} : Attach a path P_{3} by joining the support vertex to a vertex of T_{k} which is not a leaf.
- Operation \mathcal{O}_{4} : Let x mean a vertex of T_{k} adjacent to a tree G_{1} through the vertex u. Remove that tree G_{1} and attach a tree G_{2} by joining the vertex u to the vertex x.
- Operation \mathcal{O}_{5} : Attach a path P_{3} by joining the support vertex to a leaf of T_{k} the neighbor of which is adjacent to at least three leaves.
Now we characterize all γ_{2}-non-isolatingly strongly stable trees.
Theorem 16. Let T be a tree. Then $b_{2}^{\prime}(T)=0$ if and only if $T \in \mathcal{T}$.
Proof. Let T be a tree of the family \mathcal{T}. We use the induction on the number k of operations performed to construct the tree T. If $T=P_{1}$, then obviously $b_{2}^{\prime}(T)=0$. If $T=P_{2}$, then also $b_{2}^{\prime}(T)=0$ as removing the edge gives us isolated vertices. Similarly, $b_{2}^{\prime}\left(P_{3}\right)=0$. Let $k \geq 2$ be an integer. Assume that the result is true for every tree $T^{\prime}=T_{k}$ of the family \mathcal{T} constructed by $k-1$ operations. Let $T=T_{k+1}$ be a tree of the family \mathcal{T} constructed by k operations.

First assume that T is obtained from T^{\prime} by operation \mathcal{O}_{1}. Let x mean the attached vertex, and let y mean its neighbor. Let D be any $\gamma_{2}(T)$-set. By Observation 1 we have $x \in D$. Let us observe that $D \backslash\{x\}$ is a 2 DS of the tree T^{\prime} as the vertex y has at least two neighbors in $D \backslash\{x\}$. Therefore $\gamma_{2}\left(T^{\prime}\right) \leq \gamma_{2}(T)-1$. Now let E^{\prime} be a subset of the set of edges of T such that $\delta\left(T-E^{\prime}\right) \geq 1$. Since x is a leaf of T, we have $x y \notin E^{\prime}$. The assumption $b_{2}^{\prime}\left(T^{\prime}\right)=0$ implies that $\gamma_{2}\left(T^{\prime}-E^{\prime}\right)=\gamma_{2}\left(T^{\prime}\right)$. Let D^{\prime} be any $\gamma_{2}\left(T^{\prime}-E^{\prime}\right)$-set. Of course, $D^{\prime} \cup\{x\}$ is a 2DS of $T-E^{\prime}$. Thus $\gamma_{2}\left(T-E^{\prime}\right) \leq \gamma_{2}\left(T^{\prime}-E^{\prime}\right)+1$. Now we get $\gamma_{2}\left(T-E^{\prime}\right) \leq$
$\gamma_{2}\left(T^{\prime}-E^{\prime}\right)+1=\gamma_{2}\left(T^{\prime}\right)+1 \leq \gamma_{2}(T)$. On the other hand, by Observation 2 we have $\gamma_{2}\left(T-E^{\prime}\right) \geq \gamma_{2}(T)$. This implies that $\gamma_{2}\left(T-E^{\prime}\right)=\gamma_{2}(T)$, and consequently, $b_{2}^{\prime}(T)=0$.

Now assume that T is obtained from T^{\prime} by operation \mathcal{O}_{2}. The leaf to which is attached P_{3} we denote by x. Let y mean the neighbor of x. The attached path we denote by $v_{1} v_{2} v_{3}$. If $d_{T}(y)=1$, then T^{\prime} is a path P_{2}. It is not difficult to verify that $b_{2}^{\prime}(T)=0$. Now assume that $d_{T}(y)=2$. The neighbor of y other than x we denote by z. Since $T^{\prime} \neq P_{3}$, we have $d_{T^{\prime}}(z) \geq 2$. Let t mean a neighbor of z other than y. By Lemma 15 we have $\gamma_{2}(T)=\gamma_{2}\left(T^{\prime}\right)+2$. Let E^{\prime} be a subset of the set of edges of T such that $\delta\left(T-E^{\prime}\right) \geq 1$. Since v_{1} and v_{3} are leaves of T, we have $v_{1} v_{2}, v_{2} v_{3} \notin E^{\prime}$. If $x v_{2} \in E^{\prime}$, then $\gamma_{2}\left(T-E^{\prime}\right)=$ $\gamma_{2}\left(P_{3} \cup T^{\prime}-\left(E^{\prime} \backslash\left\{x v_{2}\right\}\right)\right)=\gamma_{2}\left(T^{\prime}-\left(E^{\prime} \backslash\left\{x v_{2}\right\}\right)\right)+\gamma_{2}\left(P_{3}\right)=\gamma_{2}\left(T^{\prime}\right)+2=\gamma_{2}(T)$. Now assume that $x v_{2} \notin E^{\prime}$. If $x y \notin E^{\prime}$, then using Lemma 15 we get $\gamma_{2}\left(T-E^{\prime}\right)=$ $\gamma_{2}\left(T^{\prime}-E^{\prime}\right)+2=\gamma_{2}\left(T^{\prime}\right)+2=\gamma_{2}(T)$. Now assume that $x y \in E^{\prime}$. By T_{y}^{\prime} we denote the component of $T^{\prime}-\left(E^{\prime} \backslash\{x y\}\right)$ which contains the vertex y. Let us observe that $T_{y}^{\prime} \neq P_{3}$. Suppose that $T_{y}^{\prime}=P_{3}$. Let $E^{\prime \prime}=E^{\prime} \backslash\{x y, z t\}$ and $E^{\prime \prime \prime}=E^{\prime \prime} \cup\{y z\}$. Since $b_{2}^{\prime}\left(T^{\prime}\right)=0$, we have $\gamma_{2}\left(T^{\prime}-E^{\prime \prime}\right)=\gamma_{2}\left(T^{\prime}\right)$ and $\gamma_{2}\left(T^{\prime}-E^{\prime \prime \prime}\right)=\gamma_{2}\left(T^{\prime}\right)$. This implies that $\gamma_{2}\left(T^{\prime}-E^{\prime \prime}\right)=\gamma_{2}\left(T^{\prime}-E^{\prime \prime \prime}\right)$. Let $D^{\prime \prime \prime}$ be any $\gamma_{2}\left(T^{\prime}-E^{\prime \prime \prime}\right)$-set. By Observation 1 we have $x, y, z \in D^{\prime \prime \prime}$. Let us observe that $D^{\prime \prime \prime} \backslash\{y\}$ is a 2 DS of $T^{\prime}-E^{\prime \prime}$. Consequently, $\gamma_{2}\left(T^{\prime}-E^{\prime \prime}\right) \leq \gamma_{2}\left(T^{\prime}-E^{\prime \prime \prime}\right)-1$, a contradiction. Therefore $T_{y}^{\prime} \neq P_{3}$. Since $b_{2}^{\prime}\left(T^{\prime}\right)=0$, we have $\gamma_{2}\left(T^{\prime}-\left(E^{\prime} \backslash\{x y\}\right)-y z\right)=\gamma_{2}\left(T^{\prime}\right)$. Let D^{\prime} be any $\gamma_{2}\left(T^{\prime}-\left(E^{\prime} \backslash\{x y\}\right)-y z\right)$-set. By Observation 1 we have $x, y \in D^{\prime}$. Let us observe that $D^{\prime} \cup\left\{v_{1}, v_{3}\right\}$ is a 2 DS of $T-E^{\prime}$. Thus $\gamma_{2}\left(T-E^{\prime}\right) \leq \gamma_{2}\left(T^{\prime}-\left(E^{\prime} \backslash\{x y\}\right)-y z\right)+2$. We get $\gamma_{2}\left(T-E^{\prime}\right) \leq \gamma_{2}\left(T^{\prime}-\left(E^{\prime} \backslash\{x y\}\right)-y z\right)+2=\gamma_{2}\left(T^{\prime}\right)+2=\gamma_{2}(T)$. Now we conclude that $\gamma_{2}\left(T-E^{\prime}\right)=\gamma_{2}(T)$. This implies that $b_{2}^{\prime}(T)=0$.

Now assume that T is obtained from T^{\prime} by operation \mathcal{O}_{3}. The vertex to which is attached P_{3} we denote by x. Let $v_{1} v_{2} v_{3}$ mean the attached path. Let E^{\prime} be a subset of the set of edges of T such that $\delta\left(T-E^{\prime}\right) \geq 1$. If $x v_{2} \in E^{\prime}$, then similarly as when considering the previous operation we get $\gamma_{2}\left(T-E^{\prime}\right) \leq \gamma_{2}(T)$. Now assume that $x v_{2} \notin E^{\prime}$. If the component of $T-E^{\prime}$ which contains the vertex x is not a star $K_{1,3}$, then similarly as when considering the previous operation we get $\gamma_{2}\left(T-E^{\prime}\right) \leq \gamma_{2}(T)$. Now assume that the component of $T-E^{\prime}$ which contains the vertex x is a star $K_{1,3}$. Let us observe that $b_{2}^{\prime}\left(T^{\prime}-x\right)=0$. Suppose that $b_{2}^{\prime}\left(T^{\prime}-x\right)>0$. This implies that there is a component of $T^{\prime}-x$, say T_{i}, such that $b_{2}^{\prime}\left(T_{i}\right)>0$. Since x is not a leaf of T^{\prime}, the graph $T^{\prime}-T_{i}$ has no isolated vertices. By Lemma 14 we have $b_{2}^{\prime}\left(T_{i}\right)=0$, a contradiction. Therefore $b_{2}^{\prime}\left(T^{\prime}-x\right)=0$. This implies that $\gamma_{2}\left(T^{\prime}-x-\left(E^{\prime} \cap E\left(T^{\prime}-x\right)\right)\right)=\gamma_{2}\left(T^{\prime}-x\right)$. Let D^{\prime} be any $\gamma_{2}\left(T^{\prime}-x-\left(E^{\prime} \cap E\left(T^{\prime}-x\right)\right)\right)$-set. It is easy to observe that $D^{\prime} \cup\left\{x, v_{1}, v_{3}\right\}$ is a 2 DS of $T-E^{\prime}$. Thus $\gamma_{2}\left(T-E^{\prime}\right) \leq \gamma_{2}\left(T^{\prime}-x-\left(E^{\prime} \cap E\left(T^{\prime}-x\right)\right)\right)+3$. Using Lemmas 13 and 15 we get $\gamma_{2}\left(T-E^{\prime}\right) \leq \gamma_{2}\left(T^{\prime}-x-\left(E^{\prime} \cap E\left(T^{\prime}-x\right)\right)\right)+3=\gamma_{2}\left(T^{\prime}-x\right)+3=$
$\gamma_{2}\left(T^{\prime}\right)+2=\gamma_{2}(T)$. Now we conclude that $\gamma_{2}\left(T-E^{\prime}\right)=\gamma_{2}(T)$, and consequently, $b_{2}^{\prime}(T)=0$.

Now assume that T is obtained from T^{\prime} by operation \mathcal{O}_{4}. Let us observe that there exists a $\gamma_{2}(T)$-set that contains the vertex u. Let D be such a set. By Observation 1 we have $d, e, g \in D$. The set D is minimal, thus $f \notin D$. Let us observe that $D \cup\{b, c\} \backslash\{d, e, g\}$ is a 2 DS of the tree T^{\prime}. Therefore $\gamma_{2}\left(T^{\prime}\right) \leq$ $\gamma_{2}(T)-1$. Now let E^{\prime} be a subset of the set of edges of T such that $\delta\left(T-E^{\prime}\right) \geq 1$. Since d, e, and g are leaves of T, we have $u d, u e, f g \notin E^{\prime}$. First assume that $u x \in E^{\prime}$. The assumption $b_{2}^{\prime}\left(T^{\prime}\right)=0$ implies that $\gamma_{2}\left(T^{\prime}-\left(E^{\prime} \cap E\left(T^{\prime}\right)\right)\right)=\gamma_{2}\left(T^{\prime}\right)$. We have $\gamma_{2}\left(G_{1}\right)=3$ and $\gamma_{2}\left(G_{2}\right)=4$. Now we get $\gamma_{2}\left(T-E^{\prime}\right)=\gamma_{2}\left(T^{\prime}-\left(E^{\prime} \cap\right.\right.$ $\left.\left.E\left(T^{\prime}\right)\right)\right)-\gamma_{2}\left(G_{1}\right)+\gamma_{2}\left(G_{2}\right)=\gamma_{2}\left(T^{\prime}\right)-3+4=\gamma_{2}\left(T^{\prime}\right)+1 \leq \gamma_{2}(T)$. Now assume that $u x \notin E^{\prime}$. First assume that x is a leaf of $T^{\prime}-\left(E^{\prime} \cap E\left(T^{\prime}\right)\right)$. Since $b_{2}^{\prime}\left(T^{\prime}\right)=$ 0 , we have $\gamma_{2}\left(T^{\prime}-\left(E^{\prime} \cap E\left(T^{\prime}\right)\right)\right)=\gamma_{2}\left(T^{\prime}\right)$. Let us observe that there exists a $\gamma_{2}\left(T^{\prime}-\left(E^{\prime} \cap E\left(T^{\prime}\right)\right)\right)$-set that contains the vertex u. Let D^{\prime} be such a set. By Observation 1 we have $b, c, x \in D^{\prime}$. The set D^{\prime} is minimal, thus $a \notin D^{\prime}$. Let us observe that $D^{\prime} \backslash\{u, b, c\} \cup\{d, e, f, g\}$ is a 2 DS of $T-E^{\prime}$. Thus $\gamma_{2}\left(T-E^{\prime}\right) \leq$ $\gamma_{2}\left(T^{\prime}-\left(E^{\prime} \cap E\left(T^{\prime}\right)\right)\right)+1$. Now we get $\gamma_{2}\left(T-E^{\prime}\right) \leq \gamma_{2}\left(T^{\prime}-\left(E^{\prime} \cap E\left(T^{\prime}\right)\right)\right)+1=$ $\gamma_{2}\left(T^{\prime}\right)+1 \leq \gamma_{2}(T)$. Now assume that x is not a leaf of $T^{\prime}-\left(E^{\prime} \cap E\left(T^{\prime}\right)\right)$. Since $b_{2}^{\prime}\left(T^{\prime}\right)=0$, we have $\gamma_{2}\left(T^{\prime}-\left(E^{\prime} \cap E\left(T^{\prime}\right)\right)-u x\right)=\gamma_{2}\left(T^{\prime}\right)$. Let D^{\prime} be any $\gamma_{2}\left(T^{\prime}-\left(E^{\prime} \cap E\left(T^{\prime}\right)\right)-u x\right)$-set. By Observation 1 we have $b, c, u \in D^{\prime}$. The set D^{\prime} is minimal, thus $a \notin D^{\prime}$. Let us observe that now also $D^{\prime} \backslash\{u, b, c\} \cup\{d, e, f, g\}$ is a 2DS of $T-E^{\prime}$. Thus $\gamma_{2}\left(T-E^{\prime}\right) \leq \gamma_{2}\left(T^{\prime}-\left(E^{\prime} \cap E\left(T^{\prime}\right)\right)-u x\right)+1$. Now we get $\gamma_{2}\left(T-E^{\prime}\right) \leq \gamma_{2}\left(T^{\prime}-\left(E^{\prime} \cap E\left(T^{\prime}\right)\right)-u x\right)+1=\gamma_{2}\left(T^{\prime}\right)+1 \leq \gamma_{2}(T)$. We conclude that $\gamma_{2}\left(T-E^{\prime}\right)=\gamma_{2}(T)$, and consequently, $b_{2}^{\prime}(T)=0$.

Now assume that T is obtained from T^{\prime} by operation \mathcal{O}_{5}. The leaf to which is attached P_{3} we denote by x. Let y mean the neighbor of x. The attached path we denote by $v_{1} v_{2} v_{3}$. Let E^{\prime} be a subset of the set of edges of T such that $\delta\left(T-E^{\prime}\right) \geq 1$. If $x v_{2} \in E^{\prime}$, then similarly as when considering the operation \mathcal{O}_{2} we get $\gamma_{2}\left(T-E^{\prime}\right) \leq \gamma_{2}(T)$. Now assume that $x v_{2} \notin E^{\prime}$. If the component of $T-E^{\prime}$ which contains the vertex x is not a star $K_{1,3}$, then similarly as when considering the operation \mathcal{O}_{2} we get $\gamma_{2}\left(T-E^{\prime}\right) \leq \gamma_{2}(T)$. Now assume that the component of $T-E^{\prime}$ which contains the vertex x is a star $K_{1,3}$. Since $b_{2}^{\prime}\left(T^{\prime}\right)=0$, we have $\gamma_{2}\left(T^{\prime}-\right.$ $\left.\left(E^{\prime} \backslash\{x y\}\right)\right)=\gamma_{2}\left(T^{\prime}\right)$. Let D^{\prime} be any $\gamma_{2}\left(T^{\prime}-\left(E^{\prime} \backslash\{x y\}\right)\right)$-set. By Observation 1 we have $x \in D^{\prime}$. Let us observe that $D^{\prime} \cup\left\{v_{1}, v_{3}\right\}$ is a 2 DS of $T-E^{\prime}$ as the vertex y is adjacent to at least two leaves in $T-E^{\prime}$. Thus $\gamma_{2}\left(T-E^{\prime}\right) \leq \gamma_{2}\left(T^{\prime}-\left(E^{\prime} \backslash\{x y\}\right)\right)+2$. Using Lemma 15 we get $\gamma_{2}\left(T-E^{\prime}\right) \leq \gamma_{2}\left(T^{\prime}-\left(E^{\prime} \backslash\{x y\}\right)\right)+2=\gamma_{2}\left(T^{\prime}\right)+2=\gamma_{2}(T)$. Now we conclude that $\gamma_{2}\left(T-E^{\prime}\right)=\gamma_{2}(T)$. Consequently, $b_{2}^{\prime}(T)=0$.

Now assume that T is a γ_{2}-non-isolatingly strongly stable tree. Let n mean the number of vertices of the tree T. We proceed by induction on this number. If $\operatorname{diam}(T)=0$, then $T=P_{1} \in \mathcal{T}$. If $\operatorname{diam}(T)=1$, then $T=P_{2} \in \mathcal{T}$. If
$\operatorname{diam}(T)=2$, then T is a star. If $T=P_{3}$, then $T \in \mathcal{T}$. If T is a star different from P_{3}, then it can be obtained from P_{3} by a proper number of operations \mathcal{O}_{1}. Thus $T \in \mathcal{T}$. Now let us assume that $\operatorname{diam}(T)=3$. Thus T is a double star. Let a and b mean the support vertices of T. Without loss of generality we assume that $d_{T}(a) \leq d_{T}(b)$. If $T=P_{4}$, then by Remark 9 we have $b_{2}^{\prime}(T)=1 \neq 0$. Now assume that T is a double star different from P_{4}. First assume that $d_{T}(a)=1$. If $d_{T}(b)=2$, then the tree T can be obtained from P_{2} by operation \mathcal{O}_{2}. Thus $T \in \mathcal{T}$. If $d_{T}(b) \geq 3$, then the tree T can be obtained from P_{2} by first, operation \mathcal{O}_{2}, and then a proper number of operations \mathcal{O}_{1} performed on the strong support vertex. Thus $T \in \mathcal{T}$. Now assume that $d_{T}(a) \geq 2$. The tree T can be obtained from P_{3} by first, operation \mathcal{O}_{3} performed on the support vertex, and then possibly proper numbers of operations \mathcal{O}_{1} performed on the support vertices. Thus $T \in \mathcal{T}$.

Now assume that $\operatorname{diam}(T) \geq 4$. Thus the order of the tree T is an integer $n \geq 5$. The result we obtain by the induction on the number n. Assume that the lemma is true for every tree T^{\prime} of order $n^{\prime}<n$.

First assume that some support vertex of T, say x, is adjacent to at least three leaves. Let y mean a leaf adjacent to x. Let $T^{\prime}=T-y$. Let D^{\prime} be any $\gamma_{2}\left(T^{\prime}\right)$-set. Of course, $D^{\prime} \cup\{y\}$ is a 2 DS of the tree T. Thus $\gamma_{2}(T) \leq \gamma_{2}\left(T^{\prime}\right)+1$. Now let E^{\prime} be a subset of the set of edges of T^{\prime} such that $\delta\left(T^{\prime}-E^{\prime}\right) \geq 1$. Since $b_{2}^{\prime}(T)=0$, we have $\gamma_{2}\left(T-E^{\prime}\right)=\gamma_{2}(T)$. Let D be any $\gamma_{2}\left(T-E^{\prime}\right)$-set. By Observation 1 we have $y \in D$. Let us observe that $D \backslash\{y\}$ is a 2 DS of $T^{\prime}-E^{\prime}$ as the vertex y is adjacent to at least two leaves in $T^{\prime}-E^{\prime}$. Therefore $\gamma_{2}\left(T^{\prime}-E^{\prime}\right) \leq \gamma_{2}\left(T-E^{\prime}\right)-1$. Now we get $\gamma_{2}\left(T^{\prime}-E^{\prime}\right) \leq \gamma_{2}\left(T-E^{\prime}\right)-1=\gamma_{2}(T)-1 \leq \gamma_{2}\left(T^{\prime}\right)$. On the other hand, by Observation 2 we have $\gamma_{2}\left(T^{\prime}-E^{\prime}\right) \geq \gamma_{2}\left(T^{\prime}\right)$. This implies that $\gamma_{2}\left(T^{\prime}-E^{\prime}\right)=$ $\gamma_{2}\left(T^{\prime}\right)$, and consequently, $b_{2}^{\prime}\left(T^{\prime}\right)=0$. By the inductive hypothesis we have $T^{\prime} \in \mathcal{T}$. The tree T can obtained from T^{\prime} by operation \mathcal{O}_{1}. Thus $T \in \mathcal{T}$. Henceforth, we can assume that every support vertex of T is adjacent to at most two leaves.

We now root T at a vertex r of maximum eccentricity $\operatorname{diam}(T)$. Let t be a leaf at maximum distance from r, v be the parent of t, u be the parent of v, and w be the parent of u in the rooted tree. By T_{x} let us denote the subtree induced by a vertex x and its descendants in the rooted tree T.

First assume that $d_{T}(v)=2$. Assume that among the descendants of u there is a support vertex, say x, different from v. It suffices to consider only the possibilities when x is adjacent to one or two leaves. First assume that x is adjacent to two leaves. Let $T^{\prime}=T-T_{x}$. Lemma 14 implies that $b_{2}^{\prime}\left(T^{\prime}\right)=0$. By the inductive hypothesis we have $T^{\prime} \in \mathcal{T}$. The tree T can be obtained from T^{\prime} by operation \mathcal{O}_{3}. Thus $T \in \mathcal{T}$.

Now assume that x is adjacent to exactly one leaf. Let $T^{\prime}=T-T_{v}$. Let us observe that there exists a $\gamma_{2}\left(T^{\prime}\right)$-set that contains the vertex u. Let D^{\prime} be such a set. It is easy to see that $D^{\prime} \cup\{t\}$ is a 2DS of the tree T. Thus $\gamma_{2}(T) \leq \gamma_{2}\left(T^{\prime}\right)+1$.

We have $T-u v=T^{\prime} \cup P_{2}$. Now we get $\gamma_{2}(T-u v)=\gamma_{2}\left(T^{\prime} \cup P_{2}\right)=\gamma_{2}\left(T^{\prime}\right)+\gamma_{2}\left(P_{2}\right)=$ $\gamma_{2}\left(T^{\prime}\right)+2 \geq \gamma_{2}(T)+1>\gamma_{2}(T)$. Therefore $b_{2}^{\prime}(T)=1$, a contradiction.

Now assume that every descendant of u excluding v is a leaf. First assume that u is adjacent to two leaves, say x and y. Let T^{\prime} be a tree obtained from $T-T_{u}$ by attaching a tree G_{1} by joining the vertex u to the vertex w. Let us observe that there exists a $\gamma_{2}\left(T^{\prime}\right)$-set that contains the vertex u. Let D^{\prime} be such a set. By Observation 1 we have $b, c \in D^{\prime}$. The set D^{\prime} is minimal, thus $a \notin D^{\prime}$. Let us observe that $D^{\prime} \backslash\{b, c\} \cup\{t, x, y\}$ is a 2 DS of the tree T. Thus $\gamma_{2}(T) \leq \gamma_{2}\left(T^{\prime}\right)+1$. Now let E^{\prime} be a subset of the set of edges of T^{\prime} such that $\delta\left(T^{\prime}-E^{\prime}\right) \geq 1$. Since b and c are leaves of T^{\prime}, we have $a b, a c \notin E^{\prime}$. The assumption $b_{2}^{\prime}(T)=0$ implies that $\gamma_{2}\left(T-\left(E^{\prime} \cap E(T)\right)\right)=\gamma_{2}(T)$. Let us observe that there exists a $\gamma_{2}\left(T-\left(E^{\prime} \cap E(T)\right)\right)-$ set that contains the vertex u. Let D be such a set. By Observation 1 we have $t, x, y \in D$. The set D is minimal, thus $v \notin D$. Let us observe that $D \cup\{b, c\} \backslash$ $\{t, x, y\}$ is a 2 DS of $T^{\prime}-E^{\prime}$. Therefore $\gamma_{2}\left(T^{\prime}-E^{\prime}\right) \leq \gamma_{2}\left(T-\left(E^{\prime} \cap E(T)\right)\right)-1$. Now we get $\gamma_{2}\left(T^{\prime}-E^{\prime}\right) \leq \gamma_{2}\left(T-\left(E^{\prime} \cap E(T)\right)\right)-1=\gamma_{2}(T)-1 \leq \gamma_{2}\left(T^{\prime}\right)$. We conclude that $\gamma_{2}\left(T^{\prime}-E^{\prime}\right)=\gamma_{2}\left(T^{\prime}\right)$, and consequently, $b_{2}^{\prime}\left(T^{\prime}\right)=0$. By the inductive hypothesis we have $T^{\prime} \in \mathcal{T}$. The tree T can be obtained from T^{\prime} by operation \mathcal{O}_{4}. Thus $T \in \mathcal{T}$.

Now assume that u is adjacent to exactly one leaf, say x. Let $E^{\prime}=\{w u, u v\}$ and $T^{\prime}=T-T_{u}$. Let D^{\prime} be any $\gamma_{2}\left(T^{\prime}\right)$-set. It is easy to observe that $D^{\prime} \cup\{u, t, x\}$ is a 2DS of the tree T. Thus $\gamma_{2}(T) \leq \gamma_{2}\left(T^{\prime}\right)+3$. We have $T-E^{\prime}=T^{\prime} \cup P_{2} \cup P_{2}$. Now we get $\gamma_{2}\left(T-E^{\prime}\right)=\gamma_{2}\left(T^{\prime} \cup P_{2} \cup P_{2}\right)=\gamma_{2}\left(T^{\prime}\right)+2 \gamma_{2}\left(P_{2}\right)=\gamma_{2}\left(T^{\prime}\right)+4 \geq$ $\gamma_{2}(T)+1>\gamma_{2}(T)$. This implies that $b_{2}^{\prime}(T) \in\{1,2\}$, a contradiction.

Now assume that $d_{T}(u)=2$. Let $T^{\prime}=T-T_{v}$. Let D^{\prime} be any $\gamma_{2}\left(T^{\prime}\right)$-set. By Observation 1 we have $u \in D^{\prime}$. It is easy to see that $D^{\prime} \cup\{t\}$ is a 2 DS of the tree T. Thus $\gamma_{2}(T) \leq \gamma_{2}\left(T^{\prime}\right)+1$. We have $T-u v=T^{\prime} \cup P_{2}$. Now we get $\gamma_{2}(T-u v)=\gamma_{2}\left(T^{\prime} \cup P_{2}\right)=\gamma_{2}\left(T^{\prime}\right)+\gamma_{2}\left(P_{2}\right)=\gamma_{2}\left(T^{\prime}\right)+2 \geq \gamma_{2}(T)+1>\gamma_{2}(T)$. Therefore $b_{2}^{\prime}(T)=1$, a contradiction.

Now assume that $d_{T}(v)=3$. The leaf adjacent to v and different from t we denote by a. Assume that $d_{T}(u) \geq 3$. Let $T^{\prime}=T-T_{v}$. Lemma 14 implies that $b_{2}^{\prime}\left(T^{\prime}\right)=0$. By the inductive hypothesis we have $T^{\prime} \in \mathcal{T}$. The tree T can be obtained from T^{\prime} by operation \mathcal{O}_{3}. Thus $T \in \mathcal{T}$.

Now assume that $d_{T}(u)=2$. First assume that w is adjacent to two leaves. Let $T^{\prime}=T-T_{v}$. Lemma 14 implies that $b_{2}^{\prime}\left(T^{\prime}\right)=0$. By the inductive hypothesis we have $T^{\prime} \in \mathcal{T}$. The tree T can be obtained from T^{\prime} by operation \mathcal{O}_{5}. Thus $T \in \mathcal{T}$.

Now assume that w is adjacent to exactly one leaf, say x. Let G^{\prime} be a graph obtained from T by removing all edges incident to w excluding $w x$. Let D^{\prime} be any $\gamma_{2}\left(G^{\prime}\right)$-set. By Observation 1 we have $u, w, x \in D^{\prime}$. Let us observe that $D^{\prime} \backslash\{w\}$ is a 2 DS of the tree T. Thus $\gamma_{2}(T) \leq \gamma_{2}\left(G^{\prime}\right)-1$. Therefore $b_{2}^{\prime}(T)>0$, a
contradiction.
Now assume that there is a descendant of w, say k, such that the distance of w to the most distant vertex of T_{k} is three. It suffices to consider only the possibility when T_{k} is isomorphic to T_{u}. The descendant of k we denote by l, and the leaves adjacent to l we denote by m and p. Let G^{\prime} be a graph obtained from T by removing all edges incident to w excluding $w u$. Let us observe that there exists a $\gamma_{2}\left(G^{\prime}\right)$-set that contains the vertex u. Let D^{\prime} be such a set. By Observation 1 we have $w, k \in D^{\prime}$. Let us observe that $D^{\prime} \backslash\{w\}$ is a 2 DS of the tree T. Thus $\gamma_{2}(T) \leq \gamma_{2}\left(G^{\prime}\right)-1$. This implies that $b_{2}^{\prime}(T)>0$, a contradiction.

Now assume that there is a descendant of w, say k, such that the distance of w to the most distant vertex of T_{k} is two. It suffices to consider only the possibilities when k is adjacent to one or two leaves. First assume that k is adjacent to two leaves. Let $T^{\prime}=T-T_{k}$. Lemma 14 implies that $b_{2}^{\prime}\left(T^{\prime}\right)=0$. By the inductive hypothesis we have $T^{\prime} \in \mathcal{T}$. The tree T can be obtained from T^{\prime} by operation \mathcal{O}_{3}. Thus $T \in \mathcal{T}$.

Now assume that k is adjacent to exactly one leaf. Let $T^{\prime}=T-T_{k}$. Similarly as when T_{k} is isomorphic to T_{u} we conclude that $b_{2}^{\prime}(T)>0$, a contradiction.

Now assume that $d_{T}(w)=2$. Let $T^{\prime}=T-T_{v}$. Lemma 14 implies that $b_{2}^{\prime}\left(T^{\prime}\right)=0$. By the inductive hypothesis we have $T^{\prime} \in \mathcal{T}$. The tree T can be obtained from T^{\prime} by operation \mathcal{O}_{2}. Thus $T \in \mathcal{T}$.

Acknowledgments. Thanks are due to the anonymous referee for com-

References

[1] M. Blidia, M. Chellali and O. Favaron, Independence and 2-domination in trees, Australas. J. Combin., 33 (2005), 317-327.
[2] G. S. Domke and R. C. Laskar, The bondage and reinforcement numbers of γ_{f} for some graphs, Discrete Math., 167/168 (1997), 249-259.
[3] J. F. Fink and M. S. Jacobson, n-domination in graphs, In: Graph Theory with Applications to Algorithms and Computer Science (Kalamazoo, Mich., 1984), Wiley-Intersci. Publ., Wiley, New York, 1985, pp. 282-300.
[4] J. F. Fink, M. S. Jacobson, L. F. Kinch and J. Roberts, The bondage number of a graph, Discrete Math., 86 (1990), 47-57.
[5] B. L. Hartnell and D. F. Rall, A characterization of trees in which no edge is essential to the domination number, Ars Combin., 33 (1992), 65-76.
[6] B. L. Hartnell and D. F. Rall, Bounds on the bondage number of a graph, Discrete Math., 128 (1994), 173-177.
[7] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Monogr. Textbooks Pure Apple. Math., 208, Marcel Dekker, New York, 1998.
[8] T. W. Haynes, S. T. Hedetniemi and P. J. Slater (eds.), Domination in Graphs: Advanced Topics, Monogr. Textbooks Pure Apple. Math., 209, Marcel Dekker, New York, 1998.
[9] L. Kang and J. Yuan, Bondage number of planar graphs, Discrete Math., 222 (2000),

191-198.
[10] H. Liu and L. Sun, The bondage and connectivity of a graph, Discrete Math., 263 (2003), 289-293.
[11] J. Raczek, Paired bondage in trees, Discrete Math., 308 (2008), 5570-5575.
[12] U. Teschner, New results about the bondage number of a graph, Discrete Math., 171 (1997), 249-259.
[13] L. Volkmann, A Nordhaus-Gaddum-type result for the 2-domination number, J. Combin. Math. Combin. Comput., 64 (2008), 227-235.
[14] Y. P. Wu and Q. Fan, The bondage number of four domination parameters for trees, J. Math. (Wuhan), 24 (2004), 267-270.

Marcin Krzywkowski
Faculty of Electronics
Telecommunications and Informatics
Gdańsk University of Technology
Narutowicza 11/12
80-233 Gdańsk, Poland
E-mail: marcin.krzywkowski@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary 05C05, 05C69.
 Key Words and Phrases. 2-domination, bondage, non-isolating 2-bondage, graph, tree.
 The research was supported by the Polish National Science Centre grant 2011/02/A/ ST6/00201.

