Nonlinear boundary value problems for second order differential equations with causal operators

Tadeusz Jankowski
Gdansk University of Technology, Department of Differential Equations, 11/12 G. Narutowicz street, 80-952 Gdańsk, Poland
Received 17 July 2006
Available online 13 December 2006
Submitted by A.C. Peterson

Abstract

In this paper we deal with second order differential equations with causal operators. To obtain sufficient conditions for existence of solutions we use a monotone iterative method. We investigate both differential equations and differential inequalities. An example illustrates the results obtained.

© 2006 Elsevier Inc. All rights reserved.
Keywords: Nonlinear boundary conditions; Second order differential equations; Causal operators; Differential
inequalities with positive linear operators; Monotone iterative method; Extremal solutions; Unique solution

1. Introduction

Let $J=[0, T], E=C(J, \mathbb{R})$ and $Q \in C(E, E)$. We shall say that Q is a causal operator, or nonanticipative, if the following property holds: for each couple of elements of E such that $u(s)=v(s)$ for $0 \leqslant s \leqslant t$, there results $(Q u)(s)=(Q v)(s)$ for $0 \leqslant s \leqslant t$ with $t<T$ arbitrary, for details see [1].

Note that $\left(Q_{1} x\right)(t)=\int_{0}^{t} W(t, s, x(s)) d s, t \in[0, c)$ and $\left(Q_{2} x\right)(t)=h(t, x(t)), t \in[0, c)$ are examples of causal operators. Indeed, W and h are continuous functions with values in \mathbb{R}^{p}. In the literature operator Q_{1} is known under the name "Volterra operator" and Q_{2} is known as "Niemytskii operator."

In this paper, we investigate nonlinear four-point boundary value problems for second order differential equations with a causal operator Q of the form

[^0]\[

$$
\begin{cases}x^{\prime \prime}(t)=(Q x)(t), & t \in J=[0, T] \tag{1}\\ 0=g_{1}(x(0), x(\delta)), & 0<\delta<T \\ 0=g_{2}(x(T), x(\gamma)), & 0<\gamma<T\end{cases}
$$
\]

where $g_{1}, g_{2} \in C(\mathbb{R} \times \mathbb{R}, \mathbb{R})$. Functional equations with causal operators are discussed in book [1], see also the references therein. To obtain approximate solutions of nonlinear differential problems we can apply the monotone iterative technique. This technique is well known and we have a lot of applications of this method to differential equations both initial and boundary conditions, see for example [3-6,8-12]. Recently, this method is also applied to first order differential equations with causal operators, see [2] (periodic conditions) and also [7] (nonlinear boundary conditions). This paper extends the application of this method to nonlinear four-point boundary problems for second order differential equations with causal operators. In Section 2, we discuss differential inequalities with positive linear operators to obtain a comparison result. This result is useful to prove the existence of solutions of problems of type (1). In Section 3, we formulate sufficient conditions which guarantee that problem (1) has extremal solutions. A one-sided Lipschitz condition (with corresponding linear operators) is imposed on the causal operator Q. The problem when (1) has the unique solution is also investigated. At the end of this section, an example is added to illustrate theoretical results. In Section 4, we discuss the situation when problem (1) has quasi-solutions and then also the unique solution.

2. Differential inequalities

To apply the monotone iterative method to problems of type (1) we need a fundamental result on differential inequalities.

Lemma 1. Assume that:

$\mathrm{H}_{1}: M \in C(J,[0, \infty)), M(t)>0, t \in(0, T), M(0) \geqslant 0, M(T) \geqslant 0$,
$\mathrm{H}_{2}: \mathcal{L} \in C(E, E)$ is a positive linear causal operator i.e. $(\mathcal{L} m)(t) \geqslant 0, t \in J$ provided that $m(t) \geqslant 0$ on J,
$\mathrm{H}_{3}: \rho \equiv \int_{0}^{T}\left(\int_{s}^{T}[M(t)+(\mathcal{L} \mathbf{1})(t)] d t\right) d s \leqslant 1$, where $\mathbf{1}(t)=1, t \in J$.
Let $p \in C^{2}(J, \mathbb{R})$ and

$$
\left\{\begin{array}{l}
p^{\prime \prime}(t) \geqslant M(t) p(t)+(\mathcal{L} p)(t), \quad t \in J, \\
p(0) \leqslant 0, \quad p(T) \leqslant 0 .
\end{array}\right.
$$

Then $p(t) \leqslant 0$ on J.
Proof. Suppose that the inequality $p(t) \leqslant 0, t \in J$ is not true. It means that there exists t_{0} such that

$$
p\left(t_{0}\right)=\max _{t \in J} p(t)=d>0 .
$$

Note that $p^{\prime \prime}\left(t_{0}\right) \leqslant 0$ and $p^{\prime}\left(t_{0}\right)=0, t_{0} \in(0, T)$.
Case 1. Assume that $p(t) \geqslant 0, t \in\left[0, t_{0}\right]$. Then

$$
0 \geqslant p^{\prime \prime}\left(t_{0}\right) \geqslant M\left(t_{0}\right) d>0
$$

It is a contradiction.

Case 2. There exists $t_{1} \in\left[0, t_{0}\right)$ such that $p\left(t_{1}\right)<0$. Then there exists $\xi \in\left[0, t_{0}\right)$ such that

$$
p(\xi)=\min _{t \in\left[0, t_{0}\right]} p(t)<0
$$

It yields

$$
p^{\prime \prime}(t) \geqslant p(\xi)[M(t)+(\mathcal{L} \mathbf{1})(t)], \quad t \in\left[0, t_{0}\right] .
$$

Integrating the above inequality from s to t_{0} we get

$$
-p^{\prime}(s)=p^{\prime}\left(t_{0}\right)-p^{\prime}(s) \geqslant p(\xi) \int_{s}^{t_{0}}[M(t)+(\mathcal{L} \mathbf{1})(t)] d t
$$

Next, we integrate the above inequality from ξ to t_{0} to obtain

$$
p(\xi)>-p\left(t_{0}\right)+p(\xi) \geqslant p(\xi) \int_{\xi}^{t_{0}}\left(\int_{s}^{t_{0}}[M(t)+(\mathcal{L} \mathbf{1})(t)] d t\right) d s
$$

Dividing by $p(\xi)$, we finally get

$$
1<\int_{0}^{T}\left(\int_{s}^{T}[M(t)+(\mathcal{L} \mathbf{1})(t)] d t\right) d s=\rho \leqslant 1
$$

since $p(\xi)<0$. It is a contradiction. This proves the lemma.
Remark 1. Let the operator \mathcal{L} be defined by

$$
(\mathcal{L} p)(t)=\sum_{i=1}^{r} L_{i}(t) p\left(\alpha_{i}(t)\right)
$$

where $L_{i} \in C\left(J, \mathbb{R}_{+}\right), \alpha_{i} \in C(J, J), \alpha_{i}(t) \leqslant t, i=1,2, \ldots, r$. Then

$$
\rho=\int_{0}^{T}\left(\int_{s}^{T}\left[M(t)+\sum_{i=1}^{r} L_{i}(t)\right] d t\right) d s .
$$

If $M(t)=L_{0}>0, L_{i}(t)=L_{i}>0, t \in J, i=1,2, \ldots, r$. Then

$$
\rho=\frac{1}{2} T^{2} \sum_{i=0}^{r} L_{i} .
$$

3. Extremal solutions. Unique solution

A function $y_{0} \in C^{2}(J, \mathbb{R})$ is said to be a lower solution of (1) if

$$
y_{0}^{\prime \prime}(t) \geqslant\left(Q y_{0}\right)(t), \quad t \in J, \quad g_{1}\left(y_{0}(0), y_{0}(\delta)\right) \leqslant 0, \quad g_{2}\left(y_{0}(T), y_{0}(\gamma)\right) \leqslant 0
$$

A function $z_{0} \in C^{2}(J, \mathbb{R})$ is said to be an upper solution of problem (1) if the above inequalities are reversed.

To show that problem (1) has a solution we construct two sequences which elements are solutions of corresponding linear problems. Existence of solutions of such problems is discussed in the next theorem.

Theorem 1. Let assumptions $\mathrm{H}_{1}-\mathrm{H}_{3}$ be satisfied. In addition we assume that
$\mathrm{H}_{4}: Q \in C(E, E)$ is a causal operator, $g_{i} \in C(\mathbb{R} \times \mathbb{R}, \mathbb{R}), i=1,2$,
$\mathrm{H}_{5}: y_{0}, z_{0} \in C^{2}(J, \mathbb{R})$ are lower and upper solutions of problem (1), respectively, and $y_{0}(t) \leqslant$ $z_{0}(t), t \in J$,
$\mathrm{H}_{6}: m \in C^{2}(J, \mathbb{R})$ and $y_{0}(t) \leqslant m(t) \leqslant z_{0}(t), t \in J$,
H_{7} : the following condition

$$
\begin{equation*}
(Q u)(t)-(Q \bar{u})(t) \geqslant-M(t)[\bar{u}(t)-u(t)]-(\mathcal{L}(\bar{u}-u))(t) \tag{2}
\end{equation*}
$$

holds for $y_{0}(t) \leqslant u(t) \leqslant \bar{u}(t) \leqslant z_{0}(t)$,
$\mathrm{H}_{8}: g_{i}, i=1,2$ are nonincreasing with respect to the second variable and there exist positive constants a, b such that

$$
\begin{aligned}
& g_{1}(\bar{u}, v)-g_{1}(u, v) \leqslant a(\bar{u}-u), \\
& g_{2}\left(\bar{u}_{1}, v_{1}\right)-g_{2}\left(u_{1}, v_{1}\right) \leqslant b\left(\bar{u}_{1}-u_{1}\right)
\end{aligned}
$$

for $y_{0}(0) \leqslant u \leqslant \bar{u} \leqslant z_{0}(0), y_{0}(T) \leqslant u_{1} \leqslant \bar{u}_{1} \leqslant z_{0}(T), y_{0}(\delta) \leqslant v \leqslant z_{0}(\delta), y_{0}(\gamma) \leqslant v_{1} \leqslant$ $z_{0}(\gamma)$.

Let $y \in C^{2}(J, \mathbb{R})$ and

$$
\left\{\begin{array}{l}
y^{\prime \prime}(t)=M(t) y(t)+(\mathcal{L} y)(t)+\sigma(t), \quad t \in J, \tag{3}\\
y(0)=k_{1} \in \mathbb{R}, \quad y(T)=k_{2} \in \mathbb{R},
\end{array}\right.
$$

where

$$
\begin{aligned}
& \sigma(t)=(Q m)(t)-M(t) m(t)-(\mathcal{L} m)(t) \\
& k_{1}=-\frac{1}{a} g_{1}(m(0), m(\delta))+m(0), \quad k_{2}=-\frac{1}{b} g_{2}(m(T), m(\gamma))+m(T)
\end{aligned}
$$

Then problem (3) has a unique solution $y \in C^{2}(J, \mathbb{R})$ and $y \in\left[y_{0}, z_{0}\right]_{*}$, where $\left[y_{0}, z_{0}\right]_{*}=$ $\left\{w \in C^{2}(J, \mathbb{R}): y_{0}(t) \leqslant w(t) \leqslant z_{0}(t), t \in J\right\}$.

Proof. Note that problem (3) has at most one solution. To see it let us assume that it has two distinct solutions $z, w \in C^{2}(J, \mathbb{R})$. Put $p=z-w$. Then $p(0)=p(T)=0$ and $p^{\prime \prime}(t)=$ $M(t) p(t)+(\mathcal{L} p)(t)$ on J. In view of assumption H_{3} and Lemma 1 , we have $p \leqslant 0$, so $z(t) \leqslant w(t), t \in J$. Now putting $p=w-z$, we have $w(t) \leqslant z(t), t \in J$, by Lemma 1. Hence $w(t)=z(t), t \in J$.

It shows that problem (3) has at most one solution. Denote this solution by y. We need to show that $y \in\left[y_{0}, z_{0}\right]_{*}$. Put $p=y_{0}-y$. Then, in view of assumptions $\mathrm{H}_{5}, \mathrm{H}_{6}, \mathrm{H}_{8}$, we have

$$
\begin{aligned}
p(0) & =y_{0}(0)+\frac{1}{a}\left[g_{1}(m(0), m(\delta))-g_{1}\left(y_{0}(0), y_{0}(\delta)\right)+g_{1}\left(y_{0}(0), y_{0}(\delta)\right)\right]-m(0) \\
& \leqslant y_{0}(0)+\frac{1}{a}\left[g_{1}\left(m(0), y_{0}(\delta)\right)-g_{1}\left(y_{0}(0), y_{0}(\delta)\right)\right]-m(0) \leqslant 0, \\
p(T) & =y_{0}(T)+\frac{1}{b}\left[g_{2}(m(T), m(\gamma))-g_{2}\left(y_{0}(T), y_{0}(\gamma)\right)+g_{2}\left(y_{0}(T), y_{0}(\gamma)\right)\right]-m(T) \\
& \leqslant y_{0}(T)+\frac{1}{b}\left[g_{2}\left(m(T), y_{0}(\gamma)\right)-g_{2}\left(y_{0}(T), y_{0}(\gamma)\right)\right]-m(T) \leqslant 0 .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
p^{\prime \prime}(t) & \geqslant\left(Q y_{0}\right)(t)-(Q m)(t)-M(t)[y(t)-m(t)]-(\mathcal{L}(y-m))(t) \\
& \geqslant-M(t)\left[m(t)-y_{0}(t)\right]-\left(\mathcal{L}\left(m-y_{0}\right)\right)(t)-M(t)[y(t)-m(t)]-(\mathcal{L}(y-m))(t) \\
& =M(t) p(t)+(\mathcal{L} p)(t),
\end{aligned}
$$

by assumption H_{7}. This result and Lemma 1 show that $y_{0}(t) \leqslant m(t), t \in J$. Similarly, we can show that $m(t) \leqslant z_{0}(t), t \in J$. It means that if problem (3) has a solution then it belongs to $\left[y_{0}, z_{0}\right]_{*}$.

Now we need to show that problem (3) has a solution. To do it we write problem (3) in the following way

$$
\begin{equation*}
y(t)=\int_{0}^{T} G(t, s)[M(s) y(s)+(\mathcal{L} y)(s)+\sigma(s)] d s+\frac{k_{2}-k_{1}}{T} t+k_{1}, \quad t \in J, \tag{4}
\end{equation*}
$$

where the Green function G is defined by

$$
G(t, s)=-\frac{1}{T} \begin{cases}(T-t) s & \text { if } 0 \leqslant s \leqslant t \leqslant T \\ (T-s) t & \text { if } 0 \leqslant t \leqslant s \leqslant T\end{cases}
$$

Denote by A the operator defined by the right-hand side of (4). Note that E is a Banach space with the norm $\|y\|=\max _{t \in J}\|y(t)\|$. We employ Schauder's fixed point theorem to show that operator A has a fixed point. Let $y \in E$. Note that $M(t) y(t)+(\mathcal{L} y)(t)+\sigma(t)$ is bounded in J, so operator $A: E \rightarrow E$ is continuous and bounded. In fact A is a compact map. Let

$$
|M(t) y(t)+(\mathcal{L} y)(t)+\sigma(t)| \leqslant K, \quad K>0 .
$$

Take $t_{1}, t_{2} \in J, t_{1}<t_{2}$ such that $\left|t_{1}-t_{2}\right|<\frac{T \epsilon}{4 K T^{2}+\left|k_{2}-k_{1}\right|}$ for $\epsilon>0$. Then we have

$$
\begin{aligned}
&\left|A y\left(t_{1}\right)-A y\left(t_{2}\right)\right| \\
&=\left|\int_{0}^{T}\left[G\left(t_{1}, s\right)-G\left(t_{2}, s\right)\right]\{M(s) y(s)+(\mathcal{L} y)(s)+\sigma(s)\} d s\right|+k\left|t_{1}-t_{2}\right| \\
&= \left.\frac{1}{T} \right\rvert\,\left(t_{1}-t_{2}\right) \int_{0}^{t_{1}} s\{M(s) y(s)+(\mathcal{L} y)(s)+\sigma(s)\} d s \\
&-t_{1} \int_{t_{1}}^{t_{2}}(T-s)\{M(s) y(s)+(\mathcal{L} y)(s)+\sigma(s)\} d s \\
&+\left(T-t_{2}\right) \int_{t_{1}}^{t_{1}} s\{M(s) y(s)+(\mathcal{L} y)(s)+\sigma(s)\} d s \\
&+\left(t_{2}-t_{1}\right) \int_{t_{2}}^{T}(T-s)\{M(s) y(s)+(\mathcal{L} y)(s)+\sigma(s)\} d s|+k| t_{1}-t_{2} \mid \\
& \leqslant(4 K T+k)\left|t_{1}-t_{2}\right|<\epsilon,
\end{aligned}
$$

where $k=\frac{\left|k_{2}-k_{1}\right|}{T}$. Consequently $A: E \rightarrow E$ is compact. Schauder's fixed point theorem guarantees that A has a fixed point in E. In view of (4), we have $y(0)=k_{1}, y(T)=k_{2}$, and $y^{\prime \prime}$ exists
and $y^{\prime \prime} \in E$. Moreover, $y \in C^{2}(J, \mathbb{R})$ and $y^{\prime \prime}(t)=M(t) y(t)+(\mathcal{L} y)(t)+\sigma(t)$, so y is a solution of problem (3). It shows that y is the unique solution of (3). This ends the proof.

Theorem 2. Let assumptions from $\mathrm{H}_{1}-\mathrm{H}_{5}$ and $\mathrm{H}_{7}, \mathrm{H}_{8}$ be satisfied. Then problem (1) has extremal solutions in the sector $\left[y_{0}, z_{0}\right]_{*}$.

Proof. Let us define two sequences $\left\{y_{n}, z_{n}\right\}$ by relations:

$$
\begin{aligned}
& \left\{\begin{array}{l}
y_{n}^{\prime \prime}(t)=\left(Q y_{n-1}\right)(t)+M(t)\left[y_{n}(t)-y_{n-1}(t)\right]+\left(\mathcal{L}\left(y_{n}-y_{n-1}\right)\right)(t), \quad t \in J, \\
y_{n}(0)=-\frac{1}{a} g_{1}\left(y_{n-1}(0), y_{n-1}(\delta)\right)+y_{n-1}(0), \\
y_{n}(T)=-\frac{1}{b} g_{2}\left(y_{n-1}(T), y_{n-1}(\gamma)\right)+y_{n-1}(T),
\end{array}\right. \\
& \left\{\begin{array}{l}
z_{n}^{\prime \prime}(t)=\left(Q z_{n-1}\right)(t)+M(t)\left[z_{n}(t)-z_{n-1}(t)\right]+\left(\mathcal{L}\left(z_{n}-z_{n-1}\right)\right)(t), \quad t \in J, \\
z_{n}(0)=-\frac{1}{a} g_{1}\left(z_{n-1}(0), z_{n-1}(\delta)\right)+z_{n-1}(0), \\
z_{n}(T)=-\frac{1}{b} g_{2}\left(z_{n-1}(T), z_{n-1}(\gamma)\right)+z_{n-1}(T)
\end{array}\right.
\end{aligned}
$$

for $n=1,2, \ldots$ Note that y_{1}, z_{1} are well defined, by Theorem 1 .
First of all we want to show that

$$
\begin{equation*}
y_{0}(t) \leqslant y_{1}(t) \leqslant z_{1}(t) \leqslant z_{0}(t), \quad t \in J . \tag{5}
\end{equation*}
$$

Put $p=y_{0}-y_{1}$. Then

$$
\begin{aligned}
& p(0)=y_{0}(0)+\frac{1}{a} g_{1}\left(y_{0}(0), y_{0}(\delta)\right)-y_{0}(0) \leqslant 0 \\
& p(T)=y_{0}(T)+\frac{1}{b} g_{2}\left(y_{0}(T), y_{0}(\gamma)\right)-y_{0}(T) \leqslant 0
\end{aligned}
$$

by assumption H_{5}. Moreover,

$$
\begin{aligned}
p^{\prime \prime}(t) & \geqslant\left(Q y_{0}\right)(t)-\left(Q y_{0}\right)(t)-M(t)\left[y_{1}(t)-y_{0}(t)\right]-\left(\mathcal{L}\left(y_{1}-y_{0}\right)\right)(t) \\
& =M(t) p(t)+(\mathcal{L} p)(t)
\end{aligned}
$$

by assumption H_{5}. This result and Lemma 1 show that $y_{0}(t) \leqslant y_{1}(t), t \in J$. Similarly, we can show that $z_{1}(t) \leqslant z_{0}(t), t \in J$. Now let $p=y_{1}-z_{1}$. Then

$$
\begin{aligned}
p(0) & =\frac{1}{a}\left[g_{1}\left(z_{0}(0), z_{0}(\delta)\right)-g_{1}\left(y_{0}(0), y_{0}(\delta)\right)\right]+y_{0}(0)-z_{0}(0) \\
& \leqslant \frac{1}{a}\left[g_{1}\left(z_{0}(0), y_{0}(\delta)\right)-g_{1}\left(y_{0}(0), y_{0}(\delta)\right)\right]+y_{0}(0)-z_{0}(0) \\
& \leqslant z_{0}(0)-y_{0}(0)+y_{0}(0)-z_{0}(0)=0, \\
p(T) & =y_{0}(T)+\frac{1}{b}\left[g_{2}\left(z_{0}(T), z_{0}(\gamma)\right)-g_{2}\left(y_{0}(T), y_{0}(\gamma)\right)\right]-z_{0}(T) \leqslant 0,
\end{aligned}
$$

by assumption H_{8}. Moreover,

$$
\begin{aligned}
p^{\prime \prime}(t)= & \left(Q y_{0}\right)(t)-\left(Q z_{0}\right)(t)+M(t)\left[y_{1}(t)-y_{0}(t)-z_{1}(t)+z_{0}(t)\right] \\
& +\left(\mathcal{L}\left(y_{1}-y_{0}-z_{1}+z_{0}\right)\right)(t) \\
\geqslant & -M(t)\left[z_{0}(t)-y_{0}(t)\right]-\left(\mathcal{L}\left(z_{0}-y_{0}\right)\right)(t) \\
& +M(t)\left[y_{1}(t)-y_{0}(t)-z_{1}(t)+z_{0}(t)\right]+\left(\mathcal{L}\left(y_{1}-y_{0}-z_{1}+z_{0}\right)\right)(t) \\
= & M(t) p(t)+(\mathcal{L} p)(t),
\end{aligned}
$$

by assumption H_{7}. In view of Lemma $1, y_{1}(t) \leqslant z_{1}(t), t \in J$. It proves (5).
Now we show that y_{1} is a lower solution of problem (1). Note that

$$
\begin{aligned}
0 & =y_{1}(0)+\frac{1}{a}\left[g_{1}\left(y_{0}(0), y_{0}(\delta)\right)-g_{1}\left(y_{1}(0), y_{1}(\delta)\right)+g_{1}\left(y_{1}(0), y_{1}(\delta)\right)\right]-y_{0}(0) \\
& \geqslant y_{1}(0)+\frac{1}{a}\left[g_{1}\left(y_{0}(0), y_{1}(\delta)\right)-g_{1}\left(y_{1}(0), y_{1}(\delta)\right)+g_{1}\left(y_{1}(0), y_{1}(\delta)\right)\right]-y_{0}(0) \\
& \geqslant y_{1}(0)-y_{0}(0)-y_{1}(0)+y_{0}(0)+\frac{1}{a} g_{1}\left(y_{1}(0), y_{1}(\delta)\right)=\frac{1}{a} g_{1}\left(y_{1}(0), y_{1}(\delta)\right), \\
0 & =y_{1}(T)+\frac{1}{b}\left[g_{2}\left(y_{0}(T), y_{0}(\gamma)\right)-g_{2}\left(y_{1}(T), y_{1}(\gamma)\right)+g_{2}\left(y_{1}(T), y_{1}(\gamma)\right)\right]-y_{0}(T) \\
& \geqslant \frac{1}{b} g_{2}\left(y_{1}(T), y_{1}(\gamma)\right),
\end{aligned}
$$

by assumption H_{8}. Moreover,

$$
\begin{aligned}
y_{1}^{\prime \prime}(t)= & \left(Q y_{0}\right)(t)-\left(Q y_{1}\right)(t)+\left(Q y_{1}\right)(t)+M(t)\left[y_{1}(t)-y_{0}(t)\right]+\left(\mathcal{L}\left(y_{1}-y_{0}\right)\right)(t) \\
\geqslant & -M(t)\left[y_{1}(t)-y_{0}(t)\right]-\left(\mathcal{L}\left(y_{1}-y_{0}\right)\right)(t)+\left(Q y_{1}\right)(t)+M(t)\left[y_{1}(t)-y_{0}(t)\right] \\
& +\left(\mathcal{L}\left(y_{1}-y_{0}\right)\right)(t)=\left(Q y_{1}\right)(t),
\end{aligned}
$$

by assumption H_{7}. It proves that y_{1} is a lower solution of (1). Similarly, we can prove that z_{1} is an upper solution of problem (1).

By mathematical induction we can show that

$$
y_{0}(t) \leqslant \cdots \leqslant y_{n-1}(t) \leqslant y_{n}(t) \leqslant z_{n}(t) \leqslant z_{n-1}(t) \leqslant \cdots \leqslant z_{0}(t), \quad t \in J
$$

for $n=1,2, \ldots$.
It implies that $\left\{y_{n}\right\},\left\{z_{n}\right\}$ are uniformly bounded. We can show that they are equicontinuous on J. The Arzeli-Ascoli theorem guarantees the existence of subsequences $\left\{y_{n_{k}}\right\},\left\{z_{n_{k}}\right\}$ and functions $\bar{y}, \bar{z} \in C(J, \mathbb{R})$ with $y_{n_{k}}, z_{n_{k}}$ converging uniformly on J to \bar{y} and \bar{z}, respectively, if $n_{k} \rightarrow \infty$. However, since the sequences $\left\{y_{n}\right\},\left\{z_{n}\right\}$ are monotonic, we conclude that the whole sequences $\left\{y_{n}\right\},\left\{z_{n}\right\}$ converge uniformly on J to \bar{y} and \bar{z}, respectively, if $n \rightarrow \infty$. Indeed, \bar{y}, \bar{z} are solutions of problem (1).

We need to show now that (\bar{y}, \bar{z}) are extremal solutions of problem (1) in the segment $\left[y_{0}, z_{0}\right]_{*}$. To prove it, we assume that \tilde{y} is another solution of problem (1), and $y_{n-1}(t) \leqslant \tilde{y}(t) \leqslant z_{n-1}(t)$, $t \in J$ for some positive integer n. Put $p(t)=y_{n}(t)-\tilde{y}(t), q(t)=\tilde{y}(t)-z_{n}(t), t \in J$. Hence

$$
\begin{aligned}
p(0) & =y_{n-1}(0)-\tilde{y}(0)+\frac{1}{a}\left[g_{1}(\tilde{y}(0), \tilde{y}(\delta))-g_{1}\left(y_{n-1}(0), y_{n-1}(\delta)\right)\right] \\
& \leqslant y_{n-1}(0)-\tilde{y}(0)+\frac{1}{a}\left[g_{1}\left(\tilde{y}(0), y_{n-1}(\delta)\right)-g_{1}\left(y_{n-1}(0), y_{n-1}(\delta)\right)\right] \leqslant 0, \\
p(T) & =y_{n-1}(T)-\tilde{y}(T)+\frac{1}{b}\left[g_{2}(\tilde{y}(T), \tilde{y}(\gamma))-g_{2}\left(y_{n-1}(T), y_{n-1}(\gamma)\right)\right]
\end{aligned}
$$

$$
\leqslant y_{n-1}(T)-\tilde{y}(T)+\frac{1}{b}\left[g_{2}\left(\tilde{y}(T), y_{n-1}(\gamma)\right)-g_{2}\left(y_{n-1}(T), y_{n-1}(\gamma)\right)\right] \leqslant 0
$$

This and assumption H_{7} yield

$$
\begin{aligned}
p^{\prime \prime}(t)= & \left(Q y_{n-1}\right)(t)+M(t)\left[y_{n}(t)-y_{n-1}(t)\right]+\left(\mathcal{L}\left(y_{n}-y_{n-1}\right)\right)(t)-(Q \tilde{y})(t) \\
\geqslant & -M(t)\left[\tilde{y}(t)-y_{n-1}(t)\right]-\left(\mathcal{L}\left(\tilde{y}-y_{n-1}\right)\right)(t)+M(t)\left[y_{n}(t)-y_{n-1}(t)\right] \\
& +\left(\mathcal{L}\left(y_{n}-y_{n-1}\right)\right)(t)=M(t) p(t)+(\mathcal{L} p)(t) .
\end{aligned}
$$

By a similar way we can show that

$$
q(0) \leqslant 0, \quad q(T) \leqslant 0 \quad \text { and } \quad q^{\prime \prime}(t) \geqslant M(t) q(t)+(\mathcal{L} q)(t)
$$

By Lemma $1, y_{n}(t) \leqslant \tilde{y}(t) \leqslant z_{n}(t), t \in J$. If $n \rightarrow \infty$, it yields $y_{0}(t) \leqslant \bar{y}(t) \leqslant \tilde{y}(t) \leqslant \bar{z}(t) \leqslant$ $z_{0}(t), t \in J$. It proves that \bar{y}, \bar{z} are extremal solutions of problem (1) in the segment $\left[y_{0}, z_{0}\right]_{*}$. This ends the proof.

Now we investigate the case when problem (1) has the unique solution but first we need the following

Lemma 2. Assume that
$\mathrm{H}_{9}: \delta, \gamma \in(0, T)$ and $0 \leqslant k \gamma<T, l \geqslant 0$,
H_{10} : (i) $l \in(0,1), k=1$ or (ii) $l=0, k \geqslant 0$.
Let $p \in C^{2}(J, \mathbb{R}), B \in C(J \times E, \mathbb{R})$ and

$$
\begin{cases}p^{\prime \prime}(t) \geqslant B(t, p), & t \in J, \tag{6}\\ p(0) \leqslant l p(\delta), & p(T) \leqslant k p(\gamma) .\end{cases}
$$

Then function p satisfies the following inequality

$$
\begin{aligned}
p(t) \leqslant & \frac{1}{\Delta}\left\{(T-k \gamma) l \int_{0}^{\delta}\left(\int_{0}^{s} B(\tau, p) d \tau\right) d s\right. \\
& +l \delta\left[-\int_{0}^{T}\left(\int_{0}^{s} B(\tau, p) d \tau\right) d s+k \int_{0}^{\gamma}\left(\int_{0}^{s} B(\tau, p) d \tau\right) d s\right] \\
& +t(1-l)\left[-\int_{0}^{T}\left(\int_{0}^{s} B(\tau, p) d \tau\right) d s+k \int_{0}^{\gamma}\left(\int_{0}^{s} B(\tau, p) d \tau\right) d s\right] \\
& \left.-t(1-k) l \int_{0}^{\delta}\left(\int_{0}^{s} B(\tau, p) d \tau\right) d s\right\}+\int_{0}^{t}\left(\int_{0}^{s} B(\tau, p) d \tau\right) d s
\end{aligned}
$$

where $\Delta=(1-l)(T-k \gamma)+l \delta(1-k)$.
Proof. We replace problem (6) by

$$
\begin{cases}p^{\prime \prime}(t)=B(t, p)+A, & t \in J, \\ p(0)=l p(\delta)+a, & p(T)=k p(\gamma)+b\end{cases}
$$

with $A \geqslant 0, a \leqslant 0, b \leqslant 0$. Integrating it two times on $[0, T]$, we have

$$
\begin{equation*}
p(t)=p(0)+p^{\prime}(0) t+\frac{1}{2} A t^{2}+D(t), \quad t \in J \tag{7}
\end{equation*}
$$

where $D(t)=\int_{0}^{t}\left(\int_{0}^{s} B(\tau, p) d \tau\right) d s$.
Using the boundary conditions, we have the system

$$
\left\{\begin{array}{l}
(1-l) p(0)-l \delta p^{\prime}(0)=a+l\left(\frac{1}{2} A \delta^{2}+D(\delta)\right) \tag{8}\\
(1-k) p(0)+(T-k \gamma) p^{\prime}(0)=b-\frac{1}{2} A T^{2}-D(T)+k\left(\frac{1}{2} A \gamma^{2}+D(\gamma)\right)
\end{array}\right.
$$

for finding $p(0)$ and $p^{\prime}(0)$. Solving system (8) and substituting the solutions in formula (7) we obtain

$$
p(t)=a a_{1}(t)+b b_{1}(t)+\frac{1}{2} A\left[c_{1}+d_{1}(t)\right]+h_{1}(t),
$$

where

$$
\begin{aligned}
& a_{1}(t)=\frac{1}{\Delta}[T-k \gamma+t(k-1)], \quad b_{1}(t)=\frac{1}{\Delta}[l \delta+t(1-l)], \\
& c_{1}=\frac{1}{\Delta} l \delta\left[\delta(T-k \gamma)-T^{2}+k \gamma^{2}\right], \\
& d_{1}(t)=\frac{1}{\Delta} t\left[(1-l)\left(-T^{2}+k \gamma^{2}\right)-(1-k) l \delta^{2}\right]+t^{2}, \\
& h_{1}(t)=\frac{1}{\Delta}[(T-k \gamma) l D(\delta)+l \delta(-D(T)+k D(\gamma))+t(1-l)(-D(T)+k D(\gamma)) \\
& \quad-t(1-k) l D(\delta)]+D(t) .
\end{aligned}
$$

Assume that $l \in(0,1), k=1$. Then $\Delta>0, a_{1}(t)>0, b_{1}(t)>0$ and

$$
\begin{aligned}
& c_{1} \leqslant \frac{1}{\Delta} l \delta\left[T(T-\gamma)-T^{2}+\gamma^{2}\right]=\frac{1}{\Delta} l \delta \gamma(\gamma-T)<0, \\
& d_{1}(t)=\frac{1}{\Delta} t(1-l)\left(-T^{2}+\gamma^{2}\right)+t^{2} \leqslant \frac{1}{\Delta} t(1-l)\left(-T^{2}+T \gamma\right)+t^{2}=t(t-T) \leqslant 0 .
\end{aligned}
$$

This and (7) give $p(t) \leqslant h_{1}(t)$ because $A \geqslant 0, a \leqslant 0, b \leqslant 0$. The case (ii) can be discussed in the same way as above. It ends the proof.

Theorem 3. Assume that all assumptions of Theorem 2 and $\mathrm{H}_{9}, \mathrm{H}_{10}$ are satisfied. In addition, we assume that
H_{11} : there exist a function $L \in C\left(J, \mathbb{R}_{+}\right)$and a positive linear operator $\mathcal{L}_{1} \in C(E, E)$ such that

$$
(Q \bar{u})(t)-(Q u)(t) \geqslant-L_{1}(t)[\bar{u}(t)-u(t)]-\left(\mathcal{L}_{1}(\bar{u}-u)\right)(t)
$$

for $y_{0}(t) \leqslant u(t) \leqslant \bar{u}(t) \leqslant z_{0}(t)$,
H_{12} : there exist constants $0<M_{1} \leqslant a, 0<M_{2} \leqslant b, N_{i} \geqslant 0, i=1,2$, such that

$$
\begin{aligned}
& g_{1}(\bar{u}, \bar{v})-g_{1}(u, v) \geqslant M_{1}(\bar{u}-u)-N_{1}(\bar{v}-v), \\
& g_{2}\left(\bar{u}_{1}, \bar{v}_{1}\right)-g_{2}\left(u_{1}, v_{1}\right) \geqslant M_{2}\left(\bar{u}_{1}-u_{1}\right)-N_{2}\left(\bar{v}_{1}-v_{1}\right)
\end{aligned}
$$

```
for yo (0)\leqslantu\leqslant\overline{u}\leqslant\mp@subsup{z}{0}{}(0),\mp@subsup{y}{0}{}(\delta)\leqslantv\leqslant\overline{v}\leqslantzo(\delta),\mp@subsup{y}{0}{}(T)\leqslant\mp@subsup{u}{1}{}\leqslant\mp@subsup{\overline{u}}{1}{}\leqslant\mp@subsup{z}{0}{}(T),\mp@subsup{y}{0}{}(\gamma)\leqslant
v
```

and

$$
\begin{equation*}
\frac{1}{\Delta}[l \delta+T(1-l)] \int_{0}^{T}\left(\int_{0}^{s}\left[L_{1}(\tau)+\left(\mathcal{L}_{1} \mathbf{1}\right)(\tau)\right] d \tau\right) d s<1 \tag{9}
\end{equation*}
$$

with $l=\frac{N_{1}}{M_{1}}, k=\frac{N_{2}}{M_{2}}, \Delta=(1-l)(T-k \gamma)+l \delta(1-k)$.
Then problem (1) has, in the sector $\left[y_{0}, z_{0}\right]_{*}$, the unique solution.
Proof. Theorem 2 says that problem (1) has, in the sector $\left[y_{0}, z_{0}\right]_{*}$, extremal solutions \bar{y}, \bar{z} and $y_{0}(t) \leqslant \bar{y}(t) \leqslant \bar{z}(t) \leqslant z_{0}(t), t \in J$. We want to show that $\bar{z}=\bar{y}$. Put $p=\bar{z}-\bar{y}$, so $p(t) \geqslant 0$, $t \in J$. In view of assumption H_{12}, we get

$$
\begin{aligned}
0 & =g_{1}(\bar{z}(0), \bar{z}(\delta))-g_{1}(\bar{y}(0), \bar{y}(\delta)) \geqslant M_{1}[\bar{z}(0)-\bar{y}(0)]-N_{1}[\bar{z}(\delta)-\bar{y}(\delta)] \\
& =M_{1} p(0)-N_{1} p(\delta), \\
0 & =g_{2}(\bar{z}(T), \bar{z}(\gamma))-g_{2}(\bar{y}(T), \bar{y}(\gamma)) \geqslant M_{2}[\bar{z}(T)-\bar{y}(T)]-N_{2}[\bar{z}(\gamma)-\bar{y}(\gamma)] \\
& =M_{2} p(T)-N_{2} p(\gamma),
\end{aligned}
$$

so

$$
p(0) \leqslant l p(\delta), \quad p(T) \leqslant k p(\gamma) .
$$

Moreover, in view of assumption H_{11}, we see that

$$
p^{\prime \prime}(t)=(Q \bar{z})(t)-(Q \bar{y})(t) \geqslant-L_{1}(t) p(t)-\left(\mathcal{L}_{1} p\right)(t) \equiv B(t, p)
$$

It is obvious that $B(t, p) \leqslant 0, t \in J$. From Lemma 2 , we obtain

$$
\begin{equation*}
p(t) \leqslant \frac{1}{\Delta}\left\{-l \delta \int_{0}^{T}\left(\int_{0}^{s} B(\tau, p) d \tau\right) d s-t(1-l) \int_{0}^{T}\left(\int_{0}^{s} B(\tau, p) d \tau\right) d s\right\} . \tag{10}
\end{equation*}
$$

Suppose that $\max _{t \in J} p(t)=p\left(t_{1}\right)=d>0$. Then $-B(t, p) \leqslant d\left[L_{1}(t)+\left(\mathcal{L}_{1} \mathbf{1}\right)(t)\right]$. From (10), we have now

$$
\begin{aligned}
d & \leqslant \frac{d}{\Delta}\left[l \delta+t_{1}(1-l)\right] \int_{0}^{T}\left(\int_{0}^{s}\left[L_{1}(\tau)+\left(\mathcal{L}_{1} \mathbf{1}\right)(\tau)\right] d \tau\right) d s \\
& \leqslant \frac{d}{\Delta}[l \delta+T(1-l)] \int_{0}^{T}\left(\int_{0}^{s}\left[L_{1}(\tau)+\left(\mathcal{L}_{1} \mathbf{1}\right)(\tau)\right] d \tau\right) d s
\end{aligned}
$$

so

$$
d\left\{1-\frac{1}{\Delta}[l \delta+T(1-l)] \int_{0}^{T}\left(\int_{0}^{s}\left[L_{1}(\tau)+\left(\mathcal{L}_{1} \mathbf{1}\right)(\tau)\right] d \tau\right) d s\right\} \leqslant 0
$$

Hence $d \leqslant 0$, by condition (9), so $p(t)=0, t \in J$. It proves that problem (1) has the unique solution. It ends the proof.

Example. Consider the problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}(t)=(Q x)(t), \quad t \in[0, T], \tag{11}\\
0=x(0)-\frac{1}{3} x^{2}\left(\frac{1}{2} T\right) \equiv g_{1}\left(x(0), x\left(\frac{1}{2} T\right)\right), \\
0=x(T)-x\left(\frac{1}{3} T\right) \equiv g_{2}\left(x(T), x\left(\frac{1}{3} T\right)\right),
\end{array}\right.
$$

where

$$
(Q x)(t)=-a_{1} \cos x(t)-a_{2}(t) x(t)-b_{1}(t) \sin x\left(\frac{1}{4} t\right)+b_{2}(t) x\left(\frac{1}{3} t\right)-k_{1} .
$$

Note that $\delta=\frac{1}{2} T, \gamma=\frac{1}{3} T$. Assume that $a_{1}>0, a_{2}, b_{1}, b_{2} \in C(J,[0, \infty)), k_{1} \geqslant 0$ and

$$
\begin{align*}
& -a_{1} \cos 1-a_{2}(t)-b_{1}(t) \sin 1+b_{2}(t)-k_{1} \geqslant 0, \tag{12}\\
& \frac{a_{1} T^{2}}{2}+\int_{0}^{T} \int_{s}^{T}\left[b_{1}(\tau)+b_{2}(\tau)\right] d \tau d s \leqslant 1 \tag{13}\\
& \frac{a_{1} T^{2}}{2}+\int_{0}^{T} \int_{0}^{s} a_{2}(\tau) d \tau d s<\frac{1}{3} \tag{14}
\end{align*}
$$

Take $y_{0}(t)=0, z_{0}(t)=1, t \in J$. Then

$$
\begin{aligned}
& \left(Q y_{0}\right)(t)=-a_{1}-k_{1}<0=y_{0}^{\prime \prime}(t) \\
& \left(Q z_{0}\right)(t)=-a_{1} \cos 1-a_{2}(t)-b_{1}(t) \sin 1+b_{2}(t)-k_{1} \geqslant 0=z_{0}^{\prime \prime}(t)
\end{aligned}
$$

by (12). Moreover,

$$
\begin{aligned}
& g_{1}\left(y_{0}(0), y_{0}\left(\frac{1}{2} T\right)\right)=g_{1}(0,0)=0, \quad g_{2}\left(y_{0}(T), y_{0}\left(\frac{1}{3} T\right)\right)=g_{2}(0,0)=0, \\
& g_{1}\left(z_{0}(0), z_{0}\left(\frac{1}{2} T\right)\right)=g_{1}(1,1)=\frac{2}{3}>0, \quad g_{2}\left(z_{0}(T), z_{0}\left(\frac{1}{3} T\right)\right)=g_{2}(1,1)=0 .
\end{aligned}
$$

This shows that y_{0}, z_{0} are lower and upper solutions of problem (11), respectively. It is quite easy to see that assumptions $\mathrm{H}_{7}, \mathrm{H}_{8}$ hold with $a=b=1, M(t)=a_{1}$ and $(\mathcal{L} u)(t)=b_{1}(t) u\left(\frac{1}{4} t\right)+$ $b_{2}(t) u\left(\frac{1}{3} t\right)$. In view of (13), assumption H_{3} holds. It proves that problem (11) has extremal solutions in the sector $\left[y_{0}, z_{0}\right]_{*}$, by Theorem 2.

Now we are going to show that all assumptions of Theorem 3 are satisfied. Note that $L_{1}(t)=$ $a_{1}+a_{2}(t),\left(\mathcal{L}_{1} u\right)(t)=0, t \in J$, and $M_{1}=1, N_{1}=\frac{2}{3}, M_{2}=N_{2}=1$, so $k=1, l=\frac{2}{3}<1$. Moreover, $\Delta=\frac{2}{9} T$ and assumption (9) holds, by (14). Hence, problem (11) has, in the sector $\left[y_{0}, z_{0}\right]_{*}$, the unique solution.

For example, we take $T=1, k_{1}=0$, and

$$
a_{1}=\frac{1}{8 \cos 1}, \quad a_{2}(t)=\frac{1}{8} \sin t, \quad b_{1}(t)=\frac{\beta \sin t}{\sin 1}, \quad b_{2}(t)=\left(\frac{1}{8}+\beta\right) \sin t+\frac{1}{8} .
$$

Then conditions (12)-(14) are satisfied with $\beta \leqslant 1.0143$.

4. Quasi-solutions. Unique solution

This section deals with the problem of existence of quasi-solutions for (1). The case when problem (1) has the unique solution is also investigated.

A pair of functions $y_{0}, z_{0} \in C^{2}(J, \mathbb{R})$ is called weakly coupled (w.c.) lower and upper solutions of problem (1) if

$$
\left\{\begin{array}{l}
y_{0}^{\prime \prime}(t) \geqslant\left(Q y_{0}\right)(t), \quad t \in J, \\
0 \geqslant g_{1}\left(y_{0}(0), z_{0}(\delta)\right), \quad 0 \geqslant g_{2}\left(y_{0}(T), z_{0}(\gamma)\right) \\
z_{0}^{\prime \prime}(t) \leqslant\left(Q z_{0}\right)(t), \quad t \in J, \\
0 \leqslant g_{1}\left(z_{0}(0), y_{0}(\delta)\right), \quad 0 \leqslant g_{2}\left(z_{0}(T), y_{0}(\gamma)\right)
\end{array}\right.
$$

A pair $(U, V), U, V \in C^{2}(J, \mathbb{R})$ is called a weakly coupled quasi-solution of problem (1) if

$$
\left\{\begin{array}{l}
U^{\prime}(t)=(Q U)(t), \quad t \in J, \\
0=g_{1}(U(0), V(\delta)), \quad 0=g_{2}(U(T), V(\gamma)) \\
V^{\prime}(t)=(Q V)(t), \quad t \in J, \\
0=g_{1}(V(0), U(\delta)), \quad 0=g_{2}(V(T), U(\gamma))
\end{array}\right.
$$

A weakly coupled quasi-solution $(\bar{U}, \bar{V}), \bar{U}, \bar{V} \in C^{2}(J, \mathbb{R})$ is called the weakly coupled minimal and maximal quasi-solution of problem (1) if for any weakly coupled quasi-solution (U, V) of (1) we have $\bar{U}(t) \leqslant U(t), V(t) \leqslant \bar{V}(t)$ on J.

Theorem 4. Suppose that assumptions $\mathrm{H}_{1}-\mathrm{H}_{4}, \mathrm{H}_{7}$ are satisfied. Let $y_{0}, z_{0} \in C^{2}(J, \mathbb{R})$ be w.c. lower and upper solutions of problem (1), and $y_{0}(t) \leqslant z_{0}(t), t \in J$. In addition, we assume that $g_{i}, i=1,2$ are nondecreasing with respect to the second variable and there exist positive constants a, b such that

$$
\begin{aligned}
& g_{1}(\bar{u}, v)-g_{1}(u, v) \leqslant a(\bar{u}-u), \\
& g_{2}\left(\bar{u}_{1}, v_{1}\right)-g_{2}\left(u_{1}, v_{1}\right) \leqslant b\left(\bar{u}_{1}-v_{1}\right)
\end{aligned}
$$

for $y_{0}(0) \leqslant u \leqslant \bar{u} \leqslant z_{0}(0), y_{0}(T) \leqslant u_{1} \leqslant \bar{u}_{1} \leqslant z_{0}(T), y_{0}(\delta) \leqslant v \leqslant z_{0}(\delta), y_{0}(\gamma) \leqslant v_{1} \leqslant z_{0}(\gamma)$.
Then problem (1) has, in the sector $\left[y_{0}, z_{0}\right]_{*}$ the w.c. minimal and maximal quasi-solutions.
Proof. Let us define two sequences $\left\{y_{n}, z_{n}\right\}$ by relations:

$$
\begin{aligned}
& \left\{\begin{array}{l}
y_{n}^{\prime \prime}(t)=\left(Q y_{n-1}\right)(t)+M(t)\left[y_{n}(t)-y_{n-1}(t)\right]+\left(\mathcal{L}\left(y_{n}-y_{n-1}\right)\right)(t), \quad t \in J, \\
y_{n}(0)=-\frac{1}{a} g_{1}\left(y_{n-1}(0), z_{n-1}(\delta)\right)+y_{n-1}(0), \\
y_{n}(T)=-\frac{1}{b} g_{2}\left(y_{n-1}(T), z_{n-1}(\gamma)\right)+y_{n-1}(T),
\end{array}\right. \\
& \left\{\begin{array}{l}
z_{n}^{\prime \prime}(t)=\left(Q z_{n-1}\right)(t)+M(t)\left[z_{n}(t)-z_{n-1}(t)\right]+\left(\mathcal{L}\left(z_{n}-z_{n-1}\right)\right)(t), \quad t \in J, \\
z_{n}(0)=-\frac{1}{a} g_{1}\left(z_{n-1}(0), y_{n-1}(\delta)\right)+z_{n-1}(0), \\
z_{n}(T)=-\frac{1}{b} g_{2}\left(z_{n-1}(T), y_{n-1}(\gamma)\right)+z_{n-1}(T)
\end{array}\right.
\end{aligned}
$$

for $n=1,2, \ldots$ The proof is similar to the proof of Theorem 2 and therefore it is omitted.

Theorem 5. Assume that all assumptions of Theorem 4 and $\mathrm{H}_{9}-\mathrm{H}_{11}$ are satisfied. In addition, we assume that:
H_{12}^{\prime} : there exist constants $0<M_{1} \leqslant a, 0<M_{2} \leqslant b, N_{i} \geqslant 0, i=1,2$, such that

$$
\begin{aligned}
& \quad g_{1}(\bar{u}, v)-g_{1}(u, \bar{v}) \geqslant M_{1}(\bar{u}-u)-N_{1}(\bar{v}-v), \\
& \\
& g_{2}\left(\bar{u}_{1}, v_{1}\right)-g_{2}\left(u_{1}, \bar{v}_{1}\right) \geqslant M_{2}\left(\bar{u}_{1}-u_{1}\right)-N_{2}\left(\bar{v}_{1}-v_{1}\right) \\
& \text { for } y_{0}(0) \leqslant u \leqslant \bar{u} \leqslant z_{0}(0), y_{0}(\delta) \leqslant v \leqslant \bar{v} \leqslant z_{0}(\delta), y_{0}(T) \leqslant u_{1} \leqslant \bar{u}_{1} \leqslant z_{0}(T), y_{0}(\gamma) \leqslant \\
& v_{1} \leqslant \bar{v}_{1} \leqslant z_{0}(\gamma)
\end{aligned}
$$

and

$$
\frac{1}{\Delta}[l \delta+T(1-l)] \int_{0}^{T}\left(\int_{0}^{s}\left[L_{1}(\tau)+\left(\mathcal{L}_{1} \mathbf{1}\right)(\tau)\right] d \tau\right) d s<1
$$

with $l=\frac{N_{1}}{M_{1}}, k=\frac{N_{2}}{M_{2}}, \Delta=(1-l)(T-k \gamma)+l \delta(1-k)$.
Then problem (1) has, in the sector $\left[y_{0}, z_{0}\right]_{*}$, the unique solution.
The proof of Theorem 5 is similar to the proof of Theorem 3 and therefore it is omitted.

References

[1] C. Corduneanu, Functional Equations with Causal Operators, Stability Control Theory Methods Appl., vol. 16, Taylor and Francis, London, 2002.
[2] Z. Drici, F.A. McRae, J.V. Devi, Monotone iterative technique for periodic boundary value problems with causal operators, Nonlinear Anal. 64 (2006) 1271-1277.
[3] T. Jankowski, Monotone method for second order delayed differential equations with boundary value conditions, Appl. Math. Comput. 149 (2004) 589-598.
[4] T. Jankowski, Advanced differential equations with nonlinear boundary conditions, J. Math. Anal. Appl. 304 (2005) 490-503.
[5] T. Jankowski, On delay differential equations with nonlinear boundary conditions, Boundary Value Probl. 2 (2005) 201-214.
[6] T. Jankowski, Solvability of three point boundary value problems for second order differential equations with deviating arguments, J. Math. Anal. Appl. 312 (2005) 620-636.
[7] T. Jankowski, Boundary value problems with causal operators, preprint.
[8] D. Jiang, J. Wei, Monotone method for first- and second-order periodic boundary value problems and periodic solutions of functional differential equations, Nonlinear Anal. 50 (2002) 885-898.
[9] D. Jiang, M. Fan, A. Wan, A monotone method for constructing extremal solutions to second order periodic boundary value problems, J. Comput. Appl. Math. 136 (2001) 189-197.
[10] G.S. Ladde, V. Lakshmikantham, A.S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman, Boston, 1985.
[11] J.J. Nieto, R. Rodríguez-López, Existence and approximation of solutions for nonlinear functional differential equations with periodic boundary value conditions, Comput. Math. Appl. 40 (2000) 433-442.
[12] J.J. Nieto, R. Rodríguez-López, Remarks on periodic boundary value problems for functional differential equations, J. Comput. Appl. Math. 158 (2003) 339-353.

[^0]: E-mail address: tjank@mif.pg.gda.pl.

