
J Sched (2016) 19:701–728
DOI 10.1007/s10951-015-0446-9

Normal-form preemption sequences for an open problem in
scheduling theory

Bo Chen1 · Ed Coffman2 · Dariusz Dereniowski3 · Wiesław Kubiak4

Published online: 28 August 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Structural properties of optimal preemptive
schedules have been studied in a number of recent papers
with a primary focus on two structural parameters: the min-
imum number of preemptions necessary, and a tight lower
bound on shifts, i.e., the sizes of intervals bounded by the
times created by preemptions, job starts, or completions.
These two parameters have been investigated for a large
class of preemptive scheduling problems, but so far only
rough bounds for these parameters have been derived for
specific problems. This paper sharpens the bounds on these
structural parameters for a well-known open problem in the
theory of preemptive scheduling: Instances consist of in-
trees of n unit-execution-time jobs with release dates, and
the objective is to minimize the total completion time on two
processors. This is among the current, tantalizing “threshold”
problems of scheduling theory: Our literature survey reveals
that any significant generalization leads to an NP-hard prob-

B Dariusz Dereniowski
deren@eti.pg.gda.pl

Bo Chen
b.chen@warwick.ac.uk

Ed Coffman
coffman@cs.columbia.edu

Wiesław Kubiak
wkubiak@mun.ca

1 Centre for Discrete Mathematics and Its Applications
(DIMAP) and Warwick Business School, University of
Warwick, Coventry, UK

2 Departments of Electrical Engineering and of Computer
Science, Columbia University, New York, USA

3 Faculty of Electronics, Telecommunications and Informatics,
Gdańsk University of Technology, Gdańsk, Poland

4 Faculty of Business Administration, Memorial University, St.
John’s, Canada

lem, but that any significant, but slight simplification leads
to tractable problem with a polynomial-time solution. For
the above problem, we show that the number of preemptions
necessary for optimality need not exceed 2n − 1; that the
number must be of order Ω(log n) for some instances; and
that the minimum shift need not be less than 2−2n+1. These
bounds are obtained by combinatorial analysis of optimal
preemptive schedules rather than by the analysis of polytope
corners for linear-program formulations of the problem, an
approach to be found in earlier papers. The bounds imme-
diately follow from a fundamental structural property called
normality, by whichminimal shifts of a job are exponentially
decreasing functions. In particular, the first interval between
a preempted job’s start and its preemption must be a multiple
of 1/2, the second such interval must be a multiple of 1/4,
and in general, the i-th preemption must occur at a multi-
ple of 2−i . We expect the new structural properties to play a
prominent role in finally settling a vexing, still-open question
of complexity.

Keywords Preemption · Parallel machines · In-tree ·
Release date · Scheduling algorithm · Total completion time

1 Introduction

We study structural properties of optimal preemptive sched-
ules of a classic problem of scheduling unit execution time
(UET) jobs with precedence constraints and release dates on
two processors. Optimal nonpreemptive schedules for this
and related problems have been well researched in the lit-
erature for various objective functions and restrictions. Fujii
et al. (1971) present a matching-based algorithm, and Coff-
man and Graham (1972) devise a job-labeling algorithm for
minimum-makespan nonpreemptive schedules. Garey and

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-015-0446-9&domain=pdf

702 J Sched (2016) 19:701–728

Johnson introduce O(n2) and O(n2.81) time algorithms for
minimizing maximum lateness for jobs, respectively, with-
out release dates (Garey and Johnson 1976), and with release
dates (Garey and Johnson 1977). Gabow (1982) designed
an almost linear-time algorithm for the minimum-makespan
problem. Leung et al. (2001) and Carlier et al. (2014) extend
these results to precedence delays. Baptiste and Timkovsky
(2004) focus on minimization of total completion time and
present an O(n9) time shortest-path optimization algorithm
for scheduling jobs with release dates. They also conjecture
that there always exist so-called ideal schedules that mini-
mize both maximum completion time and total completion
time for jobs with release dates. This has been known to hold
true for equal release dates without preemptions (Coffman
and Graham 1972) and with preemptions (Coffman et al.
2003). Coffman et al. (2012) prove the Baptiste–Timkovsky
conjecture and give an O(n3) algorithm for the minimization
of total completion time for jobs with release dates—amajor
improvement over the O(n9) time algorithm in Baptiste and
Timkovsky (2004).

Optimal preemptive schedules have proven more chal-
lenging to compute efficiently, especially for jobs with
release dates and the total-completion-time criterion. Coff-
man et al. (2012) prove that these schedules are not ideal, that
is, for some instances any schedule minimizing total comple-
tion time will be longer than the schedule minimizing maxi-
mumcompletion time. That holds even for in-tree precedence
constraints. This last result serves as a point of departure for
this paper, with its focus on in-tree precedence constraints,
release dates, and the criterion of total-completion-time, the
problem P2|pmtn, in-tree, r j , p j = 1| ∑C j in the well-
known three-field notation. Despite numerous efforts, the
computational complexity of the problem remains open:
reducing the number of processors tom = 1 renders the prob-
lem polynomially solvable (Baptiste et al. 2004); and so does
dropping the precedence constraints (Herrbach and Leung
1990); dropping the release dates (Coffman et al. 2003);
and assuming out-trees instead of in-trees (Baptiste and
Timkovsky 2001; Brucker et al. 2003; Huo and Leung 2005).
With this background in mind, we focus on key structural
properties of optimal preemptive schedules for the problem
P2|pmtn, in-tree, r j , p j = 1| ∑C j . The complexity of the
problem studied in this paper remains also open for m = 3
machines. This holds for both nonpreemptive and preemp-
tive cases and for both makespan and total-completion-time
objectives.

Sauer and Stone (1987) study the problem with no release
dates andmaximum-completion-time (makespan)minimiza-
tion. They show that, for every optimal preemptive schedule,
there is an optimal preemptive schedule with at most n pre-
emptions, where preemptions occur at multiples of 1/2, and
go on to define a shift that is the duration of an interval
between two consecutive time points, each of which is a job

start, a job end, a job resumption, or a job preemption. The
shortest necessary shift in an optimal schedule is then called
its resolution.1 The minimum resolution over all instances of
a given preemptive scheduling problem is called the problem
resolution. Following Sauer and Stone (1987), the minimum
number of preemptions and the minimum resolution neces-
sary for optimal schedules have become two main structural
parameters in preemptive scheduling. They have been inves-
tigated for a large class of preemptive scheduling problems
by Baptiste et al. (2011) who give general bounds for these
parameters.

Coffman et al. (2015) provide bounds on the resolutions
of various scheduling problems—we refer the reader to their
work for a comprehensive overview. In particular, they show
upper bounds of m−n/(m+1) and m−(n−1)/(m+1) on resolu-
tions for problems P|pmtn, in-tree, r j , p j = 1|Cmax and
P|pmtn, in-tree, r j , p j = 1| ∑C j , respectively, where
n is the number of jobs and m is the number of proces-
sors. Thus, for the problem P2|pmtn, in-tree, r j , p j =
1| ∑C j studied in this paper one immediately obtains an
upper bound of 2−(n−1)/3 on its resolution. As for lower
bounds, Coffman et al. (2015) shows that the resolution of
P|pmtn, prec, r j | ∑wiC j is at least (m + n)−(2n+1)/2 .

The papers of Sauer and Stone (1987), Baptiste et al.
(2011), and Coffman et al. (2015) obtain their resolution
bounds by analyzing the corners of feasibility regions of lin-
ear programs designed for specific problems. Our approach
is combinatorial and does not make use of the theory of lin-
ear programming. It yields a lower bound of 2−2n−1 on the
problem resolution of P2|pmtn, in-tree, r j , p j = 1| ∑C j ,
which is a significant improvement for in-trees over the lower
bound of (n + 2)−(2n+1)/2 that can be derived directly from
Coffman et al. (2015).

We introduce in this paper the concept of normal sched-
ules where shifts decrease as a function of time: The first
shift is a multiple of 1/2, the second one is a multiple of
1/4, and in general, the i-th shift is a multiple if 2−i . We
prove that there exist optimal schedules that are normal for
in-trees.However,we conjecture that this is no longer the case
for arbitrary precedence constraints, i.e., there are instances
for which no optimal schedule is normal. The normality of
a schedule implies that each shift is a multiple of 2−2n+1,
which is a much stronger claim than the usual requirement
that all shifts are no shorter than the problem resolution. Nor-
mality also implies that there exists an optimal schedule with
a finite number (in particular, a number not exceeding 2n−1)
of events which are times when jobs start, end, or are pre-
empted. Thus, 2n − 1 is an upper bound on the number of
preemptions necessary for optimality. We also observe that a
job may be required to preempt at a point which is neither a
start nor the end of another job in order to ensure optimality.

1 The term resolution was introduced in Coffman et al. (2015).

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J Sched (2016) 19:701–728 703

These preemption events unrelated to job starts or comple-
tions seem to be confined to rather contrived instances; they
are more the exception than the rule in preemptive schedul-
ing. We also prove that there exists a sequence of problem
instances indexed by n for which the number of preemptions
in the corresponding optimal schedules is Ω(log n). Thus, a
tight upper bound on the number of preemptions required for
optimality must be at least logarithmic in n.

2 Our approach and results: a general overview

In Sect. 3, we exhibit a sequence of problem instances
indexed by n where the number of preemptions of a sin-
gle job is of order Ω(log n). In the remaining sections we
focus on proving our lower bound on the minimum shift. We
start by showing that an optimal schedule is a concatenation
of blocks, each with at most three jobs. No job starts or com-
pletes inside a block but there is at least one job start at the
beginning of a block, and/or at least one job completion at
the end of a block. This is done in Sects. 4.2 and 4.3. A block
is called l-normal if each job duration in the block is a mul-
tiple of 1/2l+1, and the block length is a multiple of 1/2l .
In a normal schedule the first block must be 1-normal, the
second 2-normal and so on. These concepts are introduced in
Sect. 4.4, where it is verified that, in a normal schedule with
q blocks, each preemption occurs at a multiple of 1/2q+1,

where q ≤ 2n − 1. Our goal is to show that there exists an
optimal schedule that is normal. Our proof is by contradic-
tion. We begin by assuming an optimal schedule that is also
maximal in the sense that it has a latest possible abnormality
point i , i.e., a latest block i which is not i-normal. We show
that such a blockmust have exactly three jobs. One completes
at the end of the block and has an (i + 1)-normal duration,
but the durations of the other two are not (i + 1)-normal, as
shown by Lemma 12. These two jobs then trigger an alter-
nating chain of jobs to which they also belong, as shown in
Sect. 6. The completion times of the jobs in the chain are
not (i + 1)-normal, which makes it possible under normal-
block circumstances to either extend the chain by one job or
prove that the abnormality point must exceed i ; this is our
main result in Theorem 3. Thus, we get a contradiction in
either case since the number of jobs is finite and the schedule
is maximal. The normal-block circumstances here mean that
the alternating chain does not endwith a certain structure that
we call an A-configuration, a configuration that prevents us
from extending the alternating chain. However, we show that
there always exists a maximal schedule that does not include
an A-configuration. This is done in Sect. 5, where the key
result is Theorem 2. The main result of the paper follows
and states that there is a normal schedule that is optimal for
P2|pmtn, in-tree, r j , p j = 1| ∑C j .

a0
1 a0

2 a0
3

a1
1 a1

2 a1
3a0

4

a2
1 a2

2 a2
3a1

4

a2
4

...

0:

1:
2:

3:
4:

5:

:s
et

a
d

es
a

el
er

Fig. 1 The precedence constraints and release dates for Jp , p ≥ 2

3 How many preemptions of a job is required?

In this section we show that, for any given number n of jobs,
it is sometimes necessary to preempt a job p = Ω(log n)

times. Let Ai , i ≥ 0, be a set of four jobs ai1, a
i
2, a

i
3, a

i
4 such

that r(aij) = 2i for each j ∈ {1, 2, 3}, r(ai4) = 2i + 1 and

aij ≺ ai4 for each j ∈ {1, 2, 3}. Then, define

Jp =
p⋃

i=0

Ai ,

where ai4 ≺ ai+1
4 for each i ∈ {0, . . . , p − 1}. (See Fig. 1.)

We prove that the job a p
4 should complete exactly at

2p + 3 − 1/2p+1 in any optimal schedule. This is done by
first proving that no feasible schedule (optimal or not) can
complete a p

4 earlier (cf. Proposition 1), and then by proving
that staring a p

4 later leads to a schedule that cannot be optimal
(cf. Proposition 3).

Proposition 1 Let p ≥ 0 be any integer. IfP is a preemptive
schedule for Jp, then the total length of the job a

p
4 executing

in [2p + 2,+∞) is at least 1 − 1/2p+1.

Proof We prove the lemma by induction on p. Let p = 0.
(Note that Jp = A0.) Executing less than 1/2 units of a04 in
[2,+∞) implies that a04 completes at 5/2−ε, for some ε > 0
This, however, requires completing each job in A0 \ {a04} at
3/2 − ε or earlier, which is not possible.

Suppose that the lemma holds for integers smaller than p
andwe prove it for p. LetP be a preemptive schedule forJp.
We consider all jobs that must execute in time interval I =
[2p, s(P, a p

4)]. Each job in Ap\{a p
4 } executes in this interval,

because r(a) = 2p and a ≺ a p
4 for each a ∈ Ap \ {a p

4 }. By
induction hypothesis and by the facts that a ≺ a p

4 for each

a ∈ Jp−1, we obtain that a part of a
p−1
4 that executes in I is

of length at least 1 − 1/2p. Thus, the total length of all jobs
that execute in I in P is at least 4 − 1/2p. Therefore,

s(P, a p
4) ≥ 2p + |I |/2 = 2p + 2 − 1/2p+1.

Thus, at least 1 − 1/2p+1 units of a p
4 execute in [2p +

2,+∞) as required. ��

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

704 J Sched (2016) 19:701–728

Fig. 2 a The execution of the
jobs in Ai in Pp; b the schedule
Pp for J2

(a) (b)
2i 2i+22i+1

2i-1/2 i 2i+2-1/2 i+1

4a i
3a i

2a i
1a i

2a2
2a1

2a0

0 1 2 3 4 5 6

2a

1a 0

3a00
4a0

1a 1

3a1

1a 2

4a2
3a2

4a1

3/2 4-1/4 6-1/8

We iteratively construct a schedulePp . LetP0 be such that
the jobs a01 , a

0
2 , a

0
3 form a 3/2 schedule in interval [0, 3/2]

and a04 executes in [3/2, 5/2]. For p > 0, first takePp−1 and
then execute the jobs in Ap as follows:

a p
1 in [2p, 2p + 1],
a p
2 in

[
2p + 1 − 1/2p, 2p + 1 − 1/2p+1]

∪ [
2p + 1, 2p + 2 − (1/2p − 1/2p+1)

]

= [
2p + 1 − 1/2p, 2p + 1 − 1/2p+1]

∪ [
2p + 1, 2p + 2 − 1/2p+1],

a p
3 in

[
2p + 1 − 1/2p+1, 2p + 2 − 1/2p+1],

a p
4 in

[
2p + 2 − 1/2p+1, 2p + 3 − 1/2p+1].

(See Fig. 2.)
Note that, when p > 0, C(Pp, a

p−1
4) = C(Pp−1, a

p−1
4)

= 2p + 1 − 1/2p and hence Pp is feasible. This gives the
following.

Proposition 2 Let p ≥ 0 be any integer. There exists a
schedule for Jp that completes a

p
4 at 2p + 3 − 1/2p+1. ��

Proposition 3 Let p ≥ 0beany integer.Eachoptimal sched-
ule for Jp completes a p

4 at 2p + 3 − 1/2p+1 and satisfies
the following: the total length of idle time in [0, 2(j + 1)]
is 1 − 2 j+1 for each j ∈ {0, . . . , p}, and there is no time
interval contained in [0, 2(p + 1)] in which both processors
are idle.

Proof We prove the lemma by contradiction, i.e., suppose
that, for some p ≥ 0, there exists an optimal schedule P ′

p

such that C(P ′
p, a

p
4) �= 2p + 3 − 1/2p+1. Let, without loss

of generality, p be the minimum integer for which this holds.
One can verify the lemma for p = 0 and hence p > 0. By
Proposition 1,

C(P ′
p, a

p
4) > 2p + 3 − 1/2p+1. (1)

By Proposition 2 and by the minimality of p, there exists
an optimal schedule Pp−1 for Jp−1 that executes at least

1 − 1/2p units of a p−1
4 in [2p,+∞).

We argue that the total length of a p−1
4 , denoted by x , that

executes inP ′
p in interval [2p,+∞) equals exactly 1−1/2p.

By Proposition 1,

x ≥ 1 − 1/2p. (2)

Define a schedule P ′ that equals Pp−1 in the interval
[0, 2p] and equals P ′

p in the interval [2p,+∞). Note that
P ′ is not feasible only if the total length of a p

4 executing in
P ′ (that equals 1/2p + x) is greater than 1. However,

C(P ′, a) = C(P ′
p, a) for each a ∈ Ap and

∑

a∈Jp−1\{a p−1
4 }

C(P ′, a) ≤
∑

a∈Jp−1\{a p−1
4 }

C(P ′
p, a). (3)

We then obtain a schedule P by removing the total length
of x −1+1/2p of a p−1

4 fromP ′ in a way that minimizes the

completion time of a p−1
4 in P , which gives C(P, a p−1

4) ≤
C(P ′, a p−1

4) − (x − 1 + 1/2p). The schedule P is feasible

and C(P, a) = C(P ′, a) for each a ∈ Jp \ {a p−1
4 }. Hence,

by (3),

∑

a∈Jp

C(P, a) ≤ −(x − 1 + 1/2p) +
∑

a∈Jp

C(P, a).

Thus, by the optimality of P ′
p, x − 1 + 1/2p = 0, i.e.,

x = 1 − 1/2p as required.
In the schedule P ′

p, the jobs that are executed in time
interval [2p,C(P ′

p, a
p
4)] are the ones in Ap and x units of

a p−1
4 . By a case analysis one can prove that

∑

a∈(Ap∪{a p−1
4 })\{a p

4 }
C(P ′

p, a) ≥ 4 · 2p + 4 + 2(1 − 1/2p).

Note that, by construction,

∑

a∈(Ap∪{a p−1
4 })\{a p

4 }
C(Pp, a) = 4 · 2p + 4 + 2(1 − 1/2p).

Moreover, x = 1 − 1/2p and the minimality of p imply
that

∑

a∈Jp−1\{a p−1
4 }

C(Pp, a) ≤
∑

a∈Jp−1\{a p−1
4 }

C(P ′
p, a).

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J Sched (2016) 19:701–728 705

This, (1) and C(Pp, a
p
4) = 2p + 3 − 1/2p+1 imply that

P ′
u is not optimal. This gives the desired contradiction.
Note that is follows that in eachoptimal scheduleP forJp,

C(P, a j
4) = 2p + 3− 1/2 j+1. Since a j

4 is a successor of all
jobs in J j , we obtain that there is, in P , idle time on exactly
one processor in interval (2(j+1)−1/2 j+1, 2(j+1)). Also
note that, for each j ∈ {0, . . . , p}, no idle time is possible in
the interval I = (2 j, 2(j +1)−1/2 j+1) because, for j > 0,
a,
1a

j
2 , a

j
3 and a part of a j−1

4 of length 1 − 2 j must execute
in I , and for j = 0, a01 , a

0
2 and a03 must execute in I . This

completes the proof of the claim. ��

Note that for any given p ≥ 0, the number of jobs in Jp

equals 4(p + 1). Proposition 3 gives us that each optimal
schedule for Jp has a job that completes at a time point that
is a multiple of 1/2p+1 but is not a multiple of 1/2p. This
gives that there exists a set of n jobs J such that there exists
no optimal solution to P2|pmtn, in-tree, r j , p j = 1| ∑C j

for J in which each job start, completion and preemption
occurs at a time point that is a multiple of 1/2n/4−1. We note
that this upper bound on the resolution of this problem is
slightly weaker than the bound 2−(n−1)/3 proved in Coffman
et al. (2015). Our main result of this section is the following
lower bound on the number of preemption of one job in an
optimal schedule.

Theorem 1 Given any positive integer p, there exists an
instance of the problem P2|pmtn, in-tree, r j , p j=1| ∑C j ,
such that in any optimal schedule for the instance, this is a
job that is preempted at least p = Ω(log |J |) times, where
J is the job set of the instance.

Proof Let Pp be an optimal schedule for J . Thus Pp satis-
fies the conditions in Proposition 3. By Theorem 4, we may
assume that Pp is normal. Define l = C(Pp, a

p
4) · 2c, where

c = 2|Jp| + 3.
Take J = {a} ∪ Jp ∪ {b1, . . . , bl}. The precedence con-

straints between the jobs in Jp are as in Fig. 1. We extend
the precedence relation to J by additionally enforcing:

a p
4 ≺ b1 ≺ b2 ≺ · · · ≺ bl and a ≺ b1.

We first construct a schedule P ′ as follows. Take Pp and
extend it by executinga so thatC(P ′, a) = 2(p+1)+1/2p+1

and executing b1, . . . , bl so thatC(P ′, bi) = C(P ′, bi−1)+1
for each i ∈ {1, . . . , l}, where b0 = a p

4 . By Proposition 3,
such a schedule P ′ exists and a is preempted p times in P ′.

Let P be an optimal normal schedule for J . By The-
orem 4, such a schedule exists. Suppose for a contradiction
thata is preempted atmost p−1 times inP . ByProposition 3,
we have C(P, a) < C(P ′, a) and C(P, a p

4) > C(P ′, a p
4).

The number of events in P (respectively in P ′) in inter-
val [0,C(P, a p

4)] (respectively, [0,C(P ′, a p
4)]) is at most

2|Jp|+3 because each event either equals 0 or is the start or
completion time of a job. Since both schedules are normal,

C(P, a p
4) − C(P ′, a p

4) ≥ 1/22|Jp |+3.

Thus, by definition of l,

l∑

i=1

C(P, bi) ≥
l∑

i=1

C(P ′, bi) + l/22|Jp |+3

=
l∑

i=1

C(P ′, bi) + C(Pp, a
p
4). (4)

By Proposition 3, P restricted to the jobs in Jp is not
optimal for Jp. This in particular implies

∑

x∈Jp

C(P, x) >
∑

x∈Jp

C(P ′, x).

This, together with (4), implies

∑

x∈J
C(P, x) = C(P, a) +

∑

x∈Jp

C(P, x) +
l∑

i=1

C(P, bi)

>
∑

x∈Jp

C(P ′, x)+
l∑

i=1

C(P ′, bi)+C(Pp, a
p
4)

Since, by construction of P ′,

C(Pp, a
p
4) = C(P ′, a p

4) ≥ C(P ′, a),

we obtain that the total completion time of P ′ is strictly
smaller than that of P , which gives a required contradiction.

Finally, note that C(Pp, a
p
4) ≤ |Jp| ≤ c and hence l ≤

22c. Thus, |J | = |Jp| + 1 + l = 2O(p) because c = O(p)
and |Jp| = O(p). This implies that p = Ω(log |J |) as
required. ��

4 Optimal, normal and maximal schedules

4.1 Preliminaries

Let J be a set of n unit UET jobs. The release date for job
a, denoted by r(a), is the earliest start time for a in any
feasible schedule of J . We assume that r(a) is an integer for
all a ∈ J .

For two jobs a and b, we say that a is a predecessor of
b, and that b is a successor of a, if all feasible schedules
require that b not start until a has finished. We write a ≺ b
to denote this relation. In contrast, a ⊀ b means that b can
start prior to the completion time of a. Two jobs a and b are

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

706 J Sched (2016) 19:701–728

said to be independent if a ⊀ b and b ⊀ a. For B ⊆ J , we
say that the jobs in B are independent if each pair of jobs in
B is independent. This work deals with in-tree precedence
constraints, i.e., for each job a there exists at most one job b
such that a ≺ b.

The symbol R+ denotes the set of nonnegative real num-
bers. Given a schedule P and a job a ∈ J , define s(P, a)

and C(P, a) to be the start and completion times of a in P ,
respectively. A job is called release date pinned in P if it
starts at its release date in P . The total completion time of a
schedule P of J is given by

∑
a∈J C(P, a). We say that a

preemptive schedule P is optimal if the sum of its job com-
pletion times is minimum among all preemptive schedules
for J .

4.2 Events, partitions and basic schedule
transformations

For a given schedule P , define a vector e = (e1, . . . , eq),
where 0 = e1 < e2 < · · · < eq , such that

{e1, . . . , eq} = {0} ∪ {
s(P, a)

∣
∣ a ∈ J } ∪ {

C(P, a)
∣
∣ a ∈ J }

.

The elements of e are called the events of P . The part
of P in time interval [ei , ei+1] is called the i -th block of
P , or simply a block of P , i ∈ {1, . . . , q − 1}. Given i ∈
{1, . . . , q − 1}, let ξi : J → R+ be a function such that for
each a ∈ J , ξi (a) is the total length of a executed in the
i-th block of P . Then, (ξ1, . . . , ξq−1) is called the partition
of P . Denote by (P, e, ξ) the schedule P with events e and
partition ξ . Unless specified otherwise, it is understood that
e has q components. For each a ∈ J , τP (a) is the integer
i ∈ {1, . . . , q−1} such thatC(P, a) = ei+1. In other words,
the τP (a)-th block is the last block in which job a appears.
WheneverP is clear from context we will simply write τ(a).
For any function f : J → R+, let

J (f) = {
a ∈ J ∣

∣ f (a) �= 0
}
.

In the following we will analyze schedules by investi-
gating their events and partitions. Informally speaking, the
events and the partition of a schedule P are insufficient to
uniquely reconstruct the schedule P but they suffice to build
a schedule with the same total completion time as P . The
schedules built from a list of events and a partition may dif-
fer in how pieces of jobs are executed within the blocks. The
main advantage of our approach is that in order to construct
a block in [ei , ei+1] one only needs to solve the problem
P2|p j , pmtn|Cmax where the execution time of a job a is
ξi (a); the proof of Lemma 1 gives more details. We formal-
ize this observation in the next two lemmas.

Proposition 4 Let (P, e, ξ) be a schedule. The following
conditions hold for each i ∈ {1, . . . , q − 1}:

(i) For each a ∈ J (ξi): r(a) ≤ ei ;
(ii) For each a ∈ J (ξi): ξi (a) ≤ ei+1 − ei and

∑
a∈J (ξi)

ξi (a) ≤ 2(ei+1 − ei);
(iii) For each a ∈ J (ξi) and b ∈ J (ξ j), where i ≤ j < q:

b ⊀ a.

Proof Condition (i) follows from the fact that no job inJ (ξi)

starts or completes in (ei , ei+1), i ∈ {1, . . . , q − 1}. (Note
that r(a) > ei is not possible for a ∈ J (ξi) because then
we would have s(P, a) ∈ (ei , ei+1) which would contradict
ei and ei+1 being two consecutive events of P .) Conditions
(ii) and (iii) follow directly from the fact that P is a feasible
schedule for J . (Note that (iii) in particular implies that the
jobs in J (ξi) are independent.) ��

Weoften rely on rearrangements of the events e of a sched-
uleP which result in new schedulesP ′ with events that differ
from those in e. The resulting scheduleP ′, however, may still
be analyzed in the time intervals [ei , ei+1], i ∈ {1, . . . , q−1}
defined by the original e. For this analysis, we need the fol-
lowing lemma, in which vectors of increasing real numbers
beginning with 0 are regarded as sequences of time points.

Lemma 1 If there exist q time points e1 < · · · < eq and
q − 1 functions ξi : J → R+ (i = 1, . . . , q − 1) such that
for each a ∈ J ,

∑q−1
i=1 ξi (a) = 1 and conditions (i)–(iii)

in Proposition 4 are satisfied, then there exists a schedule P
such that for each i ∈ {1, . . . , q − 1} and for each a ∈ J
the total length of all pieces of a executed in [ei , ei+1] equals
ξi (a).

Proof For any given i ∈ {1, . . . , q − 1}, it is enough to
construct the part of schedule P , denoted by Pi , in the time
interval [ei , ei+1]. By (i) and (ii), this is equivalent to solving
the problem P2|p j , pmtn|Cmax where the execution time of
each job a is ξi (a). It is easy to see that such a schedule Pi

exists if and only if the duration of [ei , ei+1] is at least the
larger of the maximum of the execution times ξ(a) and the
sum of these times averaged over the two processors, i.e.,

ei+1 − ei ≥ max

⎧
⎨

⎩

1

2

∑

a∈J
ξi (a),max

{
ξi (a)

∣
∣ a ∈ J }

⎫
⎬

⎭
.

Thus, (ii) guarantees that Pi exists. Finally note that (iii)
guarantees that the precedence constraints between jobs in
different blocks are met. ��

We close this section by introducing two basic trans-
formations of a given schedule (P, e, ξ): the cyclic shift
and the swapping of two jobs. Let ε > 0 and j > 0.
Let B = {a1, . . . , a j } ⊆ J be j different jobs and let
{i1, . . . , i j } ⊆ {1, . . . , q − 1} be j blocks of P such that
ξik (ak) ≥ ε and ξik+1(ak) ≤ eik+1+1 − eik+1 − ε for k ∈

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J Sched (2016) 19:701–728 707

Fig. 3 Swapping a and a′,
where I = {k − 4, k − 3},
k = τ(a), leads in this case to a
schedule P ′ with a smaller total
completion time aa

a

e k

aa

a

e k
−1

e k
−2

e k
−3

{{ ε(k − 3)
ε(k − 4)

e k
−4

P P a

a

e k

aa

a

e k
−1

e k
−2

e k
−3

{{ ε(k − 3)
ε(k − 4)

e k
−4

a

e k
+
1

e k
+
1

{1, . . . , j}, where i j+1 = i1. We define a cyclic shift of B by
ε on {i1, . . . , i j } in P , or just a cyclic shift if it is clear from
context, as follows. Let

(e′, ξ ′) = 〈
e, ξ , ε, (i1

a1� i2
a2� . . .

a j−1� i j
a j� i1)

〉

be the events and the partition, respectively, obtained by
replacing a piece of ak+1 of length ε in block jk+1 of P
with a piece of ak of length ε for each k ∈ {1, . . . , j}, where
i j+1 = i1. This transformation may not result in a feasible
schedule because the precedence constraints or release dates
may be violated. However, if neither is violated, then the
assumptions of Lemma 1 are met for P ′ with the events e′,
and the partition ξ ′ exists. If P ′ exists, then in addition we
assume that the blocks of P ′ enforce the following restric-
tions:

– For each ak ∈ B, if C(P, ak) = eik+1 and ik+1 < ik
(taking i j+1 = i1), then C(P ′, ak) = eik+1 − ε, which
reduces the completion time of job ak by as much as
possible with respect to the cyclic shift.

– IfC(P, ak) ≤ eik+1 (taking i j+1 = i1), thenC(P ′, ak) =
eik+1 + ε, which increases the completion time of job ak
by as little as possible with respect to the cyclic shift.

Note that, in general, e does not consist of the events of
P ′, and the number of events of P ′ may be different than the
number of events of P .

Finally, we introduce the notion of swapping of two jobs
which is used in Sects. 4.4 and 6 to reduce total completion
time of a schedule by applying the shortest processing time
(SPT) rule to two jobs that complete in consecutive blocks.
LetP be a schedule with events e and partition ξ . Let a and a′
be two jobs such that C(P, a′) = eτ(a), s(P, a) ≤ s(P, a′)
and a′ is independent of any job in J (ξτ(a)). We define a
transformation of swapping a and a′ that results in a new
schedule P ′ as follows (see Fig. 3). Find a set of indices
I ⊆ {1, . . . , τ (a) − 1} such that for each j ∈ I ,

0 < ε(j) ≤ min
{
e j+1 − e j − ξ j (a), ξ j (a

′)
}
,

ε(max I) is minimum and
∑

j∈I ε(j) = ξτ(a)(a). Such a set
I exists because of the constraints imposed on a and a′. The

schedule P ′ is obtained by performing the following three
steps:

– For each j ∈ I , remove a piece of a′ of length ε(j) from
the j-th block of P .

– Remove the piece of a executing in the τ(a)-th block and
add a piece of a′ of length ξτ(a)(a) to the τ(a)-th block
of P .

– Add a piece of a of length ε(j) to the j-th block of P for
each j ∈ I .

Lemma 2 Given schedule (P, e, ξ), let a, a′ be two jobs
such that C(P, a′) = ek , s(P, a) ≤ s(P, a′) and a′ is
independent of any job in J (ξk), where k = τP (a). Then,
the schedule P ′ obtained by swapping a and a′ in P is
feasible and

∑
a′′∈J C(P ′, a′′) ≤ ∑

a′′∈J C(P, a′′) with
the inequality being strict when s(P, a) < s(P, a′) and
ξk−1(a) < ek − ek−1.

Proof The fact that P ′ is feasible follows directly from
its construction. Suppose that s(P, a) < s(P, a′) and
ξk−1(a) < ek − ek−1. If k − 1 /∈ I , then C(P ′, a) ≤
ek−1 + ξk−1(a) < ek . Otherwise, the restriction on tak-
ing ε(max I) = ε(k − 1) to be minimum implies, due to
s(P, a) < s(P, a′), that ξk−1(a)+ε(k−1) < ek −ek−1 and
hence C(P ′, a) = ek−1 + ξk−1(a) + ε(k − 1) < ek . Thus,
the total completion time of P ′ is strictly smaller than that of
P as required. ��

4.3 Properties of optimal schedules

We now give some key properties of optimal schedules and
describe three configurations that are forbidden in optimal
schedules. These results will be used in subsequent sections.
The following lemma states that if a job a completes in the
i-th block of an optimal schedule P , i.e., τ(a) = i , then the
part of a that executes in that block spans the block. Such a
job a is called a spanning job in block i .

Lemma 3 Given schedule (P, e, ξ), each job a ∈ J is a
spanning job in block τ(a), i.e., ξτ(a)(a) = eτ(a)+1 − eτ(a).

Proof The proof is by contradiction. There exists ε > 0 such
that at most one job executes in I = [eτ(a)+1 − ε, eτ(a)+1]

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

708 J Sched (2016) 19:701–728

on each machine in P and ε ≤ eτ(a)+1 − eτ(a) − ξτ(a)(a).
Let B be the set of the jobs that execute in I . Clearly, a ∈ B
and 1 ≤ |B| ≤ 2. There exists a job b′ ∈ J \ B such
that ξτ(a)(b′) �= 0. Indeed, otherwise a could be executed in
[eτ(a), eτ(a) + ξτ(a)(a)] without making any other changes
in the schedule. Since the new schedule completes a earlier
(because ξτ(a)(a) < eτ(a)+1 − eτ(a)), this would contradict
the optimality of P . Then C(P, b′) > τ(a) and we can
use some of the space of ξτ(a)(b′) for job a to complete a
earlier. More formally, define ε′ = min{ε, ξτ(a)(b′)}. Let
e′ = eτ(a)+1 − ε′ and for each job c ∈ J let

ξ ′(c) =
{

ξτ(a)(c), if c /∈ {b′} ∪ (B \ {a}),
ξτ(a)(c) − ε′, if c ∈ {b′} ∪ (B \ {a}),

and

ξ ′′(c) =
{
0, if c /∈ {b′} ∪ (B \ {a}),
ε′, if c ∈ {b′} ∪ (B \ {a}).

By Lemma 1, there exists a scheduleP ′ such that for each
t ∈ {1, . . . , q − 1} \ {τ(a)} the total length of all pieces of
each job c ∈ J executed in [et , et+1] is ξt (c), the total length
of all pieces of each job c executed in [eτ(a), e′] equals ξ ′(c),
and the total length of all pieces of each job c executed in
[e′, eτ(a)+1] equals ξ ′′(c). However,C(P ′, c) = C(P, c) for
each c ∈ J \{a} andC(P ′, a) < C(P, a), which contradicts
the optimality of P . ��
Lemma 4 Given schedule (P, e, ξ), if a ∈ J is not a span-
ning job in block i (i ∈ {1, . . . , q − 2}), s(P, a) ≤ ei and
C(P, a) ≥ ei+1, then there is no idle time in the i-th block
of P .

Proof Suppose for a contradiction that there is idle time of
length ε > 0 in [ei , ei+1] on one of the processors in P . We
get a contradiction byobtaining another scheduleP ′ such that
C(P, b) = C(P ′, b) for each b ∈ J \ {a} and C(P ′, a) <

C(P, a). Namely, take ε′ = min{ε, ξτ(a)(a), ei+1 − ei −
ξi (a)}. By Lemma 3, τ(a) > i and hence ε′ > 0. By
Lemma 1, the desired schedule P ′ obtained from P by mov-
ing the piece of a that executes in [C(P, a) − ε′,C(P, a)]
to the i-th block of P is feasible. ��

Given schedule (P, e, ξ), two jobs a and b with τ(a) <

τ(b) are said to interlace if job b is not spanning in block
τ(a) and there exists t < τ(a) such that job a is not spanning
in block t , ξt (b) > 0, r(a) < et+1 and a is independent of all
jobs inJ (ξt)∪· · ·∪J (ξτ(a)). Note that, informally speaking,
the above constraints imply that a piece of a executed in
[C(P, a) − ε,C(P, a)], for some ε > 0, can be exchanged
with a piece of b of length ε executing in the t-th block of P .
We formalize this observation in the next lemma.

Lemma 5 IfP is an optimal schedule, then no two jobs inter-
lace in P .

Proof Let e and ξ be the events and the partition ofP , respec-
tively. Suppose for a contradiction that two jobs a and b with
τ(a) < τ(b) interlace and t is the block in the definition. Let

ε = min
{
ξt (b), eτ(a)+1 − eτ(a) − ξτ(a)(b),

ξτ(a)(a), et+1 − et − ξt (a)
}
.

Note that ε > 0. By Lemma 1, there exists a schedule P ′
with e′ and partition ξ ′ such that

(e′, ξ ′) = 〈
e, ξ , ε, (t

b� τ(a)
a� t)

〉
.

The schedule P ′ is feasible for two reasons. First, r(a) <

et+1 implies that if s(P, a) < et+1, then r(a) ≤ et and if
s(P, a) ≥ et+1, then s(P ′, a) ≥ et+1 − ε according to the
definition of the transformation, which implies that a does
not start prior to its release date inP ′. Second, the fact thata is
independent of all jobs in J (ξt)∪· · ·∪J (ξτ(a)) implies that
a does not violate the precedence constraints in P ′. For each
c ∈ J \ {a}, C(P, c) = C(P ′, c) and C(P, a) > C(P ′, a).
This contradicts the optimality of P . ��
Lemma 6 Let (P, e, ξ) be an optimal schedule. Let I =
[x, y] be an interval and let B ⊆ J be such that a ∈ B if
and only if the total length of job a executing in I is strictly
between 0 and y − x.

If jobs in B are independent, C(P, a) ≥ y and r(a) ≤ x
for each a ∈ B, then |B| ≤ 2.

Proof It follows from definition of set B that no job com-
pletes in (x, y). We first argue that

C(P, b) > y for each b ∈ B. (5)

Suppose for a contradiction that C(P, b) = y for some
job b ∈ B. Since the total length of b in I is less than y − x ,
there exists a non-empty interval I ′ ⊆ I such that no part of
b executes in I ′. We obtain a schedule P ′ by exchanging the
part ofP that executes in I ′ with the part ofP that executes in
[y − |I ′|, y]. Since the release date of each job that executes
in I is at most x and the jobs whose parts execute in I are
independent, we obtain that P ′ is indeed a feasible schedule.
Then, C(P ′, b) = y − |I ′| < y = C(P, b) and C(P ′, a) ≤
C(P, a) for each a ∈ J \ {b}, which completes the proof of
(5).

We now prove the lemma. Suppose for a contradiction that
|B| > 2. Let b be a job in B with minimum completion time
inP . Since |B| > 2, Lemma3 implies that there exists b′ ∈ B
such that τ(b) < τ(b′) and b′ is not a spanning job in chunk
τ(b). Define ε = min{y − x − p, ξτ(b)(b), p′, eτ(b)+1 −
eτ(b) − ξτ(b)(b′)}, where p and p′ are the total lengths of

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J Sched (2016) 19:701–728 709

b and b′ respectively executing in I . Due to the choice of
b′, ε > 0. We obtain a schedule P ′ by first exchanging the
pieces of b′ of total length ε executing in I with a piece of
b of length ε executing in chunk τ(b). The resulting P ′ may
not be feasible in I , however, the McNaughton’s rule can
readily turn this part into a feasible schedule. This provides
a feasible schedule P ′ because the release date of each job
whose part executes in I is at most x and the jobs that execute
in I in P are independent. By (5), C(P ′, b) = C(P, b) − ε.
Note that if a job completes at y inP , then the total length of
this job in I equals y − x ; otherwise the job would belong to
B contradicting (5). Thus, no job completes later in P ′ than
in P—a contradiction with the optimality of P . ��

Lemma 7 Let schedule (P, e, ξ) be optimal. If J (ξi) �= ∅
(i ∈ {1, . . . , q − 1}), then:

(i) There exists a job in J that is spanning in block i;
(ii) |J (ξi)| ≤ 3 and if |J (ξi)| = 3, then some job in J (ξi)

completes at ei+1 in P .

Proof Note that |J (ξi)| > 3 would lead to a contradiction
to Lemma 6 with I = [ei , ei+1]. Moreover, if i = τ(a) for
some a ∈ J , then by Lemma 3, a is spanning in block i and
the lemma holds.

Thus, assume that no job finishes in the i-th block of P . If
|J (ξi)| ≤ 2, then it remain to prove (i): if no job a is spanning
in block i , then by Lemma 4, there is no idle time in the i-th
block ofP , whichwould violate |J (ξi)| ≤ 2. This completes
the proof of case |J (ξi)| ≤ 2. We prove, by contradiction,
that |J (ξi)| = 3 is not possible if no job completes at ei+1.
Denote B = {a ∈ J ∣

∣ 0 < ξi (a) < ei+1 − ei }. Clearly,
|B| > 1. On the other hand, |B| < 3 for otherwise the job
in B with smallest completion time interlaces with one of
the two other jobs in B, which contradicts Lemma 5. Thus,
|B| = 2. Denote B = {b, b′} and assume without loss of
generality thatC(P, b) ≤ C(P, b′). According to Lemma 3,
job b is spanning in block τ(b). Also job b′ is spanning in
block τ(b), since otherwise b and b′ interlace, which is not
possible according to Lemma 5. The only job, call it c′, in
J (ξi) \ {b, b′} completes in (ei+1, eτ(b)) for otherwise this
job and b interlace—again a contradiction with Lemma 5.
Thus, in particular, τ(b) > i + 1. This situation is depicted
in Fig. 4.

b

ei ei+1

b

c c b b

a job starts

eτ(b)

bhere

Fig. 4 The proof of Lemma 7: the positioning of jobs b, b′ and c′

ej

(b)

ej

......

aa

ej+1
ξt(a) < et+1 − et

ξj(a) = 0

ej +1

a ac d

ej ej+1

c

d

(a)

Fig. 5 a The illustration of Lemma 8; b the illustration of Lemma 9

Let Y = {a ∈ J \ J (ξi)
∣
∣ ei+1 ≤ s(P, a) ≤ eτ(b)}.

Since ei+1 is an event of P , Y �= ∅. By Lemma 5, if
ei+1 ≤ C(P, a) ≤ eτ(b), then a ∈ Y or a = c′. If there
exists c ∈ Y such that C(P, c) = eτ(b), then we obtain a
schedule P ′ by swapping b and c. By Lemma 2, P ′ is fea-
sible. Moreover, if job b is non-spanning in block τ(b) − 1,
then the total completion time of P ′ is smaller than that of
P , which completes the proof. If, on the other hand, job b
is spanning in block τ(b) − 1, then C(P ′, b) = eτ(b) and
ξ ′
τP ′ (b)−1(b

′) = 0, where ξ ′ is the partition of P ′, in which

case b and b′ interlace inP ′—a contradiction with Lemma 5.
Thus, it remains to consider the situation when no such c
exists. This, since eτ(b) is an event of P , implies that c′ ends
at eτ(b) in P . Moreover, J (ξτ(c′)) ⊆ {c′, b, b′} for otherwise
P would not be optimal. Thus, some job c ∈ Y ends at eτ(c′)
because eτ(c′) is an event of P and no job in Y can start at
eτ(c′). Therefore, one of jobs {c′, b} must be non-spanning in
block τ(c). Swapping this job with c gives, by Lemma 2, a
schedule with smaller total completion time that that of P ,
which provides the required contradiction and completes the
proof of the lemma. ��

The following two lemmas describe additional configu-
rations that cannot be present in an optimal schedule. The
first situation is depicted in Fig. 5a, while the statement of
Lemma 9 is shown in Fig. 5b.

Lemma 8 Given schedule (P, e, ξ), let e j be an event in P
and jobs c, c′, and d be such that

(i) C(P, c) = C(P, c′) = e j ;
(ii) C(P, d) = e j+1 and s(P, d) < e j ;
(iii) Jobs in {c, c′} ∪ J (ξ j) are independent.

Then, P is not optimal.

Proof By Lemma 7 (ii), one of jobs c or c′, say c, satisfies
ξt (c) = 0, where et = s(P, d). We then have s(P, d) <

s(P, c) for otherwise c and d would interlace, thus we get
a contradiction by Lemma 5. Therefore, we can swap jobs c
and d. By Lemma 2, the resulting schedule is feasible and
has smaller total completion time than P , as required. ��
Lemma 9 Let schedule (P, e, ξ) be optimal and jobs a and
a′ be such that

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

710 J Sched (2016) 19:701–728

– ξ j (a) > 0, ξ j ′(a) > 0, j < j ′ − 1 and job a is spanning
in block t for each t ∈ { j + 1, . . . , j ′ − 1};

– ξ j (a′) = 0 and C(P, a′) = e j ′ ;
– No successor of a′ starts at e j ′ .

Then, s(P, a′) ≥ e j+1 and τ(a) > j ′.

Proof If s(P, a′) < e j+1, then due to ξ j (a′) = 0, s(P, a′) <

e j . But then, a and a′ would interlace, which is not possible
in an optimal schedule according to Lemma 5.

By assumption, a′ is independent of any job in J (ξ j ′).
Also, s(P, a) ≤ e j+1 ≤ s(P, a′). Then, τ(a) > j ′ follows
from an observation that otherwise swapping a and a′ in P
would produce, by Lemma 2, a schedule with smaller total
completion time than that of P . ��

4.4 Abnormality points and maximal schedules

We now define normal schedules, abnormality points and
maximal schedules. In particular Lemma 12 gives key nec-
essary conditions for an abnormality point.

For any x ∈ R+ and nonnegative integer l, we say that x
is l-normal if x = l ′/2l for some integer l ′. We say that a
block of a scheduleP is l-normal if the length of the block is
l-normal and the total execution time of each job in the block
is (l + 1)-normal. A preemptive schedule P with q events
is normal if the i-th block of P is i-normal for each i ∈
{1, . . . , q − 1}. If a schedule P with q events e and partition
ξ is not normal, then the minimum index i ∈ {1, . . . , q − 1}
such that the i-th block of P is not i-normal is called the
abnormality point of P . If a schedule is normal, then its
abnormality point is denoted by∞ for convenience.We have
the following simple observations.

Observation 1 If x is l-normal, then x is l ′-normal for each
l ′ ≥ l. ��
Observation 2 If i �= ∞ is the abnormality point of a sched-
ule P with events e, then ei is (i − 1)-normal. ��

According to our definition, if an i-th block of a schedule
P is i-normal, then ξi (a) is (i + 1)-normal for each a ∈ J ,
however, this does not necessarily imply that job preemptions
occur at (i + 1)-normal time points in the i-th block of P .
Such job preemptions can possibly take place only strictly
between ei and ei+1 since both ei and ei+1 are i-normal by
assumption.By the next observation,wemay assumewithout
loss of generality that i-normal blocks have job preemptions
only at (i + 1)-normal time points.

Observation 3 If the i-th block of a schedule P is i -normal,
then there exists a schedule P ′ with the same events, parti-
tion and total completion time as that of P , in which each
preemption, resumption, job start and job completion in the
i-th block occurs at (i + 1)-normal time point.

Proof It follows from the McNaughton’s algorithm. ��
Let us introduce a partial order, denoted by �, to the set

of all schedules. For schedules P and P ′, we write P � P ′
if and only if one of the following holds:

– P = P ′;
– P ′ is optimal, while P is not;
– BothP andP ′ are optimal and, additionally,P ′ is normal

while P is not;
– Both P and P ′ are optimal, but neither is normal. Addi-

tionally i ≤ i ′, where i and i ′ are the abnormality points
of P and P ′, respectively.

Any element in J that is maximal under the partial order
is called a maximal schedule.

Lemma 10 Let schedule (P, e, ξ) have abnormality point
i �= ∞. For each a ∈ J and for each i ′ ≤ i ,

∑q−1
j=i ′ ξ j (a) is

i ′-normal.

Proof Let a ∈ J be selected arbitrarily. Note that

q−1∑

j=i ′
ξ j (a) = 1 −

i ′−1∑

j=1

ξ j (a).

Since i ≥ i ′ is the abnormality point of P , Observation 1
implies that ξ j (a) is i-normal for each j ∈ {1, . . . , i ′ − 1}. ��

The next lemma, informally speaking, allows us to fur-
ther consider only thosemaximal scheduleswith abnormality
point i �= ∞ in which the abnormality of the i-th block is
due to the length of the jobs in this block, and not due to the
length of this block.

Lemma 11 Let P be a maximal schedule with the events
e1, . . . , eq . If i �= ∞ is the abnormality point of P , then
there exists a maximal schedule P ′ with abnormality point i
such that e1, . . . , ei , e′

i+1, . . . , e
′
q ′ are its events and e′

i+1−ei
is i -normal.

Proof If i = τ(a) for some a ∈ J , then by Lemma 3,
ei+1 = ei + ξi (a). By Lemma 10, ξi (a) is i-normal. Thus,
P ′ = P is the required schedule, which proves the lemma.
Hence, i �= τ(a) for each a ∈ J , i.e., no job completes at
ei+1. Note that ei+1 = s(P, a) for some a ∈ J . Suppose for
a contradiction that ei+1 − ei is not i-normal. Thus, ei+1 is
not i-normal. Lemma 4 implies that there is no idle time in
the i-th block of P . Thus, |J (ξi)| ≥ 2 and therefore there
exists d ∈ J (ξi) that is non-spanning in block i + 1 because
a starts at ei+1.

Case 1 There is an i-normal number in (ei , ei+1]. Let x be
the maximal i-normal number in (ei , ei+1]. Then, r(a) ≤ x

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J Sched (2016) 19:701–728 711

because there is no i-normal number in (x, ei+1] and r(a) ≤
ei+1 is i-normal by Observation 1. Let

0 < ε ≤ min
{
ξi+1(a), ei+1 − x, ξi (d),

ei+2 − ei+1 − ξi+1(d)
}
.

No job completes at ei+1 and therefore the jobs inJ (ξi)∪
J (ξi+1) are independent. Thus, by Lemma 1, there exists a
schedule P ′ with events e′ and partition ξ ′, where

(e′, ξ ′) = 〈
e, ξ , ε, (i

d� i + 1
a� i)

〉
.

Moreover, due to the McNaughton’s rule, one can assume
that s(P ′, a) = x . By Observation 2, ei is (i − 1)-normal
and hence, by Observation 1, x − ei is i-normal. Since the
first i − 1 blocks are identical in P and P ′, and e′

i+1 = x ,
P ′ is the desired schedule, which completes the proof in this
case.

Case 2 There is no i-normal number in (ei , ei+1]. By Obser-
vation 1, there is no (i − 1)-normal number in (ei , ei+1].
Let x > ei be the minimum (i − 1)-normal number. Since
i + 1 < q, more than one block intersects (ei , x).

Suppose first that exactly two blocks intersect (ei , x),
and there exists a job b such that ξi (b) + ξi+1(b) =
ei+2 − ei . One of the two blocks is of length at least
(x − ei)/2. By Observation 2, ei + (x − ei)/2 is i-
normal. Hence, due to the condition in Case 2, this must
be the (i + 1)-st block. However, the schedule with events
(e1, . . . , ei , ei + ei+2 − ei+1, ei+2, . . . , eq) and partition
(ξ1, . . . , ξi , ξi+2, ξi+1, ξi+3, . . . , ξq−1) would satisfy the
assumption in Case 1. This allows us to construct the desired
schedule P ′ as in Case 1.

Suppose now that exactly two blocks intersect (ei , x) and
there exists no job b such that ξi (b) + ξi+1(b) = ei+2 − ei .
Lemma 6 applied to I = [ei , ei+2] gives a contradiction.
Observe that the corresponding set {a, b, d} ⊆ B in Lemma6
is of size at least 3. Moreover, since no job completes in
(ei , ei+2), B contains only independent jobs.

Finally, we consider the case when more than two blocks
intersect (ei , x). Thus, the job a does not complete before x .
Moreover, no job completes at ei+2 because otherwise either
P is not optimal or ei+2 is i-normal by Lemma 10. Since
ei+2 < x we get a contradiction in either case. Therefore,
there is a job a′ that starts at ei+2. Clearly, a′ does not com-
plete before x . Thus, Lemma 6 for I = [ei ,min{x, ei+3}]
again gives a contradiction. Observe that the corresponding
set {a, a′, d} ⊆ B in Lemma 6 is of size at least 3. More-
over, since no job completes in (ei , ei+3), B contains only
independent jobs. ��

Given schedule (P, e, ξ), for i ∈ {1, . . . , q − 1} define

Ai (P) = {
a ∈ J ∣

∣ ξi (a) is not (i + 1)-normal
}
.

Lemma 12 Let P be a maximal schedule. If i �= ∞ is the
abnormality point of P , then |Ai (P)| = 2 and |J (ξi)| = 3.

Proof Let e and ξ be the events and the partition of P ,
respectively. By Lemma 11, ei+1 − ei is i-normal. We
have |J (ξi)| > 2 because otherwise by Lemmas 4 and 3,
ξi (a) = ei+1 − ei for each a ∈ J (ξi), which would contra-
dict the fact that ei+1 − ei is i-normal. Lemma 7 implies
that |J (ξi)| = 3 and there exists a ∈ J (ξi) such that
ξi (a) = ei+1 − ei . Thus, a /∈ Ai (P), and we have that
|Ai (P)| ≤ 2 because Ai (P) ⊆ J (ξi). Also, |Ai (P)| > 1 by
Lemma 4. ��

Finally, the following observation shows that the abnor-
mality point of a schedule does not decrease after a certain
type of schedule modifications. The observation directly fol-
lows from the definition of normality.

Lemma 13 Let P be a schedule and ε = l ′/2l for some
integers l and l ′. If P ′ is a schedule that is obtained from P
by a sequence of modifications, each modification being a
removal of a piece of length that is a multiple of ε from a j-th
block and an insertion of this piece into a j ′-th block, where
min{ j, j ′} ≥ l − 1, then the abnormality point of P ′ is not
smaller than that of P . ��

We close this section with a brief summary of key prop-
erties of optimal and maximal schedules obtained in this
section.

An optimal schedule is a concatenation of blocks. The
structure of any block is as follows. Each non-empty block
has a spanning job, and pieces of at most three jobs can be
present in a block; if two jobs are present in a block, then
both are spanning (cf. Lemmas 4 and 7) while if three jobs
are present in a block, then one of them completes in the
block (cf. Lemma 7) and it is the only spanning job in this
block (cf. Lemma 3). The latter property from Lemma 3 is
general—each job that ends in a block is spanning. We also
emphasize that interlacing of jobs is not allowed in optimal
schedules (see Lemma 5). This observation is heavily used
throughout the paper.

Later on in Sect. 4.4 we switch our focus to optimal sched-
ules that are also maximal. Lemma 11 shows that we may
assume without loss of generality that, in a maximal sched-
ule with abnormality point i �= ∞, the length of block i is
i-normal and thus there exists a job a in block i such that the
length of a in this block is not i-normal. Then, Lemma 12
says that there must be another job b, different from a, that
has its total length in block i not i-normal either. Note that,
due to Lemmas 3, 4 and 7, this implies that neither a nor b is

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

712 J Sched (2016) 19:701–728

spanning in block i , none of them finishes in this block and
there must be a third spanning job that finishes in block i .

5 A-configurations

In this section we first define an undesirable structure that
may appear in a schedule; we refer to this structure as an
A-configuration. Our proof that there exists a normal opti-
mal schedule for each J , given in Sect. 6, relies on the key
assumption that there exists a maximal schedule without A-
configurations, or A-free maximal schedule, for each set of
jobs J . The proof proceeds by contradiction. The abnor-
mality point implies the existence of an alternating chain in
a maximal schedule (Sect. 6.1 for definition of alternating
chains). In Sect. 6.3, we show that if A-configuration is not
present in the part of the schedule that follows the alternat-
ing chain, then we are able to extend this chain by adding
one more job. Thus we arrive at the required contradiction
since this method allows us to extend the alternating chain
ad infinitum in the presence of a finite number of jobs.

Therefore, the A-configurations are undesirable and the
main goal of this section is to prove that an A-free maximal
schedule exists for each J . Our proof is by contradiction:
informally speaking, we take a maximal schedule having an
A-configuration as early as possible, and, after some schedule
transformations,we either obtain a newschedulewith smaller
total completion time or with an earlier A-configuration. In
the former case we clearly obtain a contradiction. In the latter
case, a contradiction occurs only if the new schedule is max-
imal, i.e., its abnormality point is not smaller than that of the
initial schedule. For this reason, while performing the initial
schedule transformations we must ensure that they do not
change the abnormality point in the latter case. The proof
works for in-trees, however, it does not for general prece-
dence constraints. The question whether there is an A-free
maximal schedule for each J and general precedence con-
straints remains open.

Let (P, e, ξ) be a schedule. We say that P has an A-
configuration of length � (� > 0) starting at e j if there exist
two jobs a and b such that

– C(P, a) = e j and C(P, b) = e j ′ for some j ′ > j ;
– [e j − �, e j] is a maximal interval where a executes non-
preemptively;

– b executes non-preemptively in [e j , e j ′], and b does not
execute in [e j − �, e j];

– s(P, b) < e j − �;
– a and each job in J (ξ j) ∪ · · · ∪ J (ξ j ′) are independent.

We also say that the jobs a and b form the A-configuration.
See Fig. 6 for an exemplary A-configuration.

Fig. 6 An example of
A-configuration a b

ej ej
no bej −

If no pair of jobs form an A-configuration in P , then P is
called A-free. For any time interval I , if for any x ∈ I ∩{ei :
i = 1, . . . , q} there is no A-configuration at x in P , then P
is A-free in I . The main result of this section is the following
theorem.

Theorem 2 If any maximal schedule has an abnormality
point i �= ∞, then there exists an A-free maximal schedule.

We first provide several technical lemmas before present-
ing our proof of Theorem 2. A schedule P of abnormality
point i is said to be A-maximal if it is maximal and, unless
i = ∞, one of the following two statements is true:

– P is A-free;
– anymaximal schedule is notA-free, andP has the earliest

starting A-configuration among maximal schedules.

Proposition 5 Let P be A-maximal. If a and b form an A-
configuration in P with C(P, a) < C(P, b), then s(P, a) ≤
s(P, b).

Proof Suppose for a contradiction that s(P, a) > s(P, b).
Then, swapping jobs a and b in P produces, by Lemma 2,
a schedule with smaller total completion time than that of
P—a contradiction. ��

The first of the following two lemmas describes a situa-
tion that guarantees an A-configuration, while the second a
situation that cannot happen in an A-maximal schedule with
an A-configuration.

Proposition 6 Given maximal schedule (P, e, ξ), let e j be
an event in P and jobs a, c, c1, and d be such that

(i) C(P, c1) = e j , C(P, c) = e j+1, and C(P, d) = e j+2;
(ii) J (ξ j−1) = {c, c1}, J (ξ j) = {a, c} and J (ξ j+1) =

{a, d};
(iii) s(P, d) < e j−1.

Then, jobs c and d form an A-configuration. (See Fig. 7a for
an illustration.)

Proof Let k < j − 1 be the maximum index such that in
block k−1 job c is non-spanning but spanning in block t for
each t ∈ {k, . . . , j −1}. Note that by (i), (ii) and Lemma 4, k
is well defined.We prove, by induction on t ∈ {1, . . . , j−k},
that

ξ j−t (c) = ξ j−t (ct) = e j−t+1 − e j−t ∧ C(P, ct) = e j−t+1

for some ct ∈ J \ {a, d} ∧ s(P, c) < e j−t , (6)

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J Sched (2016) 19:701–728 713

c

ej ej+1

c1

(a)
d

ej−1 ej+2

a a

et ej

(b)

a

ξt−1(a) < et − et−1

et−1

...

...

b

c

ξ
j

(c) = 0c

Fig. 7 a Illustration of Proposition 6. b Illustration of Proposition 7

which immediately follows from (i), (ii) and Lemma 4 for
t = 1. So assume inductively that the claim holds for some
t − 1 ≥ 1 and we prove it for t . It suffices to argue that some
job ct completes at e j−t+1 since then Lemma 3 implies (ct) is
spanning in block j − t . By the induction hypothesis and the
fact that all jobs have the same execution time, neither ct−1

nor c start at e j−t+1. Since e j−t+1 is an event ofP , some job
ct completes at e j−t+1 as required. We have s(P, c) < e j−t

for otherwisewe can swap jobs c and d in [s(P, c),C(P, d)].
The resulting schedule is feasible and has smaller total com-
pletion time than P . Thus P is not optimal—contradiction.
This proves (6).

If 0 < ξk−1(c) < ek −ek−1, then by modifying the sched-
ule in block k − 1 we may without loss of generality assume
that c resumes at ek . Thus, (6) implies that c and d form an
A-configuration of length e j+1 − ek at e j+1. ��
Proposition 7 Let (P, e, ξ) be an A-maximal schedule. Sup-
pose that jobs a and b form an A-configuration at e j in P
with C(P, a) < C(P, b). Then there exists no et ≤ s(P, b)
such that (see Fig. 7b for an illustration, where it is possible
that job c ends at the start of b):

(i) r(a) < et , ξt (a) = et+1 − et , job a is non-spanning in
block t − 1;

(ii) Jobs in J (ξt−1) ∪ {a} are independent;
(iii) Some job c in J (ξt−1) satisfies C(P, c) ≥ e j ′ , ξ j ′(c) =

0, and if C(P, c) = e j ′ , then the jobs in (J (ξ j ′)\{b})∪
{c} are independent, where e j ′ = s(P, b);

(iv) The abnormality point of P is not in {t, . . . , j ′}.

Proof Suppose for a contradiction that such an et exists. Let
� > 0 be the length of the A-configuration formed by a and
b. Define

ε = min
{
ξt−1(c), et − r(a), et − et−1 − ξt−1(a), ξ j ′(b), �

}
.

By (i) and (iii), we have ε > 0. LetP ′ be a schedule obtained
by moving a piece of c of length ε from the (t − 1)-st block

b

aP

P

etet−1

...

...

ba

a

{

ε

{

ε

b

a

...

...

ba

a

c

c

{ε

ac

+ε
−ε

eτ(b)

Fig. 8 Schedule transformation in the proof of Proposition 7

c b

ej

ej

a

c b

ej

ej

a

an integer

Fig. 9 An illustration of Proposition 8

to the j ′-th block, a piece of b of length ε from the j ′-
th block to [C(P, a) − ε,C(P, a)], and a piece of a from
[C(P, a) − ε,C(P, a)] to the (t − 1)-st block. By (i), (ii),
(iii) and Lemma 1, the schedule P ′ is feasible. This transfor-
mation is shown in Fig. 8 when ε = et − et−1 − ξt−1(a) and
j ′ = t . Clearly, C(P, d) = C(P ′, d) for each d ∈ J \ {a, c}
and, by (iii), C(P ′, c) ≤ C(P, c) + ε.

If ε = �, then the total completion time of P ′ is strictly
smaller than that of P , because a resumes at C(P, a) − �

in P , i.e., C(P ′, a) < C(P, a) − �. We get a contradiction
since P is optimal.

Otherwise, if ε < �, then a and b form an A-configuration
in P ′ at C(P, a) − ε. Also, C(P ′, a) = C(P, a) − ε. Let
i be the abnormality point of P . If i ≤ t − 1, then the fact
that P and P ′ are the same in [0, et−1], we obtain that the
abnormality point of P ′ equals i and P ′ is A-maximal. If
i > t − 1, then by (iv), i > j ′ and hence ε is t-normal
and, by Lemma 13, P ′ is A-maximal. Therefore, we obtain
a contradiction in both cases, which proves the lemma. ��

The following lemma describes how two jobs that form an
A-configuration start in an A-maximal schedule. See Fig. 9
for an illustration of the two possible cases: the two jobs can
start at different time points, or at the same time.

Proposition 8 Suppose that each A-maximal schedule has
an A-configuration. Then, there exists an A-maximal sched-
ule (P, e, ξ) such that the earliest A-configuration formed
by a and b with C(P, a) < C(P, b) satisfies the following
properties:

(i) J (ξ j ′) = {a, b}, |J (ξ j)| = 2 and some job completes
at e j ′ , where e j ′ = s(P, b) and e j = s(P, a),

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

714 J Sched (2016) 19:701–728

(ii) 0 ≤ j ′ − j ≤ 1, and
(iii) e j ′+1 is an integer.

Proof Let P be A-maximal. Let a and b form the earliest A-
configuration in P . By Proposition 5, s(P, a) ≤ s(P, b) =
e j ′ . Without loss of generality assume that s(P, b) is as late
as possible.

Then job a is spanning in block j ′ since otherwise a and b
interlace and we get a contradiction by Lemma 5. Moreover,

J (ξ j ′) = {a, b}, (7)

since otherwise, by Lemma 7, it holds J (ξ j ′) = {a, b, c}
and C(P, c) = e j ′+1. The latter implies, by Lemma 3, that
job c is spanning in block j ′, which contradicts that job a is
spanning in block j ′ and proves (7).

We prove (iii) first. Suppose for a contradiction that e j ′+1

is not an integer and let h be the greatest integer smaller
than e j ′+1. Since e j ′+1 is an event and, by definition of A-
configuration, none of the jobs a and b ends at e j ′+1, (7)
implies that some job c starts at e j ′+1.

We show that ξ j ′+1(b) = 0, which will make our first
transformation in (9) feasible. This holds for j ′ + 1 = τ(a),
since by definition of A-configuration b /∈ J (ξτ(a)). For
j ′ + 1 < τ(a), we have ξ j ′+1(b) = 0 or job a is spanning
in block j ′ + 1 for otherwise a and b interlace and we get a
contradiction by Lemma 5. However, ξ j ′+1(b) > 0 and job a
is spanning inblock j ′+1,which implyJ (ξ j ′+1) = {a, b, c}.
Thus, by Lemma 7, some job must finish at e j ′+1 and since
j ′ + 1 < τ(b) < τ(b), this job must be c. By Lemma 3, job
c is spanning in block j ′ + 1—a contradiction. Therefore,

ξ j ′+1(b) = 0. (8)

Since τ(a) > j ′ + 1, we obtain by (7) and definition of
A-configuration that no job ends at e j ′+2 and hence Lemma 7
implies that job c is spanning in block j ′ + 1. Now take

ε = min
{
ξ j ′+1(c), e j ′+1 − max{h, e j ′ }

}

and letP ′ be a schedule with events e′ and partition ξ ′, where

(e′, ξ ′) = 〈
e, ξ , ε, (j ′ b� j ′ + 1

c� j ′)
〉
. (9)

Figure 10a illustrates the transformation from P to P ′ for
ε = e j ′+1−h, when h > e j ′ . Observe that (8) and ξ j ′(b) ≥ ε

ensure the feasibility of P ′. Also, by (7) and Lemma 12, we
have i �= j ′, where i is the abnormality point of P possibly
equal ∞. Clearly, if i < j ′, then P and P ′ have the same
abnormality point i since the two schedules are identical in
[0, e j ′]. If i > j ′, then by Lemma 11, ξ j ′+1(c) is (j ′ + 1)-
normal and Lemma 13 implies the same abnormality point i
for both P and P ′. Finally, the A-maximality of P implies

b

aP

P

c

b

a

c

ej

h

c b

(a) (b) (c)
b

a

c

ej

a

ej −1ej −2

a

cc

c1

ej −3

b

a

c

ej

a

ej −1

Fig. 10 Schedule transformations in the proof of Proposition 8

that a and b form an A-configuration in P ′. Therefore, if
h ≤ e j ′ , then P ′ is A-maximal and it can be ensured that
s(P ′, b) > s(P, b), which contradicts our assumption about
P . If h > e j ′ , then P ′ is A-maximal and satisfies (iii) as
required. To simplify notationwe setP := P ′ in the reminder
of the proof.

We now prove (i) and (ii). Observe that by (iii), s(P, b) is
not an integer and thus

|J (ξ j ′−1)| ≥ 2 (10)

for otherwise P would not be optimal—a contradiction.
Suppose first that s(P, a) = s(P, b) = e j ′ . If a job a′

in J (ξ j ′−1) does not complete at e j ′ , i.e., a′ is preempted
at e j ′ , then C(P, a′) > eτ(b) for otherwise, by Lemma 3,
at most one of jobs {a, b} can be spanning in block τ(a′)
and thus the other job in {a, b} and a′ would interlace, which
contradicts Lemma 5. However, ifC(P, a′) > eτ(b), then job
a′ is spanning in block τ(b) for otherwise a′ and b interlace,
which again contradicts Lemma 5. Thus, |J (ξτ(b))| = 2 by
Lemma 3. Therefore, a job in J (ξ j ′−1) \ {a′} completes at
e j ′ . The other conditions of the lemma trivially follow when
s(P, a) = s(P, b).

Now let s(P, a) �= s(P, b). By assumption, s(P, a) <

s(P, b). Informally, the proof is divided into two stages. In
the first stage we consider block j ′ − 1 and we prove that
J (ξ j ′−1) = {a, c} and that τ(c) = j ′ − 1—see Eqs. (11),
(12) and (13) and Fig. 10b. In the second stage we prove
that a starts at e j ′−1. The proof of the latter is done by con-
tradiction, i.e., we suppose that a starts before e j ′−1. This
assumption implies that P looks as shown in Fig. 10c in
the interval [e j ′−3, e j ′+1], which allows us to get the desired
contradiction thanks to Proposition 6.

First we prove by contradiction that

ξ j ′−1(a) = e j ′ − e j ′−1. (11)

By (10),J (ξ j ′−1)\{a} �= ∅. Take any c ∈ J (ξ j ′−1)\{a}.
By (7), ξ j ′(c) = 0. Since joba is non-spanning in block j ′−1,
the conditions (i)–(iv) of Proposition 7 are all satisfied by
jobs a and c, and t = j ′. (Condition (iv) holds as j ′ is not

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J Sched (2016) 19:701–728 715

the abnormality point ofP by (7) and Lemma 12.) Therefore
we get a contradictions, and (11) holds.

Next, we show that

J (ξ j ′−1) = {a, c} for some c ∈ J . (12)

If no job completes at e j ′ , then Lemma 7 and (10) imme-
diately imply (12). If some job, say c, completes at e j ′ , then
Lemma 3 implies that job c is spanning in block j ′ −1. Since
a completes after e j ′ , a �= c. This and (11) imply (12).

Finally to complete the first stage, we prove by contradic-
tion that

C(P, c) = e j ′ . (13)

To that end take ε = min{ξ j ′−1(c), ξ j ′(b)} and let P ′ be a
schedule with events e′ and partition ξ ′, where

(e′, ξ ′) =
〈
e, ξ , ε,

(
j ′ − 1

c� j ′ b� j ′ − 1
)〉

.

Note that

s(P ′, b) ≥ e j ′−1 = e j ′+1 − (e j ′+1 − e j ′−1)

= e j ′+1 − ξ j ′−1(a) − ξ j ′(a) ≥ e j ′+1 − 1,

which, by (iii), implies that s(P ′, b) ≥ r(b). Thus, P ′ is
feasible and, by assumption, optimal. Also, by (7), (12) and
Lemma 12, we have i /∈ { j ′−1, j ′}, where i is the abnormal-
ity point of P . Thus, as before, i is the abnormality point of
P ′. Indeed, it follows from the fact that the two schedules are
identical in [0, e j ′] (which covers the case when i < j ′), and
from Lemma 13 (that covers the case when i > j ′). More-
over, P ′ contains a block that ends at e j ′+1 and contains the
jobs a, b and c, none of which completes at e j ′+1—a con-
tradiction with Lemma 7. Therefore, (13) holds, and thus
due to Eqs. (11), (12) and (13), the schedule in the interval
[e j ′−1, e j ′+1] looks like in Fig. 10b.

In the second stage we argue that

s(P, a) = e j ′−1. (14)

Suppose for a contradiction that this is not the case. By (11),
c does not start at e j ′−1. Since a does not starts at e j ′−1 either,
there is a job, say c′ that ends at e j ′−1, otherwise e j ′−1 would
not be an event. By Lemma 3,

ξ j ′−2(c
′) = e j ′−1 − e j ′−2, (15)

which implies

ξ j ′−2(a) = e j ′−1 − e j ′−2 (16)

as follows: First we observe that there is no job d �= c′
that completes at e j ′−1. Indeed, otherwise Lemma 8 applied
to c = d, c′, d = c, and e j = e j ′−1 gives the required
contradiction. Now, if c ∈ J (ξ j ′−2), then the conditions
(i)-(iv) of Proposition 7 are all satisfied by jobs a, b and
c, and t = j ′ − 1—a contradiction. (Condition (iv) holds
as neither j ′ − 1 nor j ′ is the abnormality point of P by
(7), (12), and Lemma 12.) Therefore, ξ j ′−2(c) = 0. Thus,
J (ξ j ′−2) ⊆ {a, c′}, because if a job different than a and c′
that does not complete at e j ′−1 is present in J (ξ j ′−2) then,
by (12) and (13), this job interlaces with c that contradicts
Lemma 5. This implies (16) as required.

If job c′ is non-spanning in block j ′ −3, then by (12), (16)
and C(P, c′) = e j ′−1, s(P, c′) < e j ′−2, which implies that
c and c′ form an A-configuration of length e j ′−1 − e j ′−2 at
e j ′−1, which leads to a contradiction with A-maximality of
P . Thus we have

ξ j ′−3(c
′) = e j ′−2 − e j ′−3. (17)

We prove that

ξ j ′−3(c
′) = ξ j ′−3(c1) = e j ′−2 − e j ′−3 and

C(P, c1) = e j ′−2 for some c1 ∈ J \ {a, c}, (18)

i.e., we prove thatP in the interval [e j ′−3, e j ′+1] is as shown
in Fig. 10c. First, we have ξ j ′−3(c1) > 0 for some c1 /∈
{a, c, c′}. Otherwise J (ξ j ′−3) ⊆ {a, c, c′}, and since e j ′−2

is an event, s(P, a) = e j ′−2. Then, however, conditions (i)-
(iv) of Proposition 7 are all satisfied by jobs a, b, c, and
t = j ′ − 2—a contradiction (observe that h − s(P, a) < 1,
thus (i) is satisfied; condition (iv) holds as none of j ′ − 2,
j ′−1, j ′ is the abnormality point ofP by (7), (12), (15), (16),
and Lemma 12). Second, each such c1 completes at e j ′−2

for otherwise, by (12), (16) and (17), c1 and c interlace—
a contradiction by Lemma 5. Thus, by Lemma 3, job c1 is
spanning in block j ′ − 3. This, and (17) imply (18). Thus,
P looks in the interval [e j ′−3, e j ′+1] as shown in Fig. 10c.
Finally, by Proposition 6 applied to c = c′, c1, d = c, a, and
e j = e j ′−2, we obtain that c and c′ form an A-configuration
at e j ′−1. Thus, again, we get a contradiction since P is A-
maximal. Hence, (14) holds. Therefore the lemma follows
by (7), (12), and (14). ��

Given schedule (P, e, ξ), l ≥ 1 and {a1, . . . , al} ⊆ J ,
job sequence (a1, . . . , al) is called a sub-chain starting at t
in P if:

(S1) For each j ∈ {1, . . . , l − 1}, a j � a j+1;
(S2) For each j ∈ {1, . . . , l − 1}, C(P, a j) = s(P, a j+1);
(S3) Job a1 executes non-preemptively in [t,C(P, a1)].

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

716 J Sched (2016) 19:701–728

Fig. 11 (ε, d)-Exchanging of
(a1, . . . , al) and (b1, . . . , bl)
when l ′ = l + 1, d = b1 and
s(P, a) = t

a1 a = alal−1
...

b = blbl −1b2
...

t

−ε −ε

+ε+ε

{ε

{ε{ε

+ε −ε

b = bl

a = alal−1

bl −1

a1

b2b1

...

... ...

...

...

...

a b

a b

{ε

P

P

h

b1b1

Moreover, job sequence (a1, . . . , al) is a chain in P if it
satisfies conditions (S1), (S2) and additionally

(S4) Time t is the earliest moment such that a1 executes
with no preemption in [t,C(P, a1)];

(S5) No predecessor of a1 ends at t .

Suppose that jobs a and b form an A-configuration in P
with C(P, a) < C(P, b). For ε ≥ 0, we define an oper-
ation of ε-exchanging a and b in an interval [ek,C(P, b)],
k < τ(b), as follows. First, all pieces of a and b are removed
from the blocks k, . . . , τ (b). Note that the total length of all
removed pieces of a and b is

∑τ(b)
t=k ξt (a) and

∑τ(b)
t=k ξt (b),

respectively. Then, the empty gaps are filled out with the
total length

∑τ(b)
t=k ξt (a) − ε of a and the total length of

∑τ(b)
t=k ξt (b) + ε of b in such a way that b completes as early

as possible. Note that the new schedule is feasible only if
ε = 0. Whenever the transformation of ε-exchanging will be
used with ε > 0, then some other appropriate changes in the
schedule will be made to ensure feasibility.

For ε > 0, we extend the operation of ε-exchanging of
two jobs to sub-chains as follows. Let A = (a1, . . . , al = a)

and B = (b1, . . . , bl ′ = b) be two sub-chains in P that start
at t , and such that a and b form an A-configuration in P ,
where s(P, a) ≤ s(P, b). (Note that we either have l = l ′
or l = l ′ − 1.) Let d be any job that executes in [t − ε, t].
The operation of (ε, d)-exchanging of A and B in P leads to
a schedule P ′ obtained by making the following changes to
P:

– For each j ∈ {1, . . . , l}, a j is executed in [t j−ε, t j+1−ε]
inP ′, where take t1 = t , t j = s(P, a j) for j ∈ {2, . . . , l}
and tl+1 = e j ′+1 such that e j ′ = s(P, b);

– For each j ∈ {1, . . . , l ′}, b j is executed in [u j+ε, u j+1+
ε] in P ′, where take u1 = t , u j = s(P, b j) for j ∈
{2, . . . , l ′} and ul ′+1 = e j ′+1;

– A piece of d executing in [t − ε, t] is placed in [t, t + ε]
in P ′ (the “room” for this job is made by postponing b1);

– In the interval [e j ′+1,C(P, b)] ε-exchanging of a and b
is made.

The transformation is illustrated in Fig. 11 for d = b1. Note
that in this particular case the total completion times of P
and P ′ are equal.

The new schedule P ′ is feasible under certain conditions.
First, the value of ε must be selected in such a way that ε-
exchanging of a and b is possible in the above-mentioned
interval. Second, d should not be a predecessor of a1. Also,
the release dates of jobs a1, . . . , al need to be respected and
a1 must be non-preemptively executed in [t, t + ε]. We sum-
marize those conditions in the following lemma.

Proposition 9 Let (a1, . . . , al = a) and (b1, . . . , bl = b),
starting at t , be two sub-chains inP such that a and b form an
A-configuration of length � in P . If ε ≤ �, r(a1) ≤ t − ε and
r(a j) ≤ s(P, a j) − ε for each j ∈ {2, . . . , l}, a1 executes
non-preemptively in [t, t + ε], and some job d that is not
a predecessor of a1 executes non-preemptively in [t − ε, t],
then the schedule P ′ obtained by (ε, d)-exchanging of the
two sub-chains in P is feasible. ��

5.1 Proof of Theorem 2

Let (P, e, ξ) be a maximal schedule that satisfies the prop-
erties in Proposition 8. Let (a1, . . . , al = a) be the chain in
P that starts at ta and let (b1, . . . , bl ′ = b) be the chain in P
that starts at tb. By definition of chains and Proposition 8 we
have

l = 1 ⇒ ta = s(P, a), (19)

l ≥ 2 ⇒ s(P, a) − (l − 1) ≤ ta < s(P, a) − (l − 2),

(20)

l ′ = 1 ⇒ tb = s(P, b), and (21)

l ′ ≥ 2 ⇒ s(P, b) − (l ′ − 1) ≤ tb < s(P, b) − (l ′ − 2).

(22)

Case 1 ta ≥ tb.
In this case we perform a transformation shown in Fig. 12

as described below. By Proposition 8, there exists an integer
h such that both jobs a and b execute non-preemptively in

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J Sched (2016) 19:701–728 717

Fig. 12 Transformation from
P to P ′ (ε = ta − h′, d = b′) in
Case 1 in proof of Theorem 2

ta = ep

−ε −ε

+ε+ε

{ε

+ε −ε

b = bl

a = alal−1

bl −1

a1

bl

...

... ...

...

a b
{ε

P

P

hej

ep−1

a1

{ ≥ ε {≥ ε

h

{≥ ε

a = alal−1a1

b

...

...

...a1

a bb b = blbl −1bl
...

{ ≥ ε b=d
{ ≥ ε

[s(P, a), h] and [s(P, b), h], respectively. We have ep = ta
for some event ep.

Let e j ′ = s(P, b). By Proposition 8, h − e j ′ = ξ j ′(b).
Let � be the length of the A-configuration formed by a and
b. Clearly C(P, a) − � > h by definition of A-configuration
and Proposition 8.

Let A = (a1, . . . , al) and let B be the sub-chain of the
chain (b1, . . . , bl ′ = b) that starts at ta with a job b′ and ends
with the job b. By definition of ta , ξp−1(a1) < ep − ep−1.
Thus, |J (ξp−1) \ {a1}| ≥ 2. Let d ∈ J (ξp−1) \ {a1} be a
job that does not complete at ep (possibly b′), if such a job
exists. Otherwise, let d be any job in J (ξp−1) \ {a1}. Take

ε = min
{
ξp−1(d), ep − ep−1 − ξp−1(a1), y, ξ j ′(b), �, ta − h′} ,

where h′ is the greatest integer smaller than ta and

y =

⎧
⎪⎨

⎪⎩

h − s(P, a), when l = 1,

(C(P, a1) − ep)/2, when l > 1 and C(P, d) = ta,

C(P, a1) − ep, otherwise.

The latter ensures that d, if it completes at ta in P , does not
complete after s(P ′, a2) in P ′. Note that, by definition of ta ,
no predecessor of a1 ends at ta and ξp−1(a1) < ep − ep−1.
Hence, in particular, ε > 0. Let P ′ be the schedule obtained
by (ε, d)-exchanging of A and B in P . By Proposition 9, P ′
is feasible. If ε = �, then the total completion time of P ′
is strictly smaller than that of P and we get a contradiction
since P is optimal.

Thus, consider ε < �. Then, the total completion time of
P ′ does not exceed that of P . To see that we observe that by
(19) and (20) we have s(P, b) − ta < l. Also, if two jobs
in J (ξp−1) \ {a1} complete at ta , then either at least one of
them is a predecessor of b′, which implies that s(P, b′) = ta ,
or otherwise we obtain from Lemma 8 that s(P, b′) = ta .
Therefore, no more than l jobs in {d, b1, . . . , bl ′ } complete
in [ta, h] in P . Thus, no more than l jobs get delayed by ε

each as a result of the exchange, however, each job in the

chain (a1, . . . , al = a) completes by ε earlier at the same
time.

Finally, we show thatP andP ′ have the same abnormality
point. Clearly, this holds if i < p−1. Also, if i > j ′, then ε is
p-normal. To see this we observe that ep, ep−1, ξp−1(a1) and
ta are clearly all p-normal. By Lemma 10,C(P, a1)−ta is p-
normal. Also e j ′ = ta+(C(P, b′)−ta)+k−2, where k is the
number of jobs in B, is p-normal. If l = 1, then s(P, a) and
h are p-normal, which implies p-normality of y. For l > 1,
we argue that y is also p-normal and for that we need only
consider y = (C(P, a1)−ep)/2. Then, b′ is not present in the
(p−1)-st block for otherwise b′ would be selected as d. The
length of (p−1)-st block, ep−ep−1, is by definition (p−1)-
normal. By Lemma 3, ξp−1(d) = ep − ep−1. By Lemma 5,
each job inJ (ξp−1)\{a1}must complete at ep. This proves,
again by Lemma 3, that |J (ξp−1)| = 2. By Lemma 10,
ξp−1(a1)+ξp(a1)+ξp+1(a1) = ξp−1(a1)+C(P, a1)−ta is
(p−1)-normal. Since ξp−1(a1) ∈ {0, ep − ep−1}, we obtain
that ξp−1(a1) is (p − 1)-normal. Thus, (C(P, a1) − ta)/2
is p-normal as required. Therefore, ε is p-normal and, by
Lemma 13, P and P ′ have the same abnormality point for
i > j ′. Also, by Proposition 8, and chain definition, we have
|J (ξk)| = 2 for each k ∈ {p, . . . , j ′}. Thus, by Lemma
12, i /∈ {p, . . . , j ′}. Finally, consider i = p − 1. Then,
if i is no longer the abnormality point i ′ of P ′, then i ′ >

i—a contradiction since P is A-maximal. Therefore, i is
the abnormality point of P ′, and hence we proved that P
and P ′ have the same abnormality point. To complete the
case proof we note that a and b form an A-configuration in
P ′ at C(P ′, a) = C(P, a) − ε, which contradicts the A-
maximality of P .

Case 2 ta < tb. We first define

t ′a = max
{
t < tb

∣
∣ t = ta or t ∈ {s(P, a1), . . . , s(P, al)}

}

and a′ to be the job from the chain (a1, . . . , al) that starts
or resumes at t ′a . By (19)–(22), it holds a′ = al−l ′+1 or
a′ = al−l ′+2, and only one job, namely a′, from the chain

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

718 J Sched (2016) 19:701–728

c

(a)

d

a a

(b)

c

ep+1

c1

d

ep−1 ep+2

a a

ep=taep+1 ep+2ep=ta

Fig. 13 a Illustration of Claim 1; b Proof of Claim 1

(a1, . . . , al) is executed in (t ′a, tb). By definition t ′a < tb, also
we have t ′a = ep for some event ep.

We first prove that exactly one job that is not in the chain
(a1, . . . , al), call it d, executes in [t ′a, tb] and completes at tb.
Indeed, if l ′ = 1, then this follows from Proposition 8. If l ′ >

1, then any job not in the chain (a1, . . . , al) that executes in
[t ′a, tb] completes in [t ′a, tb], otherwise this job interlaceswith
b1—a contradictionwith Lemma5. Finally,we show that two
or more jobs not in the chain (a1, . . . , al) cannot complete
in [t ′a, tb]. If there are at least three such jobs, then the last
two of them form an A-configuration, which contradicts the
A-maximality of P . For exactly two, c′ and c completing in
this order, by Claim 1, c and c′ form an A-configuration at
ep+1—a contradiction since P is A-maximal. Also, observe
that for l ′ = l + 1, job b1 resumes at tb and thus b1 and d
form anA-configuration at ep+1 byClaim1—a contradiction
since P is A-maximal. Thus, let l ≥ l ′ in the reminder of the
lemma.

Now we prove that our schedule P satisfies the following
claim that we have used above (see Fig. 13a for illustration
of Claim 1):

Claim 1 Suppose that t ′a = ep is an event inP and that there
exist jobs a′, c, and d such that

(i) C(P, c) = ep+1, and C(P, d) = ep+2;
(ii) J (ξp) = {a′, c} and J (ξp+1) = {a′, d};
(iii) s(P, d) < ep;
(iv) if l ′ = l + 1, then d = b1; otherwise C(P, d) = tb.

Then jobs c and d form an A-configuration at ep+1.

Proof If ξp−1(c) < ep − ep−1, then the jobs c and d form
an A-configuration of length ep+1 − ep at ep+1—the lemma
holds. Thus,

ξp−1(c) = ep − ep−1. (23)

We now prove that in interval [ep−1, ep+2] the schedule P
is as in Fig. 13, i.e., there exists a job c1 such that

ξp−1(c1) = ep − ep−1 ∧ C(P, c1)

= ep ∧ s(P, d) < ep−1. (24)

First, we show that ξp−1(c1) > 0 for some c1 /∈ {a′, c, d}.
Otherwise, by (23) and (ii), s(P, a′) = ep since ep is an
event. Thus, J (ξp−1) = {c, d}. Now, take

ε = min
{
ξp−1(d), ξ j ′(b), �, t

′
a − h′},

where h′ is the greatest integer smaller than t ′a . Observe that
ε > 0. Let A = (a1, . . . , al) and let B = (d, b1, . . . , bl ′ =
b) be the sub-chain that starts at ep+1. Perform the (ε, d)-
exchanging of A and B in P as in Case 1 (the completion
time of c does not change in this transformationwhen d �= b1
because a′ from the τ(a′)-th block is placed in the (p−1)-st
block and d from (p−1)-st block is placed in the (τ (d)+1)-
st block) to get a contradiction. Observe that, by (iv), d = b1
for l ′ = l + 1 and thus the (ε, d)-exchanging of A and B
indeed produces schedule P ′ with total completion time that
does not exceed that of scheduleP . Also, by Lemma 4, there
is no idle time in the (p − 1)-st block of P . This implies, by
Lemma 10, that ξp−1(d) = ep − ep−1 is (p − 1)-normal,
which by arguments in Case 1 implies that the abnormality
points of P and P ′ are the same.

Second, by Lemma 5, c1 and d cannot interlace, which
implies C(P, c1) = ep. By Lemma 3, job c1 is spanning
in block p − 1. Thus, by (23) we have {c1, c} = J (ξp−1).
Finally, s(P, d) < ep−1 is due to (iii) andJ (ξp−1) = {c1, c}.
This completes the proof of (24). Equation (24) allows us to
apply Proposition 6 to c, c1, d, a = a′, and e j = ep to
conclude that c and d form an A-configuration at ep+1. This
contradicts the A-maximality of P and completes the proof
of Claim 1. ��

Let e j ′ = s(P, b). Now, let y = ∑
t≥p ξt (b1) and z =∑

t≥p ξt (al−l ′+1). First we prove that z ≤ y. This holds due
to Proposition 8 when l ′ = 1 and hence let l ≥ l ′ > 1.
If z > y, then swap a and b and then do the (ε, al−l ′+1)-
exchanging of (b1, . . . , bl ′) and (al−l ′+1, . . . , al) (note the
order of the chain, which is important) both starting at tb,
where ε = s(P, b) − s(P, a) + λ and 0 < λ < min{�, z −
y, ξ j ′(b)}. This transformation is shown in Fig. 14a. Let the
resulting schedule be P ′. The swapping increases the total
completion time by s(P, b) − s(P, a) and the (ε, al−l ′+1)-
exchanging decreases it by ((l ′ − 1) − l ′)ε—observe that
after the swapping of a and b the completion time of job a =
al does not change in the exchange. Therefore, the overall
change equals −λ and thus to get a contradiction it suffices
to prove that P ′ is feasible.

Observe that s(P, b) − s(P, a) = C(P, b1) − C(P,)
al−l ′+1. By Proposition 8, e j ′+1 is an integer. Thus, r(b) <

e j ′+1 implies r(b) ≤ e j ′+1 − 1. Moreover, s(P ′, b) ≥
e j ′+1−1. Therefore, by the definition of a sub-chain, all jobs
b2, . . . , bl ′ respect their release dates in P ′. Since z > y, we
have that s(P, b1) < t ′a and hence b1 respects its release date

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J Sched (2016) 19:701–728 719

al−l +1

b1d

P

P

b2

?

(a)

al−l +2

z

y
tbta

d

?

b1 b2

al−l +1 al−l +2

al l +1

{λ {λta=ep

tb

al−l +1

b1d

...

ta

cP

P

(b)
c

tb

al−l +1

b1d

...

ta

c

c

Fig. 14 Transformations from P to P ′ in Case 2

inP ′. Thus, z ≤ y for the reminder of the proof. We consider
the following three subcases.
Case 2a t ′a = s(P, al−l ′+1). (Schedule transformation per-
formed in this case is shown in Fig. 14b.) Then, z = 1.
Since z ≤ y, we have y = 1. If some job in J (ξp−1)

does not complete at t ′a , then this case reduces to Case 1.
Otherwise, two jobs in J (ξp−1) complete at t ′a . Thus, by
Lemma 7, for at least one job in J (ξp−1), say job c′, we
have ξt (c′) = 0, where et = s(P, d). Therefore, c′ and d
interlace if s(P, c′) < s(P, d)—a contradiction by Lemma
5, or we can swap jobs c′ and d if s(P, c′) > s(P, d). In
the latter case the resulting schedule (see Fig. 14b) reduces
the total completion time ofP by Lemma 2. This schedule is
not feasible when c′ ≺ al−l ′+1 and we restore feasibility by
applying a 0-exchanging of b and a in [e j ′+1,C(P, b)] fol-
lowed by (tb − t ′a, al−l ′+1)-exchanging of (b1, . . . , bl ′) and
(al−l ′+1, . . . , al) both starting at tb. The new schedule P ′ is
feasible since c′ ⊀ b1 for in-trees, and since, by Proposi-
tion 8, s(P ′, b) ≥ e j ′+1 − 1 ≥ r(b), which shows that all
b1, . . . , bl ′ respect their release dates in P ′. Thus, we get a
contradiction since P is optimal.
Case 2b t ′a = s(P, al−l ′+2). Since l ≥ l ′, ξp−1(al−l ′+1) =
ep−ep−1. Also, t ′a < tb implies that b1 resumes at tb = ep+1.
Thus, by Claim 1, d and b1 form an A-configuration at ep+1,
which contradicts the A-maximality of P .
Case 2c t ′a �= s(P, al−l ′+1) and t ′a �= s(P, al−l ′+2). By
definition of t ′a , we have t ′a = ta and a1 resumes at ta . Since
ta is an event of P some job, say c, completes at ep. By
Lemma 3, job c is spanning in block p − 1. If another job
completes at ep, then we get a contradiction by Lemma 8.
Hence, by Lemma 5, J (ξp−1) ⊆ {c, d, b1, a1}. Note that
z ≤ y, l ≥ l ′ and ta < tb imply that l ′ = l. By definition of
ta , job a1 is non-spanning in block p−1. By Lemma 5, d and
b1 do not interlace, which implies ξp−1(b1) = 0. Therefore,
ξp−1(d) > 0. This allows us to obtain a contradiction by
performing an analogous transformation as in Claim 1.

Observe that for the proof of Theorem 2 it is crucial to
show that P and P ′ have the same abnormality point. This
needs to be proven in Case 1, Claim 1, 5 and 5. In 5 and 5
the proof reduces to the proof for Case 1 and Claim 1. In
Claim 1 the proof also reduces to the proof for Case 1 but
the ξp−1(d) is new in definition of ε as compared to Case 1
so we provide an appropriate comment about this ξp−1(d) in
Claim 1. Finally, in Case 1 we explicitly prove that P and P ′
have the same abnormality point.

6 Alternating chains

In this section we prove that there always exists an optimal
normal schedule for P2|pmtn, in-tree, r j , p j | ∑C j . Our
proof is by contradiction. We show that an abnormality point
i �= ∞ in a maximal schedule implies that there is an alter-
nating chain, see Sect. 6.1 for its definition, in the schedule.
Each job in that chain completes at the moment which is not
i-normal. This fact allows us to either make the alternating
chain longer, which is shown in Sect. 6.3, or find an optimal
schedule with an abnormality point higher than i . Thus in
either case we get a contradiction, in the former, since the
number of jobs is finite and we cannot extend the chain ad
infinitum, in the latter since the initial schedule is maximal.

6.1 Basic definitions and properties

Given schedule (P, e, ξ), let I = { j, . . . , j ′} ⊆ {1, . . . , q −
1}. For two jobs a and a′, We say that a covers a′ in I if for
each t ∈ I , ξt (a′) > 0 implies ξt (a) = et+1 − et . Let P be a
maximal schedule of abnormality point i �= ∞. Job sequence
(d1, . . . , dl) is called an alternating chain inP if d1 ∈ Ai (P)

and d1 executes non-preemptively in [ei+1,C(P, d1)] and
additionally, unless if l = 1, the following conditions are
satisfied:

(C1) Ai (P) = {d1, d2} and τ(d1) = i + 1,
(C2) C(P, d j) < C(P, d j+1) for each j ∈ {1, . . . , l − 1}.
(C3) the job d j executes non-preemptively in the inter-

val [C(P, d j−2),C(P, d j)] for each j ∈ {2, . . . , l},
where C(P, d0) = ei+1.

If (d1, . . . , dl) (l ≥ 2) satisfies (C1), (C3) and

(C2’) C(P, d j) < C(P, d j+1) for each j ∈ {1, . . . , l − 2}
and C(P, dl−1) = C(P, dl),

then (d1, . . . , dl) is said to be almost alternating.
The following lemma excludes almost alternating chains

from maximal schedules. The lemma does not require that
the maximal schedules are A-free.

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

720 J Sched (2016) 19:701–728

Lemma 14 Let P be a maximal schedule of abnormality
point i �= ∞. There exists no almost alternating chain in P .

Proof Suppose for a contradiction that (d1, . . . , dl) is an
alternating chainwithC(P, dl−1) = C(P, dl). Let first l > 3
and letU be the set of odd indices in {3, . . . , l}. Denote by ξ

the partition ofP .We fist prove that the total length of d2 exe-
cuted in [C(P, d1),C(P, dl)], namely ξi+2(d2), is i-normal.
From the definition of alternating chain we know that there is
no idle time in this interval and only the jobs from the chain
execute in it. Hence,

ξi+2(d2) = 2(C(P, dl) − C(P, d1))

−
l∑

j=3

(C(P, d j) − C(P, d j−2))

= 2
∑

j∈U

∑

j ′≥i

ξ j ′(d j) −
l∑

j=3

∑

j ′≥i

ξ j ′(d j).

By Lemma 10,
∑i

j ′=1 ξ j ′(d j) is i-normal for each j ∈
{3, . . . , l}. Therefore, ξi+2(d2) is i-normal. This implies, by
Lemmas 10 and 11, that the three following numbers are
i-normal:

ξi (d1) + ξi (d2), ξi (d1) + ξi+1(d1), ξi (d2) + ξi+1(d1)

since ξi+1(d1) = ξi+1(d2). Therefore, ξi (d1) and ξi (d2) are
(i + 1)-normal, and since ei+1 is i-normal due to Lemma 3,
i is not the abnormality point of P—a contradiction.

Now consider l = 2. Let e be the events of P . Denote
x = ξi+1(d1) = ξi+1(d2). By assumption and by def-
inition of alternating chain, d1 and d2 complete at ei+2

and hence ξi (d1) + x = s1/2i and ξi (d2) + x = s2/2i

for some integers s1 and s2. By definition of alternating
chain, Ai (P) = {d1, d2} and hence x is not (i + 1)-normal.
Thus, x = s′/2i+1 + ε for some 0 < ε < 1/2i+1. Then,
ξi (d1) = (s1 − s′)/2i − ε and ξi (d2) = (s2 − s′)/2i − ε. By
Lemma 11, ei+1 − ei is i-normal. By Lemma 12,

ei+1 − ei = ξi (d1) + ξi (d2) = (s1 + s2 − 2s′)/2i − 2ε.

Thus, 2ε is i-normal, which implies that ε is (i + 1)-
normal—a contradiction with 0 < ε < 1/2i+1. ��
Lemma 15 Let P be a maximal schedule of abnormality
point i �= ∞. If (d1, . . . , dl) (l ≥ 1) is an alternating chain
in P , then C(P, d j) is not (i + 1)-normal for each j ∈
{1, . . . , l}.
Proof Let first 1 ≤ j ≤ min{2, l}. Then,C(P, d j) = ei+1+
1 − ξi (d j) − ∑

t<i ξt (d j). By Lemma 10, the latter sum is
i-normal. By Observations 1 and 2 and by Lemma 11, ei+1

is i-normal. However, ξi (d j) is not (i + 1)-normal because

d j ∈ Ai (P) and hence, again by Observation 1, C(P, d j) is
not (i + 1)-normal.

For j > 2, if j is even (respectively, odd), then let U be
the set of even (respectively, odd) integers in {1, . . . , j − 1}.
Let u = 1 if j is odd and let u = 2 if j is even. Then,

C(P, d j) = ei+1 + ∑
j ′∈U

(
1 − ξi (d j ′) − ∑

t<i ξt (d j ′)
)

= ei+1 − ξi (du) + ∑
j ′∈U

(
1 − ∑

t<i ξt (d j ′)
)
.

Again, by Lemma 10, ξi (du) is the only term in the above
expression that is not (i + 1)-normal. Thus, C(P, d j) is not
(i + 1)-normal. ��

6.2 Transformations using alternating chains

Consider a schedule P of abnormality point i and an alter-
nating chain (d1, . . . , dl) (l > 1) and J (ξτ(dl)) = {x, y, dl}.
Let u = 2 if l is odd, and u = 1 if l is even. Let ε > 0 be the
largest ε such that

ε ≤ α = ξi (du) ∧ ε ≤ β

= 1

2
min

{
eτ(d j)+1 − eτ(d j)

∣
∣ j ∈ U

} ∧ ε ≤ γ

= min
{
eτ(d j−1) − r(d j)

∣
∣ j ∈ U \ {1, 2}} , (25)

whereU is the set of the indices in {1, . . . , l} having the same
parity as l, and

ε ≤ min{ξτ(dl)(x), ξτ(dl)(y)}. (26)

We define a transformation of ε-pushing of dl that pro-
duces a scheduleP ′ as follows (seeFig. 15 for an illustration):

– the schedules P and P ′ are identical in time intervals
[0, e j] and [C(P, dl),∞).

– To obtain the part of P ′ in [ei , ei+1], we increase (with
respect to P) the amount of d3−u by ε and decrease the
amount of du by ε. Then, a part of job d3−u executes in
[ei+1,C(P, d3−u) − ε] and a part of job du executes in
[ei+1,C(P, du)+ ε]. This in particular characterizes the
execution of d1 and d2 in P ′.

– For each j ∈ U \ {1, 2}, the part of d j that exe-
cutes in [C(P, d j−2),C(P, d j)] in P is executed in
[C(P, d j−2) − ε,C(P, d j) − ε] in P ′. In this way we
ensure that each job d j , j ∈ U , completes ε earlier in P ′
than in P .

– For each j ∈ {3, . . . , l} \ U , the part of d j that exe-
cutes in [C(P, d j−2),C(P, d j)] in P is executed in
[C(P, d j−2) + ε,C(P, d j) + ε] in P ′. In this way we
ensure that each job d j , j /∈ U , completes ε later in P ′
than in P .

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J Sched (2016) 19:701–728 721

+ε

...

...

P

P

ei

d2 d1

ei+1

d2

d3

d4

dl

dl−1

dl−2

{ ≥ 2β { {{≥ 2β
≥ 2β

≥ 2β

y x

...

...

ei

d2 d1

ei+1

d2

d3

d4

dl

dl−1

dl−2

y x

{ε

+ε +ε

−ε −ε −ε −ε

y

{ε

≥ α

(a)

P

P

ei

d2 d1

ei+1

d2

d3

d4

dl−1

{≥
α

(b)
... y x

... dldl−2

+ε

ei ei+1

d4

+ε +ε

−ε −ε −ε −ε

{ε

... dl−1 y x

... dldl−2 y

d2 d1

d2

d3

≥
2β

{≥
2β

{≥
2β

{≥ 2β

{

ε

Fig. 15 ε-Pushing of dl when: a l is odd; b l is even

– Finally, the two jobs x and y are executed in the remaining
free space in [C(P ′, dl−1),C(P, dl)]ononemachine and
in [C(P ′, dl),C(P, dl)] on the other machine.

The transformation of ε-pushing of dl will be a key trans-
formation used to extend an alternating chain of a maximal
schedule P in the proof of Theorem 3—the main result of
the next section. The extension, as alluded earlier, requires
that P is A-free. Actually, it suffices that P is A-free in the
interval that starts with the completion of dl , the last job of
the chain. However, since the ε-pushing of dl may change P
itself we need to prove that the resulting schedule is A-free
in the interval that starts with the completion of dl , which
the transformation may have changed, in order to unable fur-
ther extensions of the chain. Thus, we need the following
lemma.

Lemma 16 Suppose that (d1, . . . , dl) (where l > 1) is an
alternating chain in a maximal schedule P that is A-free in
[C(P, dl),∞), and J (ξτ(dl)) = {x, y, dl}. If ε is selected
as in (25) and (26), then the schedule P ′ obtained from P
by ε-pushing of dl is maximal, A-free in [C(P ′, dl),∞), and
(d1, . . . , dl) is an alternating chain in P ′.

Proof An ε-pushing of dl results in a feasible schedule P ′
(note that at most one of d1 and d2 can have release date in
[ei , ei+1]) with the total completion time not exceeding that
ofP . Thus,P ′ is optimal. Note that an odd l would results in
P ′ having smaller total completion time than that ofP . Thus,
l is even. If the ε makes at least one of the tree inequalities in
(25) an equality, then the i-th block becomes i-normal and
we get a contradiction in case of a maximal P . On the other
hand, if an εmakes all three inequalities in (25) holding strict,
then (d1, . . . , dl), l > 1, is an alternating chain in P ′.

We prove, by contradiction, that the schedule P ′ is A-free
in [C(P ′, dl),∞). Suppose that some jobs a and b form an
A-configuration at a point t ≥ C(P ′, dl) in P ′. Note that t ≥
C(P, dl) is not possible because P andP ′ are identical from
C(P, dl) on andP is A-free in [C(P, dl),∞) by assumption.
Thus, t = C(P ′, dl). Therefore, a = dl and b ∈ {x, y}.

Let λ ∈ [0,C(P ′, b)−C(P ′, dl)] be a maximal real num-
ber such that for each ε′ ∈ [0, λ) there exists a feasible
schedule Pε′ such that (d1, . . . , dl) is an alternating chain
in Pε′ and ε′-pushing of dl in Pε′ results in P . Since l is
even, the total completion time of Pε′ is the same as the
total completion time of P ′ for each ε′ ∈ [0, λ). Informally
speaking,Pε′ is obtained by performing amodification that is
‘opposite’ to pushing of dl . By definition of A-configuration,
dl is independent of any job that executes in the inter-
val (C(P ′, dl),C(P ′, b)) in P ′. Thus, the maximality of λ

implies that taking ε′ = λ would result in a schedule Pε′ in
which one of the following holds:

– Job sequence (d1, . . . , dl) is not an alternating chain in
Pε′ . Then we have two possibilities. The first possibil-
ity is that t = C(Pε′ , d j) = C(Pε′ , d j+1) for some
j ∈ {1, . . . , l − 2}. Then, (d1, . . . , d j+1) is an almost
alternating chain—a contradiction with Lemma 14. The
second possibility is that either d1 or d2 is not present in
the i-th block of Pε′ . Then, the abnormality point of Pε′
is greater than i—a contradiction with the maximality of
P .

– C(Pε′ , dl) = C(P, b). Thiswould imply thatC(Pε′ , b)<
C(P, b) and this is not possible due to the optimality of
P .

– s(Pε′ , d j) = r(d j) for some j ∈ {3, . . . , l − 1}. In this
case a contradiction follows from Lemma 15.

– s(Pε′ , b) = r(b). Since C(Pε′ , dl−1) = s(Pε′ , b), we
again obtain a contradiction with Lemma 15.

Therefore, the lemma is proved. ��

Finally, we observe that the ε-pushing of dl can readily
be extended to the case where one of the jobs x or y starts
in (C(P, dl−1),C(P, dl)) but neither of them completes in
that interval.

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

722 J Sched (2016) 19:701–728

6.3 Extending an alternating chain

We first prove that a single-job alternating chain is present in
each maximal (and thus in A-maximal) schedule of abnor-
mality point i �= ∞.

Proposition 10 If P is a maximal schedule of abnormality
point i �= ∞, then a job in Ai (P) with minimum completion
time forms an alternating chain in P .

Proof Suppose that schedule (P, e, ξ) is maximal. Accord-
ing to Observations 1 and 2 and Lemma 11, ei+1 is i-normal.
By Lemma 12, we have |Ai (P)| = 2. Let Ai (P) = {b, c},
where C(P, b) ≤ C(P, c). Denote I = {i + 1, . . . , τ (b)}.
Note that, by Lemma 10, I �= ∅.

We prove the lemma by contradiction. More precisely,
the assumption that b does not form an alternating chain inP
allows us to conclude thatP is not maximal. Wemay assume
without loss of generality that c covers b in I . Indeed, if this
is not the case, then we transform P as follows. Let t ∈ I
be such that ξt (b) > 0 and job c is non-spanning in block
t . Take ε = min{ξt (b), ξi (c), et+1 − et − ξt (c)}. Note that
ε > 0 and, by Lemmas 4 and 7, ξi (c) = ei+1 − ei − ξi (b).
The schedule obtained by a transformation

(e′, ξ ′) = 〈
e, ξ , ε, (t

b� i
c� t)

〉

has the same total completion time and the same events as
P and either: ξ ′

i (b) = ei+1 − ei (which happens when ε =
ξi (c)); or ξ ′

t (b) = 0 (which happens when ε = ξt (b)); or
ξ ′
t (c) = et+1 − et (which happens when ε = et+1 − et −

ξt (c)). In the former case we would obtain a schedule with
abnormality point greater than i , which is not possible due to
the maximality of P . After repeating this transformation as
long as c does not cover b in I we obtain the desired schedule.

Nowwe prove that τ(b) = i +1. Suppose for a contradic-
tion that τ(b) > i + 1. Thus, since c covers b in I , and eτ(b)

is an event of P , we have ξτ(b)−1(b) = ξτ(b)−1(c) = 0 and
there exists a ∈ J \ {b, c} such that C(P, a) = eτ(b). Find
themaximum j , j < τ(b)−1, such that ξ j (b) �= 0. Note that
j ≥ i . Since job c covers b in I , c is spanning in block j . By
Lemma 7, a /∈ J (ξ j). Lemma 9 applied to a = b, a′ = a,
j and j ′ = τ(b) gives τ(b) > j ′ = τ(b)—a contradiction.
This proves that (b) is an alternating chain in P . ��
Proposition 11 Let (d1, . . . , dl) be an alternating chain in
a maximal schedule P . Then, there is no idle time in block
τ(dl−1) + 1 of P .

Proof Let e be the q events ofP and let ξ be its partition. Let
i be the abnormality point of P . Since P has an alternating
chain, i �= ∞. Suppose for a contradiction that there is idle
time in the (τ (dl−1) + 1)-st block of P . By Lemma 3, at
most one job completes in the (τ (dl−1)+1)-st block ofP . By

Lemma 4, no job that does not complete in the (τ (dl−1)+1)-
st block can be present in this block. Thus, dl is the only job
in block (τ (dl−1) + 1) and the total length of the idle time
is x = eτ(dl−1)+2 − eτ(dl−1)+1. Construct a schedule P ′ by
performing an ε-pushing of dl in P with

ε = min {α, β, γ, x/2} .

Denote the resulting schedule byP ′. To complete the proof
we observe that C(P ′, d j) = r(a) for some job a and some
j ∈ {3, . . . , l} (when ε = γ) or C(P ′, d j−1) = C(P ′, d j)

for some j ∈ {2, . . . , l} (when ε ∈ {β, x/2}) or there is no
d j in the i-th block of P ′ for some j ∈ {1, 2} (when ε = α).
Therefore, the choice of ε always results in P ′ that has all
blocks j , j ∈ {1, . . . , i}, being j-normal—a contradiction
with the lemma assumption that P is maximal. ��

The next theorem states that if a maximal scheduleP with
an alternating chain (d1, . . . , dl) has no A-configuration at
t ≥ C(P, dl−1), then there exists another maximal schedule
P ′ with longer alternating chain (d1, . . . , dl , dl+1) with no
A-configuration at t ≥ C(P ′, dl).

Theorem 3 Let P be a maximal schedule of abnormality
point i �= ∞. If (d1, . . . , dl), l ≥ 1, is an alternating chain
in P and P is A-free in [C(P, dl−1),∞), where C(P, d0) is
the (i+1)-st event ofP , then there exists a job dl+1 such that
(d1, . . . , dl , dl+1) is an alternating chain in some maximal
schedule P ′ that is A-free in [C(P ′, dl),∞).

We leave the proof of the theorem to the end of the sec-
tion. Theorem 2 guarantees that a maximal A-free schedule
exists for in-trees. If this schedule is not normal, thenwe have
a single-job alternating chain in it by Proposition 10. The-
orem 3 guarantees that the alternating chain can be always
extended by one job. However, the process of extending the
alternating chainmay result in a schedule which is not A-free
in general—the source of this lies in Lemma 16. Luckily, we
do not need the resulting schedule to be A-free—it suffices
that it has no A-configuration at a completion of dl , the last
job from the alternating chain, or later—see the assumptions
of Theorem 3. The above gives a sketch of the proof of the
following theorem.

Theorem 4 There exists a normal optimal schedule for each
instance of problem P2|pmtn, in-tree, r j , p j | ∑C j .

Proof Take a maximal schedule P and suppose for a contra-
diction that P is not normal. Let i �= ∞ be its abnormality
point. By Proposition 10, Ai (P) = {d1, d2}, and (d1) is an
alternating chain in P . Next, by Theorem 2, there is a maxi-
mal schedule P1 with its abnormality point i and alternating
chain (d1) which is also A-free. Thus, in particular, P1 is A-
free in [x,∞), where x is the (i + 1)-st event of P1. Finally,
by Theorem 3 and a simple inductive argument, there exists

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J Sched (2016) 19:701–728 723

a schedule Pn+1 with an alternating chain of l = n + 1 jobs,
contradicting the fact that the number of jobs equals n. ��
Corollary 1 For the given set of n jobs, there exists an opti-
mal schedule for P2|pmtn, in-tree, r j , p j | ∑C j such that
each job start, preemption, resumption, or completion occurs
at a time point that is a multiple of 1/22n.

6.3.1 Proof of Theorem 3

By Lemma 12, |Ai (P)| = 2. If l = 1, then take dl+1 to be
the job in Ai (P) \ {d1}. If l > 1, then by Proposition 11,
there is no idle time in (τ (dl−1) + 1)-st block of P . Thus,
|J (ξτ(dl−1)+1)| > 1. Take dl+1 to be a job in J (ξτ(dl−1)+1) \
{dl} that starts or resumes at C(P, dl−1).

Wewill perform several schedulemodifications leading to
some maximal schedule P ′ that is A-free in [C(P ′, dl),∞)

and has an alternating chain (d1, . . . , dl+1). We point out
that some steps of the proof redefine the job dl+1 selected
above. By assumption, d1 ∈ Ai (P), and by the choice of d2,
d2 ∈ Ai (P). Thus, (C1) follows for (d1, . . . , dl+1).

We now prove that

C(P, dl+1) > C(P, dl). (27)

Note that if l = 1, then (27) follows from Proposition 10
and from the choice of d1 and d2. Thus, l ≥ 2 from now on.

We begin by proving, by contradiction, that dl+1 exe-
cutes non-preemptively in [C(P, dl−1),C(P, dl)]. First, we
observe that no job, except for dl , completes in the interval
(C(P, dl−1),C(P, dl)] for otherwise jobdl+1 must complete
in (C(P, dl−1),C(P, dl)] and thus jobs dl−1 and dl+1 form
an A-configuration in P—a contradiction since P is A-free
in [C(P, dl−1),∞).

Second, |J \{dl , dl+1}| ≤ 1, where J is the set of jobs exe-
cuted in (C(P, dl−1),C(P, dl)]. Otherwise, there is a pair
of jobs in {x, y, dl}, where {x, y} ⊆ J \ {dl , dl+1}, that
interlace—contradiction by Lemma 5 and by the fact that
dl is preempted in (C(P, dl−1),C(P, dl)]. Indeed, this pair
of job consists of a job z ∈ {x, y, dl}with minimum comple-
tion time among those three jobs, and a job in {x, y, dl} \ {z}
that is non-spanning in block τ(z).

Finally, we show that without loss of generality J =
{dl , dl+1}. Suppose otherwise, i.e., J = {x, dl , dl+1}. The
ε-pushing of dl with

ε = min
{
α, β, γ,C(P, dl) − C(P, dl−1)

−ξτ(dl−1)+1(dl+1), ξτ(dl−1)+1(dl+1)
}

results in a schedule P ′ that either has all blocks j ,
j ∈ {1, . . . , i}, being j-normal (this happens when ε ∈
{α, β, γ })—a contradiction with the lemma assumption that
P is maximal; or it has dl and dl+1 as the only two

(a)
dl

dl−1 dl+1 x
P

P
dl

dl−1 dl+1

x

(b)

P

P

dl

dl−1 dl+1

a

... dl+1

{ε

dl

dl−1 dl+1

a

... dl+1

{ε

{ε

r(a)

Fig. 16 Schedule transformations in the proof of Theorem 3

jobs executed in interval [C(P ′, dl−1),C(P ′, dl)]; or it
has dl and x as the only two jobs executed in interval
[C(P ′, dl−1),C(P ′, dl)]. (See Fig. 16a for this transforma-
tion when ε = C(P, dl)−C(P, dl−1)−ξτ(dl−1)+1(dl+1).) In
the latter case, i.e., when ε = ξτ(dl−1)+1(dl+1), we take x as
dl+1 fromnowon. The scheduleP ′ ismaximal, byLemma16
it is A-free in [C(P, dl),∞), and (d1, . . . , dl) is an alternat-
ing chain in P ′. Thus, without loss of generality we can take
P as being P ′ from now on. Then, we have that dl+1 exe-
cutes non-preemptively in [C(P, dl−1),C(P, dl)] and, by
Lemma 14, (27) holds. Thus, (C2) holds for (d1, . . . , dl+1)

in P .
We argue that there is no idle time in the (τ (dl) + 1)-st

block of P . Our argument is by contradiction. If there is idle
time in the block, then by (27), dl+1 is the only job there.
Thus, dl+1 completes at eτ(dl)+2 or there is a release date
pinned job a that starts at eτ(dl)+2, i.e., r(a) = eτ(dl)+2. In
the former case we have an alternating chain (d1, . . . , dl+1)

with idle time in block τ(dl) + 1 which contradicts Proposi-
tion 11 and completes the proof. In the latter case we use an
extended ε-pushing of dl+1 (the operation of the ε-pushing
can be generalized in a straightforward way to the case when
dl+1 is preempted in interval [C(P, dl),C(P, dl+1)], see also
Fig. 16b—we omit a formal definition of the extended push-
ing) with

ε = min {α, β, γ, r(a) − C(P, dl)} ,

which results in a schedule P ′ that has all blocks j , j ∈
{1, . . . , i}, being j-normal—a contradiction with the lemma
assumption that P is maximal. (See Fig. 16b for an illus-
tration of this schedule transformation when ε = r(a) −
C(P, dl).) Therefore, without loss of generality we may
assume there is no idle time block τ(dl) + 1, and thus some
job a �= dl+1 starts or resumes at eτ(dl)+1.

We next describe a finite iterative process that starts with
P , produces a schedule Pu in its u-th iteration, u ≥ 1, and
stops after T ≥ 1 iterations. We then show that if T = 1,

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

724 J Sched (2016) 19:701–728

Fig. 17 The transformation
from Pu−1 to P ′

u

dl−1

dld2 d3

...

... ...

...Pu−1

Pu

d1

ei

d2 dl+1

au−1

au−1

dl+1

dl−1

dld2 d3

...

... ...

...

d1

d2 dl+1

dl+1

{ε {ε{ε

{

ε

−ε

−ε−ε

+ε

+ε +ε

eu−1
ku−1

au−1

au−1

then the schedule P1 satisfies the conditions of the lemma.
However, if T > 1, then we prove that there is a pair of
jobs x and y that allows the iterative process to construct
maximal schedules P1, ..., PT−1 each with alternating chain
(d1, . . . , dl), yet at the same time the pair prevents dl+1 from
satisfying (C3) inP1,…,PT−1. However, an exit after T > 1
iterations is only possible through a schedule PT such that
the total completion time of PT is smaller than that of P or
both schedules have the same total completion times but the
abnormality point of PT is greater than i , which contradicts
the maximality of P . Therefore the iterative process must
exit after exactly one iteration producing the desired schedule
P1—more than one iteration leads to a contradiction.

In order to describe the iterative process formally, we
introduce a key definition and related notation. We say that
a schedule (Pu, ξ

u, eu) with τu = τPu is dl+1-preempted if
there exists a pair of jobs x and y such that the following
conditions are satisfied:

(I1) Pu is maximal, (d1, . . . , dl) is an alternating chain in
Pu , i is the abnormality point ofPu , and dl and dl+1 are
theonly two jobs executed in [C(Pu, dl−1),C(Pu, dl)],
and C(Pu, dl+1) > C(Pu, dl);

(I2) Some job au starts or resumes at C(Pu, dl);
(I3) dl+1 covers each job in {a1, . . . , au} in Iu = {τu(dl) +

1, . . . , ku}, where ku = min{τu(au), τu(dl+1)};
(I4) C(Pu, au) > C(Pu, dl+1);
(I5) There exists ju < τu(dl+1) such that J (ξuju) = {x, y}

and min{r(x), r(y)} > C(Pu, dl).

In the followingwe prove that all schedulesP1, . . . ,PT−1

are dl+1-preempted when T > 1. Let initially u = 1, and the
iterative process is as follows. (P0 refers to P .)

Step 1: Moving au−1 from block τu−1(dl)+1 to block ku−1.
If u = 1, then let P ′

u = P and go to Step 2. If u > 1,
then we construct P ′

u by an extended ε-pushing of dl+1 in
Pu−1 and moving a piece of au−1 of length ε from block

τu−1(dl) + 1 to block ku−1, where

ε = min
{
α, β, γ, �C(Pu−1, dl)� − C(Pu−1, dl),

ξu−1
τu−1(dl)+1(au−1), e

u−1
ku−1+1 − eu−1

ku−1
− ξu−1

ku−1
(au−1)

}
.

Denote by e′ and ξ ′ the events and the partition of P ′
u ,

respectively. Let for brevity τP ′
u

= τ ′. Figure 17 depicts
the transition from Pu−1 to P ′

u for u > 1. Note that P ′
u and

Pu−1 have the same total completion times.
If ε ∈ {α, β, γ, �C(P ′

u, dl)�−C(P ′
u, dl)}, then the abnor-

mality point of P ′
u is greater than i and, having the required

contradiction, we stop the iterative process with T = u.
For the two remaining values we have that the number of

blocks in [C(P ′
u, dl),C(P ′

u, dl+1)] in P ′
u is one less than the

number of blocks in [C(Pu−1, dl),C(Pu−1, dl+1)] in Pu−1.
(We give an appropriate argument at the end of the proof of
the lemma.)

Also, if ε = eu−1
ku−1+1 − eu−1

ku−1
− ξu−1

ku−1
(au−1), then the

total completion time of P ′
u is smaller than the total com-

pletion time of Pu−1 provided that (ξu−1
ku−1

(au−1) = 0 and

ξu−1
ku−1−1(dl+1) < eu−1

ku−1
− eu−1

ku−1−1) because dl+1 completes in
P ′
u strictly prior to eτu(dl+1) = C(Pu, dl+1)−ε. Then,we stop

the iterative process with T = u. Otherwise, set au := au−1

and go to Step 2.
If ε = ξu−1

τu−1(dl)+1(au−1), then there is a job au that starts
or resumes at C(P ′

u, dl). Go to Step 2.

Step 2: Making dl+1 cover au .
Denote for brevity τ ′ = τP ′

u
and let e′ and ξ ′ be the events

and the partition of P ′
u , respectively. If dl+1 covers au in

I ′
u = {τ ′(dl) + 1, . . . ,min{τ ′(dl+1), τ

′(au)}},

then set Pu = P ′
u and go to Step 3. Otherwise we obtain

Pu from P ′
u as follows. Find t ∈ I ′

u such that ξ ′
t (au) > 0

and ξ ′
t (dl+1) < e′

t+1 − e′
t . By Lemma 5, t < τ ′(au), and by

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J Sched (2016) 19:701–728 725

Lemma 3, t < τ ′(dl+1). Let

ε′ = min
{
e′
τ ′(dl)+1 − r(au) − ξ ′

τ ′(dl)(au),

ξ ′
t (au), e

′
t+1 − e′

t − ξ ′
t (dl+1),

(e′
τ ′(dl)+1 − e′

τ ′(dl))/2 − ξ ′
τ ′(dl)(au)

}
.

We construct Pu with events eu and partition ξu , where

(eu, ξu) = 〈
e′, ξ ′, ε′, (t au� τ ′(dl)

dl+1� t)
〉
,

and then:

• If ε′ ∈ {e′
τ ′(dl)+1 − r(au) − ξ ′

τ ′(dl)(au), (e
′
τ ′(dl)+1 −

e′
τ ′(dl))/2 − ξ ′

τ ′(dl)(au)}, then we do ε′′-pushing of dl in
P ′
u with

ε′′ = min
{
α, β, γ, ε′}

to get a schedule Pu that has all blocks j , j ∈ {1, . . . , i},
being j-normal—in such case we stop the iterative
process with T = u; (This ε′′-pushing is shown in
Fig. 16a with x = au and ε′ = ε′′.)

• If ε′ = ξ ′
t (au), then ξut (au) = 0, i.e., au is no longer in

block t as required;
• If ε′ = e′

t+1 − e′
t − ξ ′

t (dl+1), then ξut (dl+1) = eut+1 − eut
as required.

If dl+1 does not cover au in Iu and ε′ > 0, then repeat
Step 2 for Pu . Thus, either in the resulting schedule Pu , dl+1

covers au in Iu , in which case go to Step 3, or dl+1 does not
cover au in Iu and ε′ = 0 (then ξuτu(dl)

(au) = ξuτu(dl)
(dl+1)

or euτu(dl)+1 = r(au)), in which case the abnormality point of
Pu is greater than i and, having the required contradiction,
we stop the iterative process with T = u.

Step 3: Pushing au out of [C(Pu, dl−1),C(Pu, dl)]. If a part
of au executes in [C(Pu, dl−1),C(Pu, dl)] in Pu , then per-
form an ε′′-pushing of dl in Pu as in Fig. 16a with x = au ,
where

ε′′ = min
{
α, β, γ, �C(Pu, dl)� − C(Pu, dl), ξ

u
τu(dl)

(au)
}

.

If ε′′ = min {α, β, γ, �C(Pu, dl)� − C(Pu, dl)}, then the
abnormality point of the resulting schedule is greater than i
and, having the required contradiction, we stop the iterative
process with T = u. If (d1, . . . , dl+1) is an alternating chain
in Pu , then also stop with T = u. Otherwise, go to Step 4.

Step 4: Moving to the next iteration. Set u := u + 1 and
return to Step 1.

We now briefly sketch the reminder of the proof. For the
time being let us assume that the iteration process ends after

T ≥ 1 iterations, and that ε > 0 in Step 1 for u > 1. We
prove these two assumptions at the end of the proof. In the
following P ′

u , P ′′
u , and Pu refer to the schedules obtained at

the end of Steps 1, 2 and 3, respectively, u ≥ 1.
Let u = 1. Note that P ′

1 = P . Then either dl+1 executes
without preemption in [C(P ′′

1 , dl),C(P ′′
1 , dl+1)] or not. In

the former case, Step 3 ensures that dl+1 executes in P1

without preemption in [C(P1, dl−1),C(P1, dl+1)]. The lat-
ter implies that (C3) holds for P1 and by Claim 4 below
that P1 is A-free, which proves the lemma. We then have
T = 1. If dl+1 is preempted in [C(P ′′

1 , dl),C(P ′′
1 , dl+1)],

then T > 1 and it suffices to show that in this case we get
a contradiction. To that end we show that, if T > 1, then
P1 is dl+1-preempted (see Claims 2, 3, and 5 below), and if
Pu−1 is dl+1-preempted, then Pu is dl+1-preempted as well,
u ∈ {2, . . . , T − 1} (see Claims 2, 3, and 6 below). This
process of generating dl+1-preempted schedules cannot con-
tinue ad infinitum since the process exits after T iterations.
However, any exit schedule PT certifies that P is not maxi-
mal which gives the required contradiction.

We now proceed with details. Note that, for each u ∈
{1, . . . , T }, (C1) and (C2) hold for (d1, . . . , dl+1) in Pu and

ξuτu(dl)(au) = 0 ∧ ξuτu(dl)+1(au) > 0, (28)

and that (I1), (I2) and (I3) follow directly from the definition
of the iterative process above:

Claim 2 Let T > 1. If u = 1, or u ∈ {2, . . . , T − 1} and
Pu−1 is dl+1-preempted, then Pu satisfies conditions (I1),
(I2) and (I3).

Proof Note that, by construction, the total completion times
and abnormality points of the schedulesP,P1, . . . ,PT−1 are
the same.Thanks toStep3 and the fact thatu < T ,dl anddl+1

are the only two jobs executed in [C(Pu, dl−1),C(Pu, dl)]
for each u ∈ {1, . . . , T − 1}. Finally, by Lemma 14, we
have C(Pu, dl+1) > C(Pu, dl) for u = 1, and by (I5) for
schedule Pu−1 we have C(Pu−1, dl) < min{r(x), r(y)} <

C(Pu−1, dl+1) for u > 1. By construction, C(Pu, dl) <

�C(Pu−1, dl)� and ju < τu(dl+1) such thatJ (ξuju) = {x, y}.
Thus, C(Pu, dl) < min{r(x), r(y)} < C(Pu, dl+1). There-
fore, Pu satisfies (I1).

By Proposition 11, there is no idle time in block τP (dl)+1
in P . Thus the choice of a1 ensures that it starts or resumes
at C(P1, dl) for u = 1. For u > 1, the job au always exists
because there is no idle time in block τu(dl) + 1 in Pu . This
follows from the fact that otherwise, by construction, there
would be idle time in [C(Pu−1, dl),C(Pu−1, dl+1)] inPu−1,
which, since (I3) and (I4) hold for Pu−1, implies that au−1

can be completed earlier in Pu−1, which contradicts its opti-
mality. Hence, Pu satisfies (I2).

Finally, Steps 2 and 3 and u < T ensure that (I3) holds
for Pu . ��

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

726 J Sched (2016) 19:701–728

Claim 3 Let T > 1. If u = 1, or u ∈ {2, . . . , T − 1} and
Pu−1 is dl+1-preempted, then Pu satisfies condition (I4).

Proof It suffices to argue that

ku < τu(au). (29)

Denote for brevity k = ku . Suppose for a contradiction that
k = τu(au). By Lemma 3, ξuk (au) = euk+1 − euk . By Claim 2,
(I3) holds forPu . Thus,dl+1 coversau in Iu and, byLemma5,
ξuk (dl+1) = euk+1 − euk . Hence, there exists a

′ ∈ J such that
C(Pu, a′) = euk because euk is an event in Pu .

If a′ �= dl , then τu(dl) < k and ξuk−1(au) = 0 because,
again, dl+1 covers au in Iu . Then, let j < k − 1 be such that
ξuj (au) > 0 and ξuj ′(au) = 0 for each j ′ ∈ { j+1, . . . , k−1}.
By (28) such a j exists. By Lemma 7 and the fact that dl+1

covers au in Iu , ξuj (au) = ξuj (dl+1) = euj+1 − euj which
implies ξuj (a

′) = 0. Lemma 9 applied to a = au , a′, j and
j ′ = k, leads to a contradiction.
It remains to consider the case when a′ = dl . We have

that u > 1 because otherwise the jobs dl and a1 form an
A-configuration inP—a contradiction sinceP is A-free. We
have

C(Pu−1, au−1) > C(Pu−1, dl+1)

≥ C(Pu, dl+1) ≥ C(Pu, au). (30)

The first inequality follows from (I4) for Pu−1, which
is dl+1-preempted; the second inequality follows by con-
struction of Pu , while the last one holds by assumption that
k = τu(au). Moreover, the construction ensures that the
inequality C(Pu, dl+1) ≥ C(Pu, au) implies

C(Pu−1, dl+1) ≥ C(Pu−1, au). (31)

Thus, by (30), we have C(Pu−1, au−1) > C(Pu−1, au).
Therefore, (31) and (I2), (I3) forPu−1 imply that au and au−1

interlace in Pu−1. Finally, by (I1) applied to Pu−1, Pu−1 is
optimal and hencewe arrive at a contradictionwith Lemma5.
Hence, (29) follows, and the proof of the lemma is completed.

��
Claim 4 If the job dl+1 executes with no preemption in inter-
val [C(P1, dl−1),C(P1, dl+1)] in P1, then P1 is A-free in
[C(P1, dl),∞).

Proof In view of Lemma 16, it suffices to prove that P ′′
1 at

the end of Step 2 is A-free in [C(P ′, dl),∞), if the step is not
vacuous. Let τ(a1) ≡ τP ′′

1
and k = min{τ(a1), τ (dl+1)} for

convenience. Let e′′ and ξ ′′ be the events and the partition of
P ′′
1 , respectively.We start with an observation concerning the

construction of P ′′
1 , namely, the sequence of events, that is

the start and completion times of jobs, is the same inP = P ′
1

and P ′′
1 . More precisely,

(B1) J (ξ j) = J (ξ ′′
j) for j ∈ {1, . . . , τ (dl) − 1} and j ≥

k + 1;
(B2) J (ξτP (dl)) = {dl , dl+1} andJ (ξ ′′

τ(dl)
) = {dl , dl+1, a1};

(B3) ξ ′′
j (x) = ξ j (x) for x /∈ {a1, dl+1}, ξ ′′

j (a1) ≤ ξ j (a1),
ξ ′′
j (dl+1) ≥ ξ j (dl+1), and ξ ′′

j (a1) + ξ ′′
j (dl+1) =

ξ j (a1) + ξ j (dl+1) for each j ∈ {τ(dl) + 1, . . . , k}.

Suppose for a contradiction that scheduleP ′′
1 is not A-free

in interval [C(P ′′
1 , dl),∞). Then, by (B1)–(B3) and since the

schedule P is A-free in [C(P, dl−1),∞), a = a1 must be
one of the two jobs that form an A-configuration in P ′′

1 .
Let a and a job x form an A-configuration at e

′′
τ(a) in

P ′′
1 . By definition of A-configuration, x is not preempted in

(e′′
j , e

′′
τ(a)] for some j < τ(a) inP ′′

1 and ξ ′′
j−1(x) < e′′

j−1−e′′
j .

By (B2), τ(dl) + 1 ≤ j . Thus, τ(dl) + 1 ≤ j ≤ k for other-
wise, by (B1), a and x or form an A-configuration in P—a
contradiction. Moreover, there is a block t ∈ { j, . . . , k} in P
with {a, x} ⊆ J (ξt) for otherwise again a and x form an A-
configuration in P—a contradiction. Therefore, if x = dl+1,
then ξt (a) > 0 and ξt (dl+1) = et+1 − et in P and it
remains so in P ′′

1 which follows from the transformation in
Step 1. Thus, a and dl+1 do not form an A-configuration
in P ′′

1 which contradicts our assumption that x = dl+1.
If x �= dl+1, then ξt (dl+1) < et+1 − et and hence a job
a′ ∈ {a, x} with ξτP (dl+1)(dl+1) < eτP (dl+1)+1 − eτP (dl+1)

and dl+1 interlace in P when τ(a) > τ(dl+1) = k—a
contradiction with Lemma 5. Thus it remains to consider
τ(a) ≤ τ(dl+1). By Step 3, no preemption of dl+1 in
[C(P1, dl−1),C(P1, dl+1)] in P1 implies no preemption of
dl+1 in [C(P ′′

1 , dl),C(P ′′
1 , dl+1)] in P ′′

1 . Therefore, the jobs
a and x interlace in P ′′

1 if τ(dl) ≥ τ(a)—a contradiction by
Lemma 5.

Now, suppose that a and a job x such that a completes at
e′′
τ(x) form anA-configuration inP ′′

1 . Since dl+1 covers a in I ′
1

in P ′′
1 , we have x �= dl+1. By definition of A-configuration,

a is not preempted in (e′′
j , e

′′
τ(x)] for some j ≤ τ(a) in P ′′

1
and ξ ′′

j−1(a) < e′′
j−1 − e′′

j . Also, τ(dl) + 1 ≤ j ≤ k for oth-
erwise, by (B1), a and x form an A-configuration in P—a
contradiction. Moreover, there is a block t ∈ { j, . . . , k − 1}
in P with {a, x} ⊆ J (ξt) for otherwise again a and x
form an A-configuration in P—a contradiction. Therefore,
{dl+1, x} ⊆ J (ξ ′′

t), and a and x interlace in P ′′
1—a contra-

diction by Lemma 5. ��
Claim 5 If T = 1, then P1 is maximal, A-free in interval
[C(P, dl),∞) and (d1, . . . , dl+1) is an alternating chain in
P1. If T > 1, then P1 satisfies condition (I5).

Proof If T = 1, then by themaximality ofP we have thatP1

is maximal and (d1, . . . , dl+1) is an alternating chain in P1.
By Claim 4,P1 is (A, [C(P, dl),∞))-free, which completes
the proof in this case.

Suppose now that T > 1. Let for brevity k = k1 and τ1 =
τP1 in the proof of Claim 5. By Claim 3, P1 satisfies (I4).

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J Sched (2016) 19:701–728 727

Hence, k = τ1(dl+1), and ξ1k (dl+1) = e1k+1−e1k byLemma3.
Note that ξ1j (dl+1) = e1j+1 − e1j for each j ∈ {τ1(dl) +
1, . . . , k} is not possible because then (d1, . . . , dl+1) is an
alternating chain inP1 and hence the iterative process would
stop with T = 1 in Step 3. We show that otherwise we can
find the desired jobs x and y in (I5). The key to finding the
jobs is the existence of a block j ∈ {τ1(d1) + 1, . . . , k − 1}
such that ξ1j (dl+1) < e1j+1 − e1j . Take the smallest such j .

Let {x, y} ⊆ J (ξ1j) \ {a1, dl+1}. Such two jobs exist since

there is no idle time in block j and a1 /∈ J (ξ1j) because, by
Claim 2, dl+1 covers a1 in I1. We now prove that

r(x) > C(P1, dl) and r(y) > C(P1, dl). (32)

To that end we first argue that no predecessor of x or y is
executed in (C(P1, dl), e1j]. By contradiction, suppose z is

a predecessor of x or y that completes in (C(P1, dl), e1j].
Then, z must also start in [C(P1, dl), e1j] for otherwise by
(28) and the fact that dl+1 covers a1 in I1 (by Claim 2) we
get that z interlaces either a1 or dl+1 in P1—a contradiction
by Lemma 5. Therefore, z starts in [C(P1, dl), e1j] and thus
there is a block j ′ ∈ {τ1(dl)+1, . . . , j−1} such that ξ1j ′(z) >

ξ1j ′(dl+1). The latter is guaranteed by the fact that z executes

in [C(P1, dl), e1j]. Since, by Claim 2, dl+1 covers a1 in I1, we

have ξ1j ′(a1) = 0. Therefore, there is a jobw,w /∈ {a1, dl+1},
such that ξ1j ′(w) > 0. Thus, we get a contradiction by our
definition of j since j ′ < j .

Second, arguing by contradiction, suppose without loss
of generality that r(x) ≤ C(P1, dl). If ξ1k (a1) < e1k+1 − e1k ,
then take

ε = min
{
ξ1τ1(dl)+1(a1), e

1
k+1 − e1k − ξ ′

k(a1), e
1
j+1 − e1j

−ξ1j (dl+1), ξ
1
j (x), e

1
τ1(dl)+2 − e1τ1(dl)+1

−ξ1τ1(dl)+1(x)
}

and let P ′′ be a schedule with events e′′ and partition ξ ′′,
where

(e′′, ξ ′′) = 〈
e′, ξ ′, ε, (τ1(dl) + 1

a1� k
dl+1� j

x� τ1(dl) + 1)
〉
.

Note that j > τ1(dl)+1 because ξ1j (a1) = 0. The assump-
tion r(x) ≤ C(P1, dl) implies that P ′′ is feasible. Thus, we
get a contradiction since the total completion time of P ′′ is
smaller than that of P1.

On the other hand, if ξ1k (a1) = e1k+1−e1k , then x /∈ J (ξ1k),
and (28) and the fact that dl+1 covers a1 in I1 (by Claim 2)
imply that J (ξ1τ1(dl)+1) ∩ {x, y} = ∅. Thus, C(P1, x) ≤ e1k
or C(P1, x) > e1k+1. In the former case a1 and x interlace,
and in the latter case x and dl+1 interlace—contradiction

with Lemma 5. Therefore, (32) holds and P1 satisfies (I5) as
required. ��
Claim 6 Let T > 1. Then, Pu satisfies condition (I5) for
u ∈ {1, . . . , T − 1}.
Proof By Claim 5, P1 satisfies (I5). By induction on u =
1, . . . , T − 1, we have min{r(x), r(y)} > C(Pu, dl). Let
ju be the earliest j such that J (ξuj) = {x, y} in Pu . Again
by induction on u = 1, . . . , T − 1 we have ju < τu(dl+1).
Therefore,Pu satisfies condition (I5) for u ∈ {1, . . . , T −1}.

��
Claim 7 For each u ∈ {1, . . . , T }, if Pu is dl+1-preempted,
then ξuku (au) < euku+1 − euku .

Proof Suppose that ξuku (au) = euku+1 − euku and Pu is dl+1-
preempted. By (I4), it holds ku = τu(dl+1) and by Lemma 3,
ξuku (dl+1) = euku+1 − euku . Then, there is a job a′ that com-
pletes at eku because eku is an event in Pu . The job a′ starts
after C(Pu, dl) for otherwise a′ interlaces with either au or
dl+1 in an optimal Pu—contradiction with with Lemma 5.
Perform swapping of a′ and dl+1. By Lemma 2, this leads to
a feasible scheduleP ′. If ξku−1(dl+1) < eku −eku−1, then the
total completion time of the new schedule is smaller than that
of Pu—a contradiction again. If ξku−1(dl+1) = eku − eku−1,
then there is a job a′′ that completes at eku−1 in Pu because
eku−1 is an event in Pu . Again, the job a′′ starts after
C(Pu, dl) for otherwise a′′ interlaces with either au or dl+1

in an optimal Pu—contradiction with Lemma 5. Clearly,
C(Pu, a′′) = C(P ′, a′′) and s(Pu, a′′) = s(P ′, a′′). Take
Pu := P ′ and a′ := a′′ and repeat the above swapping.

After a finite number of the above ‘swappings’ we obtain
a feasible schedule with lower total completion time than
the initial one—a contradiction. This completes the proof of
Claim 7. ��

Now we return to the proof of Theorem 3. If T = 1,
then the lemma holds by Claim 5. To complete the proof
we show that T > 1 leads to a contradiction. First, for
T > 1, Claims 2, 3, and 5 imply that the schedule P1

is dl+1-preempted. Thus, Claims 2, 3 and 6 and an induc-
tion on u ∈ {1, . . . , T − 1} give that each of the schedules
P1, . . . ,PT−1 is dl+1-preempted. Since the iterative process
exits in iteration u = T , producing either P ′

T or P ′′
T , we

get a contradiction since either these two exit schedules have
smaller total completion times than PT−1 or they have the
same total completion times but their abnormality points are
greater than i . Hence, PT−1 is not maximal, contradicting
the fact that it is dl+1-preempted.

It remains to show that T exists, i.e., that the number of
iterations is finite. To that end let cu and Cu be the numbers
of jobs executed inPu which are not covered by dl+1, and the
number of blocks, respectively, in [C(Pu, dl),C(Pu, dl+1)].

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

728 J Sched (2016) 19:701–728

By Claim 7, ε > 0 in Step 1 of the construction of
P ′
u for each u ∈ {2, . . . , T }. If ε = ξu−1

τu−1(dl)+1(au−1)

in Step 1, then the block τu−1(dl) + 1 disappears. Oth-
erwise, ε = eu−1

ku−1+1 − eu−1
ku−1

− ξu−1
ku−1

(au−1) in Step 1. If

ξu−1
ku−1

(au−1) > 0, then au = au−1 at the end of Step 1 and
ξuku (au) = euku+1 − euku . Therefore, both Steps 2 and 3 are
vacuous and thus P ′

u = Pu is dl+1-preempted. However,
ξuku (au) = euku+1 − euku contradicts Claim 7. Thus, we have

ξu−1
ku−1

(au−1) = 0 in Step 1, and therefore the block ku−1

disappears.
Next, Step 2 does not change the number of blocks.

Finally, Step 3, if not vacuous, may increase the number
of blocks by at most one. Thus, we have Cu = Cu−1 − 1
and cu = cu−1, if Step 3 is vacuous, and Cu ≤ Cu−1 and
cu = cu−1 − 1, if Step 3 is not vacuous. Consequently
Cu + cu < Cu−1 + cu−1 and T ≤ C1 + c1 ≤ 3n. Thus,
the iterative process indeed stops with some schedule P ′

T or
P ′′
T . This, by Claim 5, completes the proof of the theorem.

7 Summary

In this paper we have provided some structural charac-
terization of the preemptions in optimal schedules for the
problem P2|pmtn, in-tree, r j , p j | ∑C j . The advantages
of our characterization are as follows:

– It narrows down a search space of optimal solutions from
an infinite one to a finite one.

– The understanding of the possible structure of preemp-
tions is a step towards determining the complexity of the
problem P2|pmtn, in-tree, r j , p j | ∑C j . On the one
hand, the normality of an optimal schedule may lead us
to a polynomial-time algorithm. On the other hand, the
fact that a single job may need many (of the order of
log n) preemptions as stated in Theorem 1 could be use-
ful in provingNP-completeness, although the complexity
of the problem P2|pmtn, in-tree, r j , p j | ∑C j is left as
an interesting and challenging open problem.

– It significantly improves the lower bound on the resolu-
tion for the problem P2|pmtn, in-tree, r j , p j | ∑C j .

Note that we rely on the in-trees precedence constraints
between the jobs in our proof. This assumption is crucial
when proving in Sect. 5 that a maximal A-free schedule
exists. The generalization of our result to arbitrary prece-
dence constraints or providing an example that an analogous
statement as the one in Corollary 1 is false for more general
precedence constraints is left as an open problem.

Acknowledgements This research has been supported by the Natural
Sciences and Engineering Research Council of Canada (NSERC) Grant
OPG0105675. Dariusz Dereniowski was partially supported by a schol-

arship for outstanding young researchers founded by the PolishMinistry
of Science and Higher Education, and Polish National Science Center
under Contract DEC-2011/02/A/ST6/00201.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

Baptiste, P., Brucker, P., Knust, S., & Timkovsky, V. (2004). Ten notes
on equal-processing-time scheduling. 4OR, 2(2), 111–127.

Baptiste, P., Carlier, J., Kononov, A., Queyranne, M., Sevastyanov, S.,
& Sviridenko, M. (2011). Properties of optimal schedules in pre-
emptive shop scheduling. Discrete Applied Mathematics, 159(5),
272–280.

Baptiste, P., & Timkovsky, V. (2001). On preemption redundancy in
scheduling unit processing time jobs on two parallel machines.
Operations Research Letters, 28(5), 205–212.

Baptiste, P., & Timkovsky, V. (2004). Shortest path to nonpreemptive
schedules of unit-time jobs on two identical parallel machines with
minimum total completion time.Mathematical Methods of Oper-
ations Research, 60(1), 145–153.

Brucker, P., Hurink, J., & Knust, S. (2003). A polynomial algorithm for
P | pj = 1, rj, outtree | ∑

cj.Mathematical Methods of Operations
Research, 56(3), 407–412.

Carlier, A., Hanen, C., &Munier-Kordon, A. (2014) Equivalence of two
classical list scheduling algorithms for dependent typed tasks with
release dates, due dates and precedence delays. New Challenges
in Scheduling Theory, March 31–April 4, Aussois, France.

Coffman, E, Jr, Dereniowski, D., & Kubiak, W. (2012). An efficient
algorithm for an ideal scheduling problem. Acta Informatica, 6,
1–14.

Coffman, E, Jr, & Graham, R. (1972). Optimal scheduling for two-
processor systems. Acta Informatica, 1, 200–213.

Coffman, E, Jr, Ng, C., & Timkovsky, V. (2015). How small are shifts
required in optimal preemptive schedules? Journal of Scheduling,
18(2), 155–163.

Coffman, E, Jr, Sethuraman, J., & Timkovsky, V. (2003). Ideal pre-
emptive schedules on two processors. Acta Informatica, 39(8),
597–612.

Fujii, M., Kasami, T., & Ninomiya, K. (1971). Optimal sequencing of
two equivalent processors. SIAMJournal onAppliedMathematics,
17, 784–789. Erratum 20 (1971) 141.

Gabow, H. (1982). An almost-linear algorithm for two-processor
scheduling. Journal of ACM, 29, 766–780.

Garey, M., & Johnson, D. (1976). Scheduling tasks with nonuniform
deadlines on two processors. Journal of ACM, 23(3), 461–467.

Garey, M., & Johnson, D. (1977). Two-processor scheduling with start-
times and deadlines. SIAM Journal on Computing, 6(3), 416–426.

Herrbach, L. A., & Leung, J. Y. T. (1990). Preemptive scheduling of
equal length jobs on two machines to minimize mean flow time.
Operations Research, 38(3), 487–494.

Huo, Y., & Leung, J. Y. (2005). Minimizing total completion time for
UET tasks with release time and outtree precedence constraints.
Mathematical Methods of Operations Research, 62(2), 275–279.

Leung,A., Palem,K.,&Pnueli, A. (2001). Scheduling time-constrained
instructions on pipelined processors. ACM Transactions on Pro-
gramming Languages and Systems, 23(1), 73–103.

Sauer, N. W., & Stone, M. G. (1987). Rational preemptive scheduling.
Order, 4, 195–206.

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://mostwiedzy.pl

	Normal-form preemption sequences for an open problem in scheduling theory
	Abstract
	1 Introduction
	2 Our approach and results: a general overview
	3 How many preemptions of a job is required?
	4 Optimal, normal and maximal schedules
	4.1 Preliminaries
	4.2 Events, partitions and basic schedule transformations
	4.3 Properties of optimal schedules
	4.4 Abnormality points and maximal schedules

	5 A-configurations
	5.1 Proof of Theorem 2

	6 Alternating chains
	6.1 Basic definitions and properties
	6.2 Transformations using alternating chains
	6.3 Extending an alternating chain
	6.3.1 Proof of Theorem 3

	7 Summary
	Acknowledgements
	References

