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Abstract. Transmission of electrical energy from a catenary system to traction units must be safe and reliable 
especially for high speed trains. Modern pantographs have to meet these requirements. Pantographs are 
subjected to several forces acting on their structural elements. These forces come from pantograph drive, 
inertia forces, aerodynamic effects, vibration of traction units etc. Modern approach to static and dynamic 
analysis should take into account: mass distribution of particular parts, physical properties of used materials, 
kinematic joints character at mechanical nodes, nonlinear parameters of kinematic joints, defining different 
parametric waveforms of forces and torques, and numerical dynamic simulation coupled with FEM 
calculations. In this work methods for the formulation of the governing equations of motion are presented. 
Some of these methods are more suitable for automated computer implementation. The novel computer 
methods recommended for static and dynamic analysis of pantographs are presented. Possibilities of dynamic 
analysis using CAD and CAE computer software are described. Original results are also presented. 
Conclusions related to dynamic properties of pantographs are included. Chapter 2 presents the methods used 
for formulation of the equation of pantograph motion. Chapter 3 is devoted to modelling of forces in 
multibody systems. In chapter 4 the selected computer tools for dynamic analysis are described. Chapter 5 
shows the possibility of FEM analysis coupled with dynamic simulation. In chapter 6 the summary of this 
work is presented. 

1 Introduction 
Transfer of the electrical energy from overhead catenary 
system has to be safe and reliable at different operating 
conditions. For this purpose a contact force value between 
the pantograph and the overhead contact line is 
recommended for different voltage systems of electric 
railways [1]. A lot of research was realized on design, 
construction and materials used to make pantographs. In 
addition such features as: compact profile for saving of 
space, lower weight, low aerodynamic noise and 
minimum maintenance are taken into account. 

High performance pantograph is usually a single arm 
pantograph. It consist of a main frame, lower and upper 
arms, coupling rod, balance rod, pantograph head and 
drive (Fig.1). The concept of the operation between lower 
and upper working positions is based on two articulated 
quadrangles. The first articulated quadrangle includes a 
part of the main frame, the lower arm, the part of upper 
arm and the coupling rod. The second one includes a small 
part of the upper arm, the balance rod, the link element 
and the upper arm. The moving pantograph is subjected 
to static and dynamic forces. Hence, the dynamic 
properties of pantograph are important for its entire 
working range during both upward and downward 
movements [2]. 

The objective of dynamic simulation is to determine 
the time-related behaviour of all pantograph assembly and 

analysis of interactions between particular parts (links) in 
connecting joints [3,4]. The dynamic simulation is useful 
to determine the contact force acting by the collector 
strips on the contact wire. Computational methods used in 
dynamic simulation should be coupled with FEM 
calculations in order to analyse stress acting on the 
pantograph parts. 

Fig. 1. Railway pantograph as a multibody system with closed 
loops (two articulated quadrangles). 

2 Methods for formulation of equations 
For mechanical systems only Newton’s second law and 
D’Alembert principle are usually sufficient. However a 
pantograph consists of numerous rigid-body links (arms, 
rods etc.) and different joints, hence the formulation of 
governing equations from Newtonian approach is very 
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difficult. For complex mechanical systems Lagrange, 
Hamilton and Gibbs equations of motion are developed 
based on energy equations. Computer applications need to 
derive numerical form of governing equations ready for 
computer implementation. Automated form of the 
equations of motion can be derived using Kane’s 
equations [5]. In the past two decades the computational 
methods used in the dynamic simulation of flexible 
multibody systems were developed based on the Finite 
Element Methods (FEM) [6] and Boundary Element 
Methods (BEM) [7]. 

2.1 Lagrange’s equation 

Lagrange’s equation is derived from energy-state 
functions. The general form of Lagrange’s equation for 
conservative mechanical system with k degrees of 
freedom is given by 

d
dt
�
∂L�ξ̇,ξ,t�

∂ξ̇
� -
∂L�ξ̇,ξ,t�

∂ξ
=fk ,      k=1,2,…N (1) 

where L is the Lagrangian of the system, ξ is the vector of 
generalized coordinates (including translational and 
rotational positions), f represents the generalized forces – 
applied and associated with the constraints. 

The diagram of the simplified kinematic system of 
articulated pantograph with two degrees of freedom is 
shown in Fig.2. In this kinematic system only angular 
displacement α1 of the lower arm and vertical 
displacement y of the pantograph head are assumed as 
degrees of freedom. 

Fig. 2. Kinematic diagram of articulated type pantograph with 
two degrees of freedom – rotational and translational motion. 

For this case the governing equation as system of 
nonlinear differential equations is [8] 

d
dt �

∂L(α̇1,α1,ẏ,y)
∂α̇1

� -
∂L(α̇1,α1,ẏ,y)

∂α1
+
∂Pm(α̇1,ẏ)

∂α̇1
=fα(t), 

(2) d
dt �

∂L(α̇1,α1,ẏ,y)
∂�̇� � −

∂L(α̇1,α1,ẏ,y)
∂y +

∂Pm(α̇1,ẏ)
∂�̇� =fy(t)

where fα and fy are the so-called generalized forces 
resulting from applied torques and forces. 

Generalized force fα(t,α1) can be represented as a 
superposition of three torques acting on the pantograph 

),()(),(),( 1111  tTTtTtf fygext    (3) 

where: Text(t,α1) is the torque raising the pantograph, 
Tg(α1) is the torque resulting from gravity, Tfy(t,α1) is the 
torque derived from the contact force Fy(t) as a result of 
catenary interaction. All this torque components are 
functions of the rotation angle, even when the forces have 
a fixed value. The explicit matrix form of equation (2) is 
given by 

�
Jα(α1) ky(α1)
ky(α1) M6

� �α̈1
ÿ �= �

Qα(t)-hα(α1)α̇1
2-Dα(α1)α̇1

Qy(t)-hy(α1)α̇1
2-D7ẏ-

y
K7

� (4) 

where coefficients Jα(α1), hα(α1), ky(α1), hy(α1) are very 
complex functions of the α1 rotation angle. They can be 
determined from physical properties of materials and 
dimensions of pantograph parts. The substitute coefficient 
of viscous damping Dα(α1) and dry damping are usually 
determined using an experimental approach. 

2.2 Hamilton’s equation 

The Hamilton principle is related to the Lagrange energy 
method through transformation called the Legendre 
transformation. Hamiltonian formalism in the formulation 
of equations takes into account the total energy of the 
system. Hamiltonian function H for the system with n 
degrees of freedom is defined as follows: 

H(ξ,p,t)=� piξi-L(ξ̇,ξ,t)
n

i=1

(5) 

where p is generalized momentum conjugate with ξi, that 
is 

pi=
∂L�ξ̇,ξ,t�

∂ξi
 i=1,…,n (6) 

The desired Hamilton canonical equations of motion are 
then obtained as 

∂H(ξ,p,t)
∂pi

=ξ̇i        (i=1,…,n)

(7) ∂H(ξ,p,t)
∂ξi

=�̇��  (i=1,…,n) 

The equation (7) is the set of first-order equations that are 
particularly symmetrical in form. Hamilton’s principle 
has not provided any new physical theories, but it is 
sometimes a convenient approach to solve multibody 
dynamics. 

2.3 Gibbs-Apell equations 

Gibbs–Appell introduced a function known as Gibbs 
function for the formulation of the equations of motion. 
This function deals with acceleration, velocity and 
position. For a system consisting of N particles with mass 
mi (i=1,…,N) this function is defined as 
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𝐺 =
1
2
�𝑚��̇���
�

���

(8) 

where �̈��  is the acceleration of the ith particle. 
The equations of motions are then given by 

∂G
∂ξ̈k

=fk (9) 

where ξk is the kth generalized coordinate, fk represents the 
kth generalized force. 

Gibbs-Appel equation does not introduce any new 
physics in classical mechanics but may be more 
convenient in some cases, particularly when 
nonholonomic constraints are involved. 

2.4 Kanes equations 

Some methods for the formulation of equations of motion 
are more efficient than others. Kane’s equations [9] 
enable derivation of the explicit form of equations of 
motion in a relatively simple and automated way. General 
form of Kane’s equations for a system of rigid-bodies 
formulated in N generalized coordinates ξ is given by 

Nkfff c
kkk ,...,1,*  (10) 

where fk, fk*, fk
c denote the generalized active, inertia, and 

constraint forces respectively. 
Using the kinematics of multibody system in matrix 

form and the partitioning of generalized coordinates it is 
possible to obtain the final representation of the equations 
in an automated way ready for computer implementation 

Aξ̈+Bξ̇+Cξ̇=F(t)-JTλ (11) 

where matrices A, B, and C contain the contribution from 
both translational and rotational degrees of freedom. 
Matrices B and C also account for all the quadratic 
velocity terms, Coriolis forces and nonlinear terms 
associated with the velocity contribution to the equations. 
F is the vector of generalized external forces. J is the 
constraint Jacobi matrix, and λ is the vector of the 
Lagrange multipliers. 

3 Modelling of forces in multibody 
system  

3.1 Generalized active forces 

Active forces come from pantograph drive system, 
aerodynamic effects, and contact force as a result of the 
interaction of collector strips with the overhead contact 
line. Figure 3 shows a separated link (it can be a part of 
pantograph) subjected to external forces F1 and F2. 

Fig.3. Forces and torques acting on rigid-body. 

The equivalent force system can be replaced by the 
resultant vector force FR acting at a point Q (center of 
gravity) and a couple vector torque TR. The generalized 
active force fk associated with a rigid body is given by 

fk=FR·
∂vk

∂ξ̇k
+TR·

∂ωk

∂ξ̇k
 (12)

where vk and ωk are the vectors of mass center velocity 
and angular velocity respectively of kth body in the inertial 
reference frame. The generalized active force involves 
both the forces and torques applied on bodies of the 
system. 

3.2 Modelling of springs and dampers 

Rigid bodies can be connected by springs and dampers in 
translational motion (Fig.4a) or in rotational motion 
(Fig.4b). 

Fig. 4. Spring and damper connecting the rigid bodies in 
translational motion a) and rotational motion b). 

Operation of the linear spring and damper between ith and 
jth bodies can be replaced by equivalent forces Fi and Fj 
equal in magnitude and opposite in direction. 

Fi=F(x,ẋ)n=-Fj (13) 

where n is the unit vector along the axis of the spring, x is 
the axial deformation of the spring, and F(x,ẋ) is the 
function of physical properties of the linear spring and 
damper. Operation of the rotational spring and damper 
between ith and jth bodies can be replaced by equivalent 
torques Ti and Tj equal in magnitude and opposite in 
direction. 

Ti=T(φ,φ̇)n=-Tj (14) 

where n is the unit vector of torque, φ is the relative angle 
of rotation of the spring, and T(φ,φ̇) is the function of 
physical properties of the rotational spring and damper. 

a) 

b)
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3.3 Gravitational and contact forces 

The forces of gravity acting on a system of N 
interconnected rigid bodies are usually given by 

),...,1( Nigmi
g

i  nF (15) 

where n is the unit vector of the gravity direction, mi is the 
mass of ith body. 

The contact forces rise from contact of two rigid 
surfaces. The contribution of the contact forces to the 
generalized active forces is zero. 

3.4 Inertia forces 

The inertia forces F* and inertia torques T* are generated 
when the acceleration of the body is not equal to zero. 
These forces and torques resulting directly from 
D’Lambert principle 

),...,1(,,
1

*

1

* nimm i

n

i
ii

n

i
ii  



arTaF   (16) 

where the rigid body is assumed to be formed of mi 
particles, ri defines the position vector from the point 
mass to the mass center of the body, and ai is the 
acceleration of point mass. 

4 Pantograph dynamic analysis in 
CAD/CAE application 
Novel analysis methods of multibody dynamics 
implemented in CAD/CAE applications give the ability to 
apply forces to pantograph assembly, which allow 
thorough evaluation of a pantograph performance. Almost 
all methods for the formulation of the equations of motion 
can be implemented in computer CAD/CAE applications. 
Some methods however are more efficient for numerical 
implementation. Several computer programs 
(Solidworks, Solid Edge, Autodesk Inventor, etc.) 
implement multibody dynamics. In each CAD/CAE 
environment the process of creating the dynamic 
simulation study of the pantograph involves following 
steps [10]: 
 creating a pantograph assembly,
 creating joints between links (components/parts),
 creating environmental conditions,
 solving equations and analysis of results.
In this work the dynamic simulation workflow 
implemented in “Dynamic Simulation Module” (DSM) of 
Autodesk Inventor will be described. 

4.1 Creating an assembly 

An assembly of pantograph is needed in order to create 
kinematic chains (open and closed) and the physical 
properties of particular bodies. An example 3D computer 
model of the 160EC type pantograph is shown in Fig. 1. 
The Dynamic Simulation Module uses the bodies to 
convey mass, inertia and centers of gravity information to 
the multibody dynamics solver. 

4.2 Modelling joints 

There are standard and nonstandard joints in DSM. The 
selected standard joints are presented in Table 1. 

Table 1. Selected standard joints in DSM of Inventor software. 
DOF means degrees of freedom. 

Icon Name Description DOF 

Revolution No translation 
Rotation about the axis 

1 

Prismatic Translation along the line. 
No rotation 

1 

Cylindrical Translation along the axis 
Rotation about the axis 

2 

Spherical No translation 
Rotation about 3 axis 

3 

Planar Translation along 2 axes 
Rotation about the axis 

3 

Spatial Translation along 3 axis 
Rotation about 3 axis 

6 

The nonstandard selected joints grouped into the rolling, 
sliding, and additional joints are presented in Table 2, 
Table 3, and Table 4 respectively. 

Table 2. Selected rolling joints in DSM of Inventor software. 
Icon Name Description DOF 

Cylinder on 
Plane 

Motion between a cylinder 
and plane 

NA 

Cylinder on 
Cylinder 

Motion between two 
cylindrical components 

NA 

Cylinder in 
Cylinder 

Motion between a rotating 
cylinder inside another 
nonrotational cylinder 

NA 

Cylinder-
Curve 

Motion between a rotating 
cylinder and rotating CAM 

NA 

Belt Motion of two coupled 
cylinders 

NA 

Cone on 
Plane 

Motion between a conical 
plane and a planar plane 

NA 

Cone on 
Cone 

Motion between two 
rotating conical parts 

NA 

Screw The same as cylindrical 
parts with pitch specificat. 

NA 

Worm - 
Gear 

Motion between a warm 
and a helical gear parts 

NA 

Table 3. Selected sliding joints in DSM of Inventor software. 
Icon Name Description DOF 

Cylinder on 
Plane 

Sliding between a 
nonrotat. cylinder and 
plane 

NA 

Cylinder on 
Cylinder 

Sliding between two 
nonrotating cylinders 

NA 

Cylinder in 
Cylinder 

Sliding between a 
nonrotat. cylinder inside 
another norotatational 
cylinder 

NA 

Cylinder-
Curve 

Motion between nonrotat. 
cylinder and a rotating 
cam 

NA 
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Table 4. Additional joints in DSM of Inventor software. 
Icon Name Description DOF 

Spring/ 
Damper/Jack 

This enables to create 
springs, dampers and 
jacks  

NA 

3D Contact This enables to create 
contact between two 
parts 

NA 

2D Contact Motion between two 
planar curves on two 
components 

NA 

When a joint is created there is the possibility to edit: 
 initial conditions of starting position and velocity,
 imposed motion to drive the model kinematically by

specifying a constant or varying position, velocity
and acceleration using the ‘Imposed Motion’ option
as shown in the Fig.5,

 force or torque (in case of a rotation), visco-elastic
and dry friction parameters as shown in Fig.6.

Fig. 5. Defining the imposed motion in a joint. 

Fig. 6. Editing the imposed force or torque and visco-elastic 
parameters in a joint. 

When assembly constraints are converted to joints it is 
possible to obtain over constrain the assembly at some 
joints. The mechanism to determine redundancies in joints 
is implemented in DSM. All joints are visible in the 
browser which enables the user to recognize them in the 
model (Fig.7) and edit their parameters. 

Fig. 7. Set of joints visible in the browser and corresponding 
local coordinate systems representing joint in the model. 

4.3 Creating environmental conditions 

Once the joints are created and parameters are defined the 
next step is to apply external loads. The forces and torques 
need a location on a body to indicate where they are 
applied, a direction along which or about which the force 
and torque is applied and a constant or varying value for 
the magnitude of the force or torque. Figure 8 shows the 
definition of torque acting on lower arm of the pantograph 
as function of angular displacement of the lower arm 
(1200 Nm at α=0 rad – 250 Nm at α=1,6 rad). 

Fig. 8. Characteristic of torque acting on the lower arm as 
function of angular displacement of this arm. 

It is also option to apply the force or torque as a 
combination of three orthogonal components. The loads 
can be also defined as functions of position, velocity or 
acceleration of the body in translational or rotational 
motion using the ‘Input Grapher’ editor. The external 
loads are visible on the pantograph model as vectors 
indicating the direction and location on the body where 
they are applied (Fig.9). 

Fig. 9. Visibility of forces and torques as external loads applied 
to the bodies of the pantograph. 

4.4 Solving and analysis 

The final step is to run the simulation and do the analysis 
of the results. To run a simulation the user needs to set the 
simulation time, the number of time steps to record results 
during the simulation and activate the solver. The 
simulation results can be analysed in the ‘Output 
Grapher’. The ‘Output Grapher’ is an interface for 
reviewing, plotting and post processing the results of a 
simulation. Waveforms of the angular displacement α and 
angular velocity ω of the lower arm are shown in Fig.10. 
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Fig. 10. Results of dynamic simulation presented in the output 
grapher. 

The output grapher gives the possibility to analyse 
particular joints in terms of: positions, velocities and 
accelerations; reaction forces and torquies; contact forces; 
driving forces and torques. The output grapher also 
enables import and comparison of the results of multiple 
simulations, export of the results to an excel file, graphs 
print out. 

5 FEM analysis and dynamic simulation 
The output grapher has functionality to export the 
simulation results to FEM analysis in Autodesk Inventor 
Professional for Simulation [11]. This function passes the 
resultant forces and torques acting on a part and the 
boundary conditions (based on the joints) to the part FEM 
analysis module at a given time step during the 
simulation. Results of FEM analysis on the coupling rod 
are presented in Fig.11. 

 
Fig. 11. Von Misses stress results on the coupling rod at some 
time instant of the dynamic simulation of the pantograph. 

6 Conclusions 
Novel analysis methods of dynamic properties for railway 
pantographs are implemented in CAD/CAE computer 
applications. Computer applications need numerical 
implementation of the governing equations of motion. 
There are several methods for formulation of the 
equations of motion. Some methods are more efficient for 
numerical implementation than others. Kane’s equations 
enable to derive the explicit form of equations of motion 
in a relatively simple and automated way. 

Novel analysis methods of multibody dynamics 
implemented in CAD/CAE applications give the ability to 
apply “real world” external loads to pantograph assembly, 
which allow thorough evaluation of  pantograph 
performance. Multibody dynamics in CAD/CAE software 
enable the analysis of: positions, velocities and 
accelerations; reaction forces and torquies; contact forces; 
driving forces and torques in joints. Dynamic simulation 
is also coupled with FEM calculation. 
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