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Abstract: For the first time worldwide, innovative techniques, generic non-linear higher-order un-
normalized cross-correlations of spectral moduli, for the diagnosis of complex assets, are proposed.
The normalization of the proposed techniques is based on the absolute central moments, that have
been proposed and widely investigated in mathematical works. The existing higher-order, cross-
covariances of complex spectral components are not sufficiently effective. The novel technology is
comprehensively experimentally validated for induction motor bearing diagnosis via motor current
signals. Experimental results, provided by the proposed technique, confirmed high overall probabili-
ties of correct diagnoses for bearings at early stages of damage development. The proposed diagnosis
technology is compared with existing diagnosis technology, based on the triple cross-covariance of
complex spectral components.

Keywords: signal processing; damage diagnosis; motor current signature analysis; induction motor;
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1. Introduction

Induction motors (IMs) are widely employed in various industrial, military, and civil
applications. Electric vehicles, gearmotors, and pumps are examples of a broad scope of
IM use. Most IMs are required to operate uninterrupted for a long period. That is why
a proper condition monitoring and maintenance are a must in industrial applications of
motors, gearmotors, and other structures [1–36]. Publication [7] presents very wide and
comprehensive state-of-the-art IM faults, detection, and diagnosis. Proper fault detection
and fault isolation of key components is crucial for continuity of IM operation. Among
the most common elements, susceptible to damage in an IM, are its bearings, account-
ing for 42% of all failures [7]. That is why their effective diagnosis is of utmost impor-
tance. The ability to diagnose bearing conditions is the subject of continuous research and
development [1,3,5,6,8,20,21,23,25–29].

For industrial bearings diagnosis, vibration-based methods are still the most used.
However, they require the installation of accelerometers on the engine, making these
methods invasive, inconvenient, and costly. Vibration analysis is a well-proven method,
that has been used for a long-time to detect bearing damage [5,25–28,33–36]. Vibration
methods are still being improved, mainly in terms of signal processing. In [25], a method,
enabling diagnostics in conditions of variable rotational speed, is presented. Paper [26]
presents a solution, based on the spectral kurtosis and the wavelet transform.

In the recent years, motor current signature analysis (MCSA) is the subject of much
research; it becomes a convenient alternative to vibration-based methods for IM diagnosis.
This non-invasive method allows to significantly reduce the cost of diagnosis as it does
not require installation of expensive vibration sensors on a motor. MCSA does not require
a direct access to a diagnosed motor; only access to a power supply line of a motor is
needed. Motor current signals are widely used for detecting electrical and mechanical
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faults in motors and coupled gearboxes. Early diagnosis of bearing faults via MCSA is
a difficult task due to a low signal/ noise ratio (SNR) of spectral components, carrying
diagnostic information [4–8,10,19–22,24,29]. Changes in the temporal shape of current
waveforms, caused by bearing damage, are practically imperceptible, and therefore most
of MCSA methods use current spectral presentations. Due to a poor SNR of bearing
diagnostic components in the current spectrum, many spectral harmonics of a different
nature may match in frequency areas. Therefore, it is crucial to estimate frequencies of
bearing defect characteristic components, with a high accuracy, to track those components
in time—frequency domain. Precise rotational speed estimations of a motor rotor are
needed to estimate these frequencies. Rotor speed can be estimated via current spectrum
and rotor slot harmonics (RSH) with high precision. A rotor speed estimation method,
based on RSH frequency demodulation, is introduced in [30]; this method gives accurate
results for both transient and steady-state motor operations.

Models for frequencies of current characteristic spectral components have been im-
proved over time. Works [8,9] have shown that some of the previous MCSA solutions,
e.g., [4], are based on an incomplete model for characteristic frequency estimations. In [9],
changes of torque, caused by bearing damage, are taken into account. It has been shown
that oscillations of torque, have an essential influence on characteristic frequencies. In cases
of inner race or rolling elements damage, characteristic frequencies are different, when
compared with earlier research works, e.g., [4]. In [8], a dynamic model of a rotor with
damaged bearings is presented in order to numerically simulate an air gap. The current
modelling is built on a magnetic circuit.

A different approach to IM bearing condition monitoring, presented in [5,20], proposes
determining characteristic frequencies via vibration methods. Spectral components, identi-
fied via vibration signal envelope analysis, are tracked in current spectrum, and changes in
their amplitude are used for bearing diagnosis.

In [21] a new Fault-excited Harmonic Distortion diagnostic indicator is proposed. The
developed IM model showed a dependency between the proposed diagnostic indicator
and bearing fault severity. However, this method was tested only for one outer race defect
for a specific type of IM. Other mathematical expressions for this method are needed for
other types of IM. The model, presented in [21], does not take into account saturation of
the motor core, and only radial eccentricities related to a damage, are considered.

For increasing bearing damage detection efficiency via MCSA, new, more effective
signal processing solutions are sought. In recent research works on this topic, the wavelet
transform [6,9,31–36], the higher-order spectral techniques [1,3,22,24], and the spectral
kurtosis [26,28] are used.

In [6], the continuous wavelet transform is applied via MCSA to detect damage in bear-
ing localized in motor load, and not in the motor. It is not an easy task, because such damage
does not affect the air gap of tested motors; only changes of a motor load momentum can
affect motor current. For this reason, the characteristic spectral components in the motor
current spectrum are barely detectable via methods, based on the current spectrum [6].

The higher-order spectral techniques are used in [1,3,22,24] for MCSA to detect IM
damage. These techniques give an insight into the interactions of spectral components.
It has been shown that it is possible not only to detect early fault, but also indicate a
fault severity.

In [23], an MCSA method, that involves instantaneous frequency analysis, was pro-
posed [19] considers motor bearing diagnosis. For light load conditions, MCSA methods
mostly fail in detecting this type of damage, due to poor SNR. The proposed method was
tested on a small number of bearing faults, and only outer race defects were considered in
this research.

Another way of dealing with a poor SNR of bearing diagnostic components in motor
current signal is the Park vector approach. Approach advantage is an essential enhancement
of components, carrying diagnostic information. Then, various sophisticated methods of
signal processing [19,26,29] can be used for component fault detection. This approach is
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used for detection of bearing faults [19,20,29,37–41], as well as other faults of IMs, such as
broken rotor bar [42–48] and stator winding faults [49–52].

The main novelty proposed here is the generic, non-linear, high-order technologies
for damage diagnosis and the higher-order, unnormalized, cross-correlations of spectral
moduli for steady and non-steady functioning of complex systems.

Research carried here shows a very essential advantage of the proposed technologies:
they provide an effective damage diagnosis for any damage related spectral components,
including components that do not follow bicoherence/tricoherence frequency rules.

Other innovations of the presented research:

• technology validations via extensive experiments
• comparison of the proposed technology and the cross-covariance technology, based

on t complex spectra

The aims of the research are to:

• propose new damage diagnosis technologies, cross-correlations of moduli for steady
and non-steady functioning of complex systems,

• perform technology testing via extensive experiments using motor current signal
processing and,

• perform technology comparisons between triple cross-covariance technologies, based
on complex spectra, using motor current signature analysis.

2. The Cross-Correlations of Spectral Moduli

Unnormalized cross-correlations of spectral moduli (UCCSM) of order n are proposed
here for the first time worldwide. The first step in the estimation of UCCSM is to divide
signal into time segments. The second step is to perform the selected frequency transform
or time-frequency transform for each time segment. The third step is to estimate moduli
of the spectral components at the selected characteristic frequencies, or at the selected
characteristic time-frequency points. The final step is to estimate the unnormalized cross-
correlation for each segment and to average these cross-correlations over all segments. The
normalized cross-correlations (CCSM) of n moduli of spectral components are estimated
via Equation (1):

CCSM(f1, f2, . . . , fn, t) =
∑I

j=1

[(
mYj

f1
(t)
)(

mYj
f2
(t)
)

. . .
(

mYj
fn
(t)
)]

n

√
∑I

j=1

[∣∣∣mYj
f1
(t)−mYf1 (t)

∣∣∣n] n

√
∑I

j=1

[∣∣∣mYj
f2
(t)−mYf2 (t)

∣∣∣n] . . . n

√
∑I

j=1

[∣∣∣mYj
fn
(t)−mYfn (t)

∣∣∣n] (1)

where I is segment number, mYj
fn

is the modulus related to any complex time-frequency
transform, or any complex frequency transform of time segment j for frequency fn.

Normally, normalization of higher-order correlations of random variables is based
on the absolute central moments of order n, proposed and widely investigated in many
mathematical works, e.g., [53–57]. Another normalization [1–3] is also possible.

The main dissimilarity between the proposed technologies (1), the higher-order
spectral cross-covariance technologies in refs [1–3], and the classical higher-order spec-
tra [58] is that the proposed cross-correlations are estimated for the moduli of complex fre-
quency transforms and complex time-frequency transforms. The proposed use of complex
transform moduli for higher-order spectral techniques is non-traditional, as traditionally
e.g., [1–3,7,16,18,22,24,27,58,59], in applications by all known authors of higher-order spec-
tral techniques and the complex spectral components (not moduli of complex spectral
components) are used.

The main reason that complex spectral components are used is that phase information,
related to these components, could be employed for diagnostic purposes. This reason is
fully justifiable for pure complex exponential signals. However, characteristic time domain
signals, that are involved/important in vibration fault diagnosis and in diagnosis via
MCSA, are, normally, not pure complex exponential signals. These signals are narrowband
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random signals with random phases. It is shown here, that for current narrowband signals,
it is more efficient to employ the higher-order spectral technologies, based on moduli of
complex spectral components. The employment of moduli of complex transforms is an
essential novel feature of the technologies, which depend only on moduli of the selected
complex characteristic components, and are not dependent on the phase spectra of the
selected characteristic spectral components.

It is known [60,61], that the phase spectra of single characteristic spectral components
are important for fault diagnosis. However, as the proposed technologies do not employ
single characteristic spectral components, but employ, simultaneously, multiple characteris-
tic spectral components, it is shown below, via experimental trials, that it is more beneficial
to exclude from consideration the phase spectra of these spectral components.

The particular uses of the proposed technology (1) are the cross-correlation of spectral
moduli of order 3 (CCSM3) and the cross-correlation of spectral moduli of order 4 (CCSM4),
expressed as follows:

CCSM3(f1, f2, f3, t) =
∑I

j=1

[
(mYj

f1
(t))(mYj

f2
(t))(mYj

f3
(t))

]
3

√
∑I

j=1

[∣∣∣mYj
f1
(t)−mYf1 (t)

∣∣∣3] 3

√
∑I

j=1

[∣∣∣mYj
f2
(t)−mYf2 (t)

∣∣∣3] 3

√
∑I

j=1

[∣∣∣mYj
f3
(t)−mYf3 (t)

∣∣∣3] (2)

CCSM4(f1, f2, f3, f4, t)

=

I
∑

j=1

[
(mYj

f1
(t))(mYj

f2
(t))(mYj

f3
(t))(mYj

f4
(t))

]
4

√
I

∑
j=1

[∣∣∣mYj
f1
(t)−mYf1

(t)
∣∣∣4] 4

√
I

∑
j=1

[∣∣∣mYj
f2
(t)−mYf2

(t)
∣∣∣4] 4

√
I

∑
j=1

[∣∣∣mYj
f3
(t)−mYf3

(t)
∣∣∣4] 4

√
I

∑
j=1

[∣∣∣mYj
f4
(t)−mYf4

(t)
∣∣∣4]

(3)

The proposed technologies are applicable for steady signals, related to steady func-
tioning of systems, by using spectral moduli of complex frequency transforms and real
frequency transforms (e.g., Hartley distribution, the cosine transform, etc.) for (1)–(3). If
frequency transforms are employed, the CCSM technologies are not time-dependant. It
is proposed that further novel technologies could be used for non-steady functioning of
systems (e. g. machinery start-up and speed variation), via the employment of moduli
of complex time-frequency transforms [32–34,62,63], and real time-frequency transforms
(e.g., the Wigner distribution, etc.) for Equations (1)–(3). If time-frequency transforms are
employed, the CCSM technologies are time-dependant.

The importance of the technologies is that they estimate cross-correlations between
moduli of frequency components. Moduli of frequency components that appear due to
faults are correlated.

The main limitations of the proposed technologies are the same, as the limitations of
higher-order spectral technologies, as follows:

• a difficulty of a visual representation of the CCSM for orders greater than 4
• a computation complexity
• technologies are becoming non-effective at an excessive level of interference

However, it is known [58] that the higher-order spectral technologies, including the
proposed technologies, are more “immune” to an excessive level of interference, than
second order technologies.

Let us investigate the CCSM3 for local bearing damage diagnosis via MCSA. The
fundamental frequency of the shaft rotation fr and the fundamental frequency of the motor
supply current fg are estimated from the obtained motor current spectrum for every time
segment of a time domain current signal. It is important to track the frequencies for
each time segment to cover possible fluctuations of bearing defect frequencies and the
supply frequency. The fundamental frequency of the shaft rotation fr is obtained through
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RSH frequency estimation and information of motor construction, as described in [30,42],
as follows:

ff =
fRSH ± fg

k·NR
(4)

where fRSH is the RSH frequency, fg is the supply grid frequency, fr is the fundamental
rotation frequency, k is the rotor bar harmonic number, and NR is the number of rotor bars.

Values of the mentioned frequencies are needed to estimate the frequency specifics
of the bearing damage. Next, modulus values from complex spectra, for three spectral
components of the selected characteristic frequencies, are obtained for every time segment.
The next step is to calculate the Equation (2) for CCSM3 estimation. The last step is to
calculate the mean value of CCSM3 for three phases of the IM current.

The number of operations for CCSM3 technology could be estimated as follows.
Considering a conventional method of CCSM3 estimation, the main method for estimation
of CCSM3 is the direct method [58,59]. Extension of this method to CCSM4 or to any
higher CCSM order can be made easily. Considering the direct method of estimation of the
numerator of CCSM3 (as estimation of the denominator of the CCSM3 is a computationally
easy task) for one diagnostic feature, the following steps should be employed:

a. segmentation of current data into K non-overlapped segments of N samples each
b. estimation of DFT coefficients for each segment
c. calculation of CCSM3 estimates for all segments via multiplications of moduli of the

selected DFT coefficients, and average these estimates over K segments

Number of multiplication operations for the estimation of DFT for each segment is
Nlog2N and the number of addition operations for estimation of DFT for each segment
is 2Nlog2N.

Finally, ignoring a small number of addition operations, for the averaging of the
CCSM3 over K segments, and a small number of multiplication operations, for obtaining
the CCSM3 for each segment, the total number of multiplication operations for K segments
is K × Nlog2N, and the total number of addition operations for K segments is K × Nlog2N.

The two frequencies specific for bearing damage are defined with the Formulas (5)
and (6) [1,7,25]:

fout =

(
1− Bd

Pd
cosα

)
Nb = FCCo·fr (5)

fin =
1
2

fr

(
1 +

Bd
Pd

cosα
)

Nb = FCCi·fr (6)

where fout is the outer race damage frequency, fin is the inner race damage frequency, fr is
the frequency of IM shaft oscillation, Nb is the number of rolling elements in the bearing, Bd
is the diameter of the rolling elements in the bearing, Pd is the pitch diameter of a bearing
and α is the angle of thrust. FCCo is the fault specific coefficient of the outer race and FCCi
is the fault specific coefficient of the inner race.

Coefficients FCCi and FCCo, used in this research, are received from SKF (UK).

3. Experimental Setup and Technology Validation
3.1. Setup for Experimental Technology Validation

The test rig, used for experimental technology validation, is presented in Figure 1. Its
use is described in detail in [1]. Pointer A shows the IM used in this experiment, pointer
B indicates the laser sensors used for shaft alignment, pointer C indicates the magnetic
coupling, pointer D shows the electromagnetic brake, pointer E shows the hoses which
provide the air for the brake cooling, and pointer F shows the pads used to isolate the test
rig form external vibration. The IM in this experiment was powered by the national 50 Hz
three phase electrical power grid.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Electronics 2022, 11, 3885 6 of 36

Electronics 2022, 11, x FOR PEER REVIEW 6 of 35 
 

 

coupling, pointer D shows the electromagnetic brake, pointer E shows the hoses which 

provide the air for the brake cooling, and pointer F shows the pads used to isolate the test 

rig form external vibration. The IM in this experiment was powered by the national 50 Hz 

three phase electrical power grid. 

 

Figure 1. Experimental test rig. 

The IM current signal was recorded via a data acquisition system with the use of a 

specially designed transducer and a 24 bits DAQ system. In general, the main parameters 

required for a suitable performance of a data acquisition system for CCSM, are as follows: 

3 channel differential inputs for three phases, a −120 dB, channel cross-talk, 24-bit conver-

sion, a total harmonic distortion of 0.5%, attenuation of an anti-aliasing filter in the tran-

sition band is 100 dB/oct, and a current sensor that is a split-core current transformer, with 

galvanic separation between the primary circuit (power) and the secondary circuit (data 

capture). 

All IM currents processed in this experiment were recorded for IM, with 6204C3 

Koyo bearings. Construction of the bearing, and the absence of the seals, allowed for an 

easy disassembly of the bearings for damage introduction.  

IM current recordings were done for 8 bearings, 4 pristine bearings, and 4 bearings 

with different types of damage. The close-up photos of the introduced bearing faults are 

shown in Figure 2. All damages introduced were small local faults, created to simulate 

bearing damage which had not yet developed; a detailed description of each damage in-

troduced is listed in Table 1. The pristine bearings are labelled as p1, p2, p3, and p4; a 

pristine bearing is shown in Figure 3.  

Table 1. List of damaged bearings, with introduced damage and relative damage sizes [26]. 

Bearing Introduced Damage Relative Damage Size  Figure 

in1 inner race pit damage with 1 mm diameter and depth of 0.5 mm 1.20% 6A 

in2 
inner race scratch damage length of 3 mm, width of 1 mm and 

depth of 0.7 mm  
1.20% 6B 

Figure 1. Experimental test rig.

The IM current signal was recorded via a data acquisition system with the use of a
specially designed transducer and a 24 bits DAQ system. In general, the main parame-
ters required for a suitable performance of a data acquisition system for CCSM, are as
follows: 3 channel differential inputs for three phases, a −120 dB, channel cross-talk, 24-bit
conversion, a total harmonic distortion of 0.5%, attenuation of an anti-aliasing filter in the
transition band is 100 dB/oct, and a current sensor that is a split-core current transformer,
with galvanic separation between the primary circuit (power) and the secondary circuit
(data capture).

All IM currents processed in this experiment were recorded for IM, with 6204C3 Koyo
bearings. Construction of the bearing, and the absence of the seals, allowed for an easy
disassembly of the bearings for damage introduction.

IM current recordings were done for 8 bearings, 4 pristine bearings, and 4 bearings
with different types of damage. The close-up photos of the introduced bearing faults are
shown in Figure 2. All damages introduced were small local faults, created to simulate
bearing damage which had not yet developed; a detailed description of each damage
introduced is listed in Table 1. The pristine bearings are labelled as p1, p2, p3, and p4; a
pristine bearing is shown in Figure 3.

Table 1. List of damaged bearings, with introduced damage and relative damage sizes [26].

Bearing Introduced Damage Relative Damage
Size Figure

in1 inner race pit damage with 1 mm
diameter and depth of 0.5 mm 1.20% Figure 2A

in2
inner race scratch damage length

of 3 mm, width of 1 mm and
depth of 0.7 mm

1.20% Figure 2B
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Table 1. Cont.

Bearing Introduced Damage Relative Damage
Size Figure

out1

outer race scratch damage along
the bearing rolling direction with
length of 3 mm, width of 1 mm

and depth of 0.5 mm

2.23% Figure 2C

out2
outer race scratch damage length

of 3 mm, width of 1 mm and
depth of 0.5 mm

0.78% Figure 2D
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Figure 3. A pristine bearing.

To achieve effective fault diagnosis results, digital signal processing of the recorded
IM current was performed. The IM current signals are recorded for 65 s of an uninterrupted
IM work. The Blackman time window was used for each 5 s time segment of the signal,
recorded at 65.536 kHz sampling frequency. Technical requirements of the computer used
for numerical estimation of CCSM technologies were: Windows 7 or later version, 8 GB
of RAM, 3.4 GB of SSD space for MATLAB, a processing speed of 3.4 GHz or higher, a
latency of 100 ms, an internal hard-drive speed of 50 MB/s or higher, a bus speed of 5GT/s
or higher.
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Current data, mentioned above (i.e., segment size is 5 s, number of segments is 13, 0%
segment overlapping, sampling frequency is 65.536 kHz), were processed via a PC with
Intel Core i7-2600 CPU and 8 GB of RAM, with a computation time of 2 s for one CCSM3
diagnostic feature. If the CCSM3 algorithm software was organised using the calculation of
CCSM3 during sample intervals, then the CCSM3 feature could be estimated in “real time”.

Signals are recorded for the four undamaged bearings and for the four counterpart
damaged bearings. The four pairs are split into two cases:

• two inner race damaged bearings vs. two undamaged bearings
• two outer race damaged bearings vs. two undamaged bearings

Each case was analysed separately. The recorded signals were processed via the pro-
posed CCSM3. Using the above methodology (from Section 2) for estimation of the total
number of operations for the calculation of the numerator of the CCSM3, the number of
multiplication operations and number of addition operations are 7,804,0269 and 156,080,538,
respectively, for the processing parameters employed here for experimental trials: segment
size is 5 s, the number of segments is 13, the sampling frequency is 65.536 kHz, and the
segment overlap is 0%. The total number of operations for calculation of the numera-
tor of CCSM3 is 234120807. The total number of operations, for calculation of CCSM3,
that is estimated via Matlab socFunctionAnalyzer, is 310778788, for the above-mentioned
processing parameters.

The estimates of the overall probability of correct fault diagnosis are defined by Equation (7):

Pt =
fN + hN

fNt + hNt
(7)

where fN is the number of correctly diagnosed bearings with damage, hN is the number
of correctly diagnosed healthy bearings, fNt is the total number of diagnoses carried
for bearings with damage, and hNt is the total number of diagnoses carried for healthy
bearings. The Fisher criterion is defined by Equation (8):

FCr =
|am1 − am2|2

σ2
1 + σ2

2
(8)

where am1 is the average value of diagnostic features for healthy bearings, am2 is the
average value of diagnostic features for bearings with fault, σ2

1 is the squared standard
deviation of diagnostic features for healthy bearings, and σ2

2 is the squared standard
deviation of diagnostic features for bearings with fault. The overall probability of correct
fault diagnosis, Equation (7), and the Fisher criteria, Equation (8), are used to evaluate the
quality of diagnosis via the proposed technology.

To diagnose healthy and faulty bearings, a one-dimensional decision-making threshold-
based rule was used. The Bayes rule was implemented for this task. If the CCSM diagnostic
feature was more than the Bayes based threshold, a damaged diagnosis was given; if the
CCSM diagnostic feature was less than the Bayes based threshold, an undamaged diagnosis
was given. For multi-class fault identification, more complicated decision-making rules,
based on machine learning, would be employed. For each CCSM3, 51 diagnostic features
for each bearing were estimated. Time segment overlapping, from 0% to 50%, with a 1%
step were used for these estimations. Values of 204 diagnostic features were used for the
estimation of the overall probabilities of the true diagnostics and the Fisher criteria.

3.2. Local Inner Race Damage Diagnosis

Combination frequencies of current spectral components in raw current data, related
to inner race bearing damage, are described by Equation (9) [9]:

fcom_in = i·fin + j·fg + k·fr (9)
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where fin is the inner race damage frequency (Equation (6)), fg is the fundamental frequency
of supply current, fr is the fundamental motor shaft rotation frequency, and i, j, k are integer
coefficients, related, respectively, to the inner race damage frequency, the fundamental
frequency of supply current, and the fundamental motor rotation frequency.

The test bearings used for trials, were two damaged bearings: in1 and in2, and two
pristine bearings, p1 and p2. The experimental results are based on 84 spectral components,
which were used to calculate 28 CCSM3′s for each bearing. These 84 spectral components
were obtained using the following coefficients:

i = 3, 6, 9;
j = −3, −1, 1, 3;
k = −3, −2, −1, 0, 1, 2, 3.
For each given i coefficient, a different set of j and k coefficients were used. This

systematic set of 84 different components has been derived on the basis of the i, j, and k
coefficients. Each CCSM3 was calculated for multiple combinations of i, j, and k values and
averaged over three phases. Table A1 (Appendix A) presents multiple i, j, and k combi-
nations, corresponding to the correlation numbers for CCSM3. The overall probabilities
of true diagnoses were estimated via Equation (7). The estimates of overall probabilities
of true diagnoses, provided by CCSM3s, for each component combination, are shown
in Figure 4. The estimate of the average overall probability of true diagnoses, calculated by
averaging the estimates of overall probabilities, provided by all 28 CCSM3s, was 98.6%.
The FCr, estimated for each component combination, are shown in Figure 5. The average
FCr value provided by all 28 CCSM3s was 19.5.
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Histograms of the diagnostic features, based on CCSM3 values for damaged and undam-
aged conditions, are presented in Figures 6 and 7. The histograms of the selected CCSM3
diagnostic features are unimodal for both damaged and undamaged bearings. It can be
seen from Figures 6 and 7, that each pair of histograms show a full separation of diagnostic
feature CCSMs between the damaged cases and the healthy cases. More histograms for other
component combinations, based on CCSM3, for inner race fault diagnosis, are presented
in Appendix A (Figures A1–A26). It can be seen from Figures A1–A26, that each pair of
histograms, presented in the Appendix A, also show a full separation of diagnostic feature
CCSMs between the damaged cases and the healthy cases. For each case in which diagnostic
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features for damaged and undamaged conditions are fully separated, the estimate of the
overall probability of correct diagnosis is 100%.
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3.3. Outer Race Local Damage Diagnosis

Characteristic frequencies of current spectral components, related to the bearing outer
race damage, in raw current data can be described by Equation (10) [8–10]:

fcom_out = i·fout + j·fg (10)

where fout is the outer race damage frequency (Equation (5)), fg is the fundamental fre-
quency of supply current, and i and j are integer coefficients, related, respectively, to the
outer race damage frequency and the fundamental frequency of supply current.

Test bearings, that were used for trials, were damaged bearings out1, out2, and pristine
bearings p3 and p4. The experimental trials are based on 12 components, which are used to
calculate 4 CCSM3s for each bearing. The 12 components were obtained for the following
coefficients:

i = 4, 8;
j = −5, −3, −1, 1, 3, 5.
For each given i coefficient, a different set of j coefficients were used. This systematic set

of 12 different components were derived on the basis of the i and j coefficients. Each CCSM3
was calculated for an individual combination of i and j values, and averaged over three
phases. Table A2 (Appendix A) presents multiple i and j combinations corresponding to the
correlation number for CCSM3 estimation. The estimates of overall probabilities of correct
diagnoses for the CCSM3 of each component combination, are shown in Figure 8. The
estimate of the average overall probability of correct diagnoses, calculated by averaging the
estimates of overall probabilities, evaluated for all 4 correlations, was 98.0%. FCr, calculated
for each component combination, are shown in the Figure 9. Average value of FCr for all
CCSM3 correlations, estimated by averaging FCr, provided by all 4 CCSM3s, was 13.2.
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(Table A2).

Histograms of the selected diagnostic features, based on CCSM3, are presented in
Figures 10 and 11. These histograms are unimodal for both the damaged and the undam-
aged bearings. It can be seen from Figures 10 and 11, that each pair of histograms show
a full separation of diagnostic feature CCSMs between the damaged and the undamaged
cases. More histograms of other component combinations, based on the CCSM3 for outer
race fault diagnosis, are presented in Appendix A (Figures A27–A31). It can be seen from
Figures A27–A31, that each pair of histograms, presented in the Appendix A, also show a
full separation of diagnostic feature CCSMs between the damaged cases and the healthy

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Electronics 2022, 11, 3885 13 of 36

cases. For each case, in which diagnostic features for damaged and undamaged conditions,
are fully separated, the estimate of the overall probability of correct diagnosis is 100%.
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To conduct a novel comparison of bearing diagnosis results, provided by the proposed
CCSM3 technology, and the state-of-the-art technology from [1], experimental current data
from [1], captured from the damaged (i.e., outer race damage) bearing and the undamaged
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bearing were used. For the purpose of comparing the CCSM3 technology with the triple
spectral cross-covariance technology [1], based on the complex Fourier transform, the same:

• coefficients i and j (Equation (10)) for the three characteristic spectral components are
used for CCSM3 technology as in [1]: i.e., 1,1; 2,1, and 1, −1

• processing parameters: i.e., 65.536 kHz sampling frequency, 5 s time segment, signal
duration is 65 s, overlap, varying from 0 to 50%, with a 1% step, are used for CCSM3
technology as in [1]

• normalization of unnormalized correlations/covariances
• number of diagnostic features for damaged and undamaged bearings are used for

CCSM3 technology as in [1]
• the Bayes decision-making method is used for CCSM3 technology as in [1].

For experimental bearing data from [1], the value of the FCr, achieved by CCSM3
technology, was 29.2 and a full separation of histograms for the CCSM3 diagnostic fea-
tures for undamaged and damaged bearings was achieved; therefore, the estimate of the
overall probability of error diagnostics, provided by CCSM3 technology, was 0%. Values
of the FCr and the estimate of the overall probability of error diagnostics, achieved by
the triple spectral cross-covariance technology presented in [1], were 6.7 and 4%, respec-
tively. Gain in diagnosis effectiveness in terms of the FCr, calculated as a ratio of the FCr
for the CCSM3 and the FCr for the triple spectral cross-covariance technology, was 4.4.
This comparison also revealed, that the CCSM3 technology allows an essential decrease
(i.e., 4%) in the overall probability of error diagnosis compared with the triple spectral
cross-covariance technology.

The presented comparison results clearly show, that the proposed new CCSM3 tech-
nology, based on moduli of the Fourier transform (FT), is more efficient than the triple
spectral cross-covariance technology, based on the complex FT.

The simulation results in [1] have shown that the triple spectral cross-covariance
technology could effectively diagnose 5% relative damage size at signal to noise ratio (SNR)
30 dB. It has been shown above that the proposed technology outperforms the triple spectral
cross-covariance technology. Therefore, the admissible SNR for the proposed technology is
30 dB for diagnosing 5% relative damage size.

4. Conclusions

1. For the first time worldwide, novel technologies for system diagnosis, the generic,
non-linear higher-order, unnormalized cross-correlations of spectral moduli, related to
steady and non-steady functioning of systems, has been proposed. Normally, normalization
of higher-order correlations of random variables is based on the absolute central moments
of order n, proposed and widely investigated in many mathematical works, e.g., [53–57].

The main difference between the proposed technologies and the higher-order, cross-
covariance technologies in [1–3] and the classical higher-order spectra, is that the proposed
cross-correlations are estimated for the spectral moduli of the selected characteristic spectral
components. The proposed use of moduli of complex transforms for higher-order spectral
techniques is non-traditional, as traditionally, in all known applications of higher-order
spectral techniques, the complex spectral components (not moduli of complex spectral
components) are used.

The main novel contributions are the theoretical development and investigation of
the proposed technologies. Further innovative contribution is the proposed capability
of fault diagnosis for non-steady functioning of complex assets via the employment of
non-stationary transforms for the proposed technologies.

2. The proposed technology, the cross-correlation of spectral moduli of order 3 (CCSM3),
is employed for the performance of experimental trials in bearing damage diagnosis by
MCSA. Experimental technology validations were carried out on 8 bearings: two bearings
with inner race early damage, two bearings with outer race early damage, and four pristine
bearings. In the “inner race damage” experiments, 28 different diagnosis features, averaged
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over three phases, were examined. In the “outer race damage” experiments, 4 different
diagnosis features, averaged over three phases, were examined.

Experimental trials were undertaken via the test rig, dedicated for IM testing. Motor
current signals were captured for 4 pristine and 4 damaged bearings. Experimental testing
of the proposed diagnostic technique via MCSA, has shown, that the technology very
effectively diagnosed bearing outer race and inner race faults at early stages of fault
development, i.e., average overall probabilities of correct diagnostics of outer race and
inner race damages were 98.0% and 98.6%, respectively.

3. For outer race experiments, local damage diagnostics were compared with local
damage diagnostics, achieved in [1], using the same experimental data capture from
damaged and undamaged bearings. Experimental comparison showed, that the CCSM3
was a more efficient signal processing technique than the triple spectral cross-covariance
technology proposed in ref [1]. Experimental gain in the Fisher criterion for the CCSM3, in
comparison with the technique in [1] is 4.4. It has been shown that the proposed CCSM3
technology allows essential decrease in the overall probability of error diagnosis, compared
with the triple spectral cross-covariance technology. These experimental comparison results
have shown that the proposed technology is superior to the current technology, based on
complex spectral components [1] for bearing fault diagnosis via MCSA and therefore, it is
an essential way forward for early damage diagnosis.

4. This study is foremost for damage diagnosis. The proposed cross-correlations of
spectral moduli, present a novel conceptualization and will make a considerable impact on
damage diagnosis for electrical and mechanical engineering, via motor current signature
analysis, vibration analysis, ultrasound analysis, etc.
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Appendix A

Table A1. List of spectral components used for inner race diagnosis.

Correlation Number i j k

1
3 −3 −3

6 −3 −3

9 −3 −3

2
3 −1 −3

6 −1 −3

9 −1 −3

3
3 1 −3

6 1 −3

9 1 −3
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Table A1. Cont.

Correlation Number i j k

4
3 3 −3

6 3 −3

9 3 −3

5
3 −3 −2

6 −3 −2

9 −3 −2

6
3 −1 −2

6 −1 −2

9 −1 −2

7
3 1 −2

6 1 −2

9 1 −2

8
3 3 −2

6 3 −2

9 3 −2

9
3 −3 −1

6 −3 −1

9 −3 −1

10
3 −1 −1

6 −1 −1

9 −1 −1

11
3 1 −1

6 1 −1

9 1 −1

12
3 3 −1

6 3 −1

9 3 −1

13
3 −3 0

6 −3 0

9 −3 0

14
3 −1 0

6 −1 0

9 −1 0

15
3 1 0

6 1 0

9 1 0

16
3 3 0

6 3 0

9 3 0
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Table A1. Cont.

Correlation Number i j k

17
3 −3 1

6 −3 1

9 −3 1

18
3 −1 1

6 −1 1

9 −1 1

19
3 1 1

6 1 1

9 1 1

20
3 3 1

6 3 1

9 3 1

21
3 −3 2

6 −3 2

9 −3 2

22
3 −1 2

6 −1 2

9 −1 2

23
3 1 2

6 1 2

9 1 2

24
3 3 2

6 3 2

9 3 2

25
3 −3 3

6 −3 3

9 −3 3

26
3 −1 3

6 −1 3

9 −1 3

27
3 1 3

6 1 3

9 1 3

28
3 3 3

6 3 3

9 3 3
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Table A2. List of spectral components, used for outer race diagnosis.

Correlation Number i j

1
4 −5

4 −3

4 −1

2
4 1

4 3

4 5

3
8 −5

8 −3

8 −1

4
8 1

8 3

8 5
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16. Gelman, L.; Soliński, K.; Ball, A. Novel instantaneous wavelet bicoherence for vibration fault detection in gear systems. Energies
2021, 14, 6811. [CrossRef]

17. Gelman, L.; Kolbe, S.; Shaw, B.; Vaidhianathasamy, M. Novel adaptation of the spectral kurtosis for vibration diagnosis of
gearboxes in non-stationary conditions. Int. J. Insight-Non-Destr. Test. Cond. Monit. 2017, 59, 434–439. [CrossRef]

18. Gelman, L.; Solinski, K.; Shaw, B.; Vaidhianathasamy, M. Vibration diagnosis of a gearbox by wavelet bicoherence technology. Int.
J. Insight-Non-Destr. Test. Cond. Monit. 2017, 59, 440–444. [CrossRef]

19. Corne, B.; Vervisch, B.; Derammelaere, S.; Knockaert, J.; Desmet, J. The reflection of evolving bearing faults in the stator current’s
extended park vector approach for induction machines. Mech. Syst. Signal Process. 2018, 107, 168–182. [CrossRef]

20. Silva, J.L.H.; Cardoso, A.J.M. Bearing failures diagnosis in three-phase induction motors by extended Park’s vector approach. In
Proceedings of the 31st Annual Conference of IEEE Industrial Electronics Society, 2005. IECON 2005, Raleigh, NC, USA, 6–10
November 2005.

21. Wang, C.; Wang, M.; Yang, B.; Song, K.; Zhang, Y.; Liu, L. A novel methodology for fault size estimation of ball bearings using
stator current signal. Measurement 2021, 171, 108723. [CrossRef]

22. Treetrong, J. Fault Detection and Diagnosis of Induction Motors Based on Higher-Order Spectrum. In Proceedings of the
International Multi Conference of Engineers and Computer Scientists, Honk Kong, China, 17–19 May 2010; Volume II.

23. Song, X.; Hu, J.; Zhu, H.; Zhang, J. A Bearing Outer Raceway Fault Detection Method in Induction Motors Based on Instantaneous
Frequency of the Stator Current. IEEJ Trans. Electr. Electron. Eng. 2018, 13, 510–516. [CrossRef]

24. Tulicki, J.; Sułowicz, M.; Pragłowska-Ryłko, N. Application of the Bispectral Analysis in the Diagnosis of Cage Induction Motors.
In Proceedings of the 2016 13th Selected Issues of Electrical Engineering and Electronics (WZEE), Rzeszow, Poland, 4–8 May 2016.
[CrossRef]

25. Zhao, D.; Gelman, L.; Chu, F.; Ball, A. Vibration health monitoring of rolling bearings under variable speed conditions by novel
demodulation technique. Struct. Control. Health Monit. 2020, 28, e2672. [CrossRef]

26. Gelman, L.; Patel, T.H.; Persin, G.; Murray, B.; Thomson, A. Novel technology based on the spectral kurtosis and wavelet
transform for rolling bearing diagnosis. Int. J. Progn. Health Manag. 2013, 4, 2153–2648. [CrossRef]

27. Gelman, L.; Murray, B.; Patel, T.H.; Thomson, A. Vibration diagnostics of rolling bearings by novel nonlinear non-stationary
wavelet bicoherence technology. Eng. Struct. 2014, 80, 514–520. [CrossRef]

28. Gelman, L.; Persin, G. Novel fault diagnosis of bearings and gearboxes based on simultaneous processing of spectral kurtoses.
Appl. Sci. 2022, 12, 9970. [CrossRef]

29. Zarei, J.; Poshtan, J. An Advanced Park’s Vectors Approach for Bearing Fault Detection. IEEE Int. Conf. Ind. Technol. 2006, 42,
213–219. [CrossRef]

30. Gao, Z.; Turner, L.; Colby, R.S.; Leprettre, B. Frequency Demodulation Approach to Induction Motor Speed Detection. IEEE Trans.
Ind. Appl. 2011, 47, 730–738. [CrossRef]

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://doi.org/10.1784/insi.2016.58.8.431
http://doi.org/10.1109/28.475697
http://doi.org/10.3390/en12214029
http://doi.org/10.1109/TII.2016.2641470
http://doi.org/10.1016/j.ymssp.2020.106908
http://doi.org/10.1016/j.ymssp.2019.06.010
http://doi.org/10.1109/TIE.2008.917108
http://doi.org/10.1016/j.ymssp.2004.10.001
http://doi.org/10.1784/insi.2016.58.8.409
http://doi.org/10.1243/09544100JAERO450
http://doi.org/10.1784/insi.2010.52.8.437
http://doi.org/10.1006/mssp.2000.1295
http://doi.org/10.3390/s21206913
http://www.ncbi.nlm.nih.gov/pubmed/34696126
http://doi.org/10.3390/en14206811
http://doi.org/10.1784/insi.2017.59.8.434
http://doi.org/10.1784/insi.2017.59.8.440
http://doi.org/10.1016/j.ymssp.2017.12.010
http://doi.org/10.1016/j.measurement.2020.108723
http://doi.org/10.1002/tee.22595
http://doi.org/10.1109/WZEE.2016.7800196
http://doi.org/10.1002/stc.2672
http://doi.org/10.36001/ijphm.2013.v4i2.2121
http://doi.org/10.1016/j.engstruct.2014.08.030
http://doi.org/10.3390/app12199970
http://doi.org/10.1109/ICIT.2006.372562
http://doi.org/10.1109/TIA.2011.2153813
http://mostwiedzy.pl


Electronics 2022, 11, 3885 35 of 36

31. Eren, L.; Karahoca, A.; Devaney, M.J. Neural network based motor bearing fault detection. In Proceedings of the 21st IEEE
Instrumentation and Measurement Technology Conference, Como, Italy, 18–20 May 2004; Volume 3, pp. 1657–1660. [CrossRef]

32. Eren, L.; Teotrakool, K.; Devaney, M.J. Bearing fault detection via wavelet packet decomposition with spectral post processing. In
Proceedings of the 2007 IEEE Instrumentation & Measurement Technology Conference IMTC 2007, Warsaw, Poland, 1–3 May
2007; pp. 1–4. [CrossRef]

33. Nikolaou, N.G.; Antoniadis, I.A. Rolling element bearing fault diagnosis using wavelet packets. NDT E Int. 2002, 35, 197–205.
[CrossRef]

34. Lou, X.; Loparo, K. Bearing fault diagnosis based on wavelet transform and fuzzy inference. Mech. Syst. Signal Process. 2004, 18,
1077–1095. [CrossRef]

35. Yaqub, M.F.; Loparo, K.A. An automated approach for bearing damage detection. J. Vib. Control. 2016, 22, 3253–3266. [CrossRef]
36. Yiakopoulos, C.; Antoniadis, I. Wavelet Based Demodulation of Vibration Signals Generated by Defects in Rolling Element

Bearings. In Proceedings of the ASME 2001 International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, Volume 6C: 18th Biennial Conference on Mechanical Vibration and Noise. Pittsburgh,
PA, USA, 9–12 September 2001; pp. 3187–3195. [CrossRef]

37. Dahiya, N.M.R. Detection of Bearing Faults of Induction Motor Using Park’s Vector Approach. Int. J. Eng. 2010, 1, 263–266.
38. Saeidi, M.; Zarei, J.; Hassani, H.; Zamani, A.; Majid, S. Bearing fault detection via Park’s vector approach based on ANFIS. In

Proceedings of the 2014 International Conference on Mechatronics and Control (ICMC), Jinzhou, China, 3–5 July 2014. [CrossRef]
39. Irfan, M.; Saad, N.; Ibrahim, R.; Asirvadam, V.S.; Alwadie, A. Analysis of distributed faults in inner and outer race of bearing via

Park vector analysis method. Neural Comput. Appl. 2019, 31, 683–691. [CrossRef]
40. Koteleva, N.; Korolev, N.; Zhukovskiy, Y.; Baranov, G. A Soft Sensor for Measuring the Wear of an Induction Motor Bearing by

the Park’s Vector Components of Current and Voltage. Sensors 2021, 21, 7900. [CrossRef] [PubMed]
41. Zarei, J.; Poshtan, J. An advanced Park’s vectors approach for bearing fault detection. Tribol. Int. 2009, 42, 213–219. [CrossRef]
42. Gyftakis, K.N.; Marques Cardoso, A.J.; Antonino-Daviu, J.A. Introducing the Filtered Park’s and Filtered Extended Park’s Vector

Approach to detect broken rotor bars in induction motors independently from the rotor slots number. Mech. Syst. Signal Process.
2017, 93, 30–50. [CrossRef]

43. Messaoudi, M.; Flah, A.; Alotaibi, A.A.; Althobaiti, A.; Sbita, L.; Ziad El-Bayeh, C. Diagnosis and Fault Detection of Rotor Bars in
Squirrel Cage Induction Motors Using Combined Park’s Vector and Extended Park’s Vector Approaches. Electronics 2022, 11, 380.
[CrossRef]

44. Bouslimani, S.; Drid, S.; Chrifi-Alaoui, L.; Bussy, P.; Ouriagli, M.; Delahoche, L. An extended Park’s vector approach to detect
broken bars faults in induction motor. In Proceedings of the 15th International Conference on Sciences and Techniques of
Automatic Control and Computer Engineering (STA), Hammamet, Tunisia, 21–23 December 2014.

45. Zhang, Q.X.; Li, J.; Bin Li, H.; Liu, C. Motor Broken-Bar Fault Diagnosis Based on Park Vector and Wavelet Neural Network. In
Advanced Materials Research; Trans Tech Publications, Ltd.: Stafa-Zurich, Switzerland, 2011; Volume 382, pp. 163–166.

46. Zarei, J.; Hassani, H.; Wei, Z.; Karimi, H.R. Broken rotor bars detection via Park’s vector approach based on ANFIS. In Proceedings
of the IEEE 23rd International Symposium on Industrial Electronics (ISIE), Istanbul, Turkey, 1–4 June 2014.

47. Guo, Q.; Li, X.; Yu, H.; Hu, W.; Hu, J. Broken Rotor Bars Fault Detection in Induction Motors Using Park’s Vector Modulus and
FWNN Approach. In International Symposium on Neural Networks; Springer: Berlin/Heidelberg, Germany, 2008; Advances in
Neural Networks—ISNN; pp. 809–821.

48. Estima, J.O.; Freire, N.M.; Cardoso, A.M. Recent advances in fault diagnosis by Park’s vector approach. In Proceedings of the
2013 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Paris, France, 11–12 March 2013.

49. Cruz, S.M.; Cardoso, A.M. Stator winding fault diagnosis in three-phase synchronous and asynchronous motors, by the extended
Park’s vector approach. IEEE Trans. Ind. Appl. 2001, 37, 1227–1233. [CrossRef]

50. Nejjari, H.; Benbouzid, M.E.H. Monitoring and diagnosis of induction motors electrical faults using a current Park’s vector
pattern learning approach. IEEE Trans. Ind. Appl. 2000, 36, 3. [CrossRef]

51. Wei, S.; Zhang, X.; Xu, Y.; Fu, Y.; Ren, Z.; Li, F. Extended Park’s vector method in early inter-turn short circuit fault detection for
the stator windings of offshore wind doubly-fed induction generators. IET Gener. Transm. Distrib. 2020, 14, 3905–3912. [CrossRef]

52. Sharma, A.; Chatterji, S.; Mathew, L. A novel Park’s vector approach for investigation of incipient stator fault using MCSA in
three-phase induction motors. In Proceedings of the International Conference on Innovations in Control, Communication and
Information Systems (ICICCI), Greater Noida, India, 12–13 August 2017.

53. Beesack, P. Inequalities for Absolute Moments of a Distribution: From Laplace to Von Mises. J. Math. Anal. Appl. 1984, 98, 435–457.
[CrossRef]

54. Winkelbauer, A. Moments and Absolute Moments of the Normal Distribution. arXiv 2014, arXiv:1209.4340.
55. Eriksson, J.; Ollila, E.; Koivunen, V. Statistics for complex random variables revisited. In Proceedings of the 34th IEEE International

Conference on Acoustics, Speech, and Signal Processing, Taipei, Taiwan, 19–24 April 2009; pp. 3565–3568. [CrossRef]
56. Eriksson, J.; Ollila, E.; Koivunen, V. Essential Statistics and Tools for Complex Random Variables. IEEE Trans. Signal Process. 2010,

58, 5400–5408. [CrossRef]
57. Ollila, E. On the Circularity of a Complex Random Variable. IEEE Signal Process. Lett. 2008, 15, 841–844. [CrossRef]
58. Nikias, C.L.; Mendel, J.M. Signal processing with higher-order spectra. IEEE Signal Process. Mag. 1993, 10, 10–37. [CrossRef]

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://doi.org/10.1109/IMTC.2004.1351399
http://doi.org/10.1109/IMTC.2007.379444
http://doi.org/10.1016/S0963-8695(01)00044-5
http://doi.org/10.1016/S0888-3270(03)00077-3
http://doi.org/10.1177/1077546314562621
http://doi.org/10.1115/DETC2001/VIB-21758
http://doi.org/10.1109/ICMC.2014.7232006
http://doi.org/10.1007/s00521-017-3038-0
http://doi.org/10.3390/s21237900
http://www.ncbi.nlm.nih.gov/pubmed/34883902
http://doi.org/10.1016/j.triboint.2008.06.002
http://doi.org/10.1016/j.ymssp.2017.01.046
http://doi.org/10.3390/electronics11030380
http://doi.org/10.1109/28.952496
http://doi.org/10.1109/28.845047
http://doi.org/10.1049/iet-gtd.2020.0127
http://doi.org/10.1016/0022-247X(84)90260-9
http://doi.org/10.1109/ICASSP.2009.4960396
http://doi.org/10.1109/TSP.2010.2054085
http://doi.org/10.1109/LSP.2008.2005050
http://doi.org/10.1109/79.221324
http://mostwiedzy.pl


Electronics 2022, 11, 3885 36 of 36

59. Memon, Q. Higher-order spectra computation using wavelet transform. In Proceedings of the SPIE—The International Society
for Optical Engineering, Orlando, FL, USA, 7 July 2000. [CrossRef]

60. Gelman, L.; Braun, S. The optimal usage of the Fourier transform for pattern recognition. Mech. Syst. Signal Process. 2001, 15,
641–645. [CrossRef]

61. Budny, K. Estimation of the Central Moments of a Random Vector Based on the Definition of the Power of a Vector, Statistics in Transition
New Series; Exeley: New York, NY, USA, 2017; Volume 18, pp. 1–20.

62. Gelman, L.; Ottley, M. New processing techniques for transient signals with nonlinear variation of the instantaneous frequency in
time. Mech. Syst. Signal Process. 2006, 20, 1254–1262. [CrossRef]

63. Gelman, L.; Gould, J.D. Time-frequency chirp-Wigner transform for signals with any nonlinear polynomial time varying
instantaneous frequency. Mech. Syst. Signal Process. 2007, 21, 2980–3002. [CrossRef]

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://doi.org/10.1117/12.391921
http://doi.org/10.1006/mssp.2000.1373
http://doi.org/10.1016/j.ymssp.2004.10.002
http://doi.org/10.1016/j.ymssp.2007.05.003
http://mostwiedzy.pl

	Introduction 
	The Cross-Correlations of Spectral Moduli 
	Experimental Setup and Technology Validation 
	Setup for Experimental Technology Validation 
	Local Inner Race Damage Diagnosis 
	Outer Race Local Damage Diagnosis 

	Conclusions 
	Appendix A
	References

