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Abstract—We introduce a numerical method for general coupled Korteweg-de Vries systems. The
scheme is valid for solving Cauchy problems for an arbitrary number of equations with arbitrary
constant coefficients. The numerical scheme takes its legality by proving its stability and convergence,
which gives the conditions and the appropriate choice of the grid sizes. The method is applied to
the Hirota-Satsuma (HS) system and compared with its known explicit solution investigating the
influence of initial conditions and grid sizes on accuracy. We also illustrate the method to show the
effects of constants with a transition to nonintegrable cases. (© 2003 Elsevier Science Ltd. All rights
reserved.

1. INTRODUCTION

Coupled Korteweg-de Vries (cKdV) system equations form a class of important nonlinear evo-
lution systems. Its importance comes (physically) from the wide application field it covers and
(mathematicaily) from including both (weak) nonlinearity and third-order derivatives (weak dis-
persion). It describes the interactions of long waves with different dispersion relations. Namely,
it is connected with most types of long waves with weak dispersion (w(k) — 0, k — 0), e.g.,
internal, acoustic, and planetary waves in geophysical hydrodynamics.

It was introduced by Maxworthy et al. [1] in studying the nonlinear atmosphere Rossby waves.
Hirota and Satsuma [2] give single- and two-soliton solutions to some version of the system. Dodd
and Fordy [3] found an L-A pair for Hirota-Satsuma equations. Leble derived the cKdV system
for different hydrodynamical systems with explicit expressions for the nonlinear and dispersion
constants [4]. He also developed the approach to the cKdV integration. Leble and Kshevet-
skii [4,5] used the system in investigation of nonlinear internal gravity waves. Perelomova [6]
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used it in description of interaction of acoustic waves with opposite directions of propagation in
liquids with bubbles.

Others deal with integrability of the system [3] from a Lax pair point of view, Leble [7] in
Walquist-Estabrook theory. Foursov (8] described a new method for constructing an integrable
system of differential equations that reduced to cKdV equations. Oevel [9] considers an integrable
system of ¢cKdV and found an infinite hierarchy of commuting symmetries and conservation laws
in involution. Zharkov [10] obtained a new class of integrable KdV-like systems. Gurses and
Karasu [11] found infinitely many coupled systems of KdV type equations which are integrable.
They also give recursion operators. In studying the Painlevé test classification of the system,
Karasu [12] found new KdV systems that are completely integrable in the sense of WT'C paper.
He was looking for the integrable subclass of KdV systems given by Svinolupov [13]. The latter has
introduced a class of integrable multicomponent KdV equations associated with Jordan algebras.
Weiss [14] derived the associated “modified” equations for the HS system, and from these the
Lax pair is also derived. Kupershmidt [15] showed that a dispersive system describing a vector
multiplet interacting with the KdV field is a member of a bi-Hamiltonian integrable hierarchy.

The significant achievement in numerical solution of the single KdV equation starts from the
famous paper of Zabusky and Kruskal [16]. It develops the idea of soliton solutions set for the
integrable equations and enlighten the problems of effective integration scheme elaborating. The
paper launched numerous investigations and inventions in this field. Perhaps the last publication
that develops applications of recent theoretical achievements in numerical integration schemes is
based on the notion of isospectral deformations [18]. Recently a multisymplectic twelve points
scheme was produced [17]. This scheme is equivalent to the multisymplectic Preissmann scheme
and is applied to solitary waves over a long time interval.

Zhu [19] had produced a difference scheme for the periodic initial-boundary problem of the
coupled KdV (Hirota-Satsuma case) system. He used the inner product of the discrete function
to obtain a scheme keeping two conserved quantities. His scheme is a nonlinear algebraic system
for which a catch-ran iterative method is designed to solve it.

The coupled KdV system representing most possible physical applications (related to the weak
nonlinear dispersion) to be considered in this work takes the following general form:

(6n), + cn (bn), + ngkn 0k (0m), + dn (00),,, =0, n,mk=1,2.3,...,N, (1)

k,m

where 6,,(z,t) is the amplitude of the wave mode as a function of space z and time t, respec-
tively. The constants ¢, are the linear velocities and gxkn, €n are the nonlinear and dispersion
coefficients.

In the present work, we introduce a numerical tool for solving a coupled KdV system which
is a development of the two-step three-time levels as Lax-Wendroff scheme [5,20]. Proving the
theorem about stability and convergence of the scheme gives the opportunity to use it for different
applications like Cauchy problems for arbitrary number of equations and a wide class of initial
conditions 6,(x,0). We consider in our problem an infinite domain while the initial condition
goes quickly enough to zero following the relation

/(1 +12)l6(z, 0)| dz = 0 < o0,

keeping in mind the choice of a smooth and integrable function. As an important corollary of
the theorem, one obtains conditions that have to be taken into account in choosing grid sizes.
This numerical method is checked by applying it to the HS system, for which a good number of
explicit solutions exist [21]. We examine also the effects of equations coeflicients and conditions
of the problem on the solution.

In Section 2, we introduce the difference scheme for an arbitrary number of coupled KdV
equations. We investigate stability and prove the convergence giving the condition has to be


http://mostwiedzy.pl

Coupled Korteweg-de Vries System 583

taken into account in choosing the grid sizes and how they are related. In Section 3, we analyze
the HS system with a two-parameters one-soliton explicit solution. The numerical method is
applied to the HS system and compared with the explicit solution. We analyzed the effects of the
two parameters and initial condition on the form of the resulting solitons as well as on accuracy
and show the results in figures. We also produced (numerically) a multisoliton solution for the
HS system and used the conservation law to estimate the expected number of solitons which
agreed that we already obtained. Proving stability and convergence besides testing the results
for the HS system allows us in Section 4 to use the scheme for the general cKdV system. Hence,
we illustrate by plots the results of applying the scheme to slightly nonintegrable cKdV systems
and others for a system with nonsmooth initial conditions.

2. THE NUMERICAL METHOD

2.1. The Difference Scheme

For the cKdV system (1), we introduce a numerical (finite-difference) method of solution, a
scheme which is two-steps three-time levels similar to the Lax-Wendroff one [5,20]. The usual
Lax-Wendroff is modified such that the order of the first derivative becomes of order O(Axz?).
The approximation of the nonlinear terms is changed in such a manner that the integral of #2
is a conserved one. The approach gives a solution that can be considered as some generalized
solution, in the sense of Schwartz distribution theory, where the dispersion constants vanish. This
scheme is suitable to nonlinear equations and is valid for n equations with arbitrary coeflicients.
The scheme can be simply derived beginning from Taylor series expansion as

(Bu)]7 = (0)] + At ((62))] + O [(A07], (2)
where i and ;7 are used to locate a point in the discrete domain and At is the time step, while
the subscript ¢t means time derivative. Substituting for (6,,); in (2) using system (1) to obtain

J
(627" = (Bn)] = At | ca (6a), + Y gmknbk (Om), +n (B)er | +0 [(A0F] . (3)
the difference scheme is elaborated applying the Lax idea for a half-time step and leapfrog method
to the remaining half-time step. In both steps, (8,), and (6,)zr. are replaced by fourth-order

O(Az*) and second-order accurate O(Az?) central difference expressions. Hence, (3) gives the
following difference scheme:

(wn)z“:;— R >z+1 H)+ngkn (©)! (6 )l; ()1 )

(4a)

+ ey

((9n)§+2 =2(0n){41 +2 (Gn)gq - (en)Z—2> cph?

oh3 =0, en = | dn — 6 )
where n, m, k are the modes numbers; 1 and j are discrete space and time, respectively. The time
step At is replaced for simplicity by 7 while & denotes spatial step. Equation (4a) is accompanied
with a discrete equation for the intermediate layer as

(@7 =67) () - 17)

+ Cn

T 2h
(ek)g+1/2 ((om).z_‘:ll/z (em).7+1/2)
+ ngkn oh (4b)
(@5 — 20,057 + 20070 - (0.)17)
+ en =0

2h3
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2.2. Stability and Convergence Analysis

For simplicity of the analysis, we start by considering one equation of the system and give the
details of stability and convergence. Then we apply the idea to the general cKdV system because
it is rather close to that for one KdV equation but more bulky.

2.2.1. Stability analysis for KdV scheme
Consider one KdV equation of system (1),

0, + cBy + 986, + dBpgy = 0. (5)

Note again that the investigation we perform can be generalized for the case of any finite number
of modes. Considering the numerical scheme applied for equation (5),

(93’+17_ eg) . (0{+12—h0{_1)

(9{+1 - 95—1) N (954-2 - 26{“ +207_, - 9?-2)
h € 2h3

+ gt =0. (6)

Let us select a suitable norm. For this, multiply equation (5) by  and integrate to yield

1 d © 2 o0 2
5% 6%dr =0 or #“ dx = const,

and hence, by definition of the Ly norm, (||f]|2)? = [° 62 dz, it may be written as (||6]|2)? =
const, i.e., the norm ||#||2 is conserved and the equation can be treated in the Ly norm.
Now we will prove stability with respect to small perturbations (because we consider nonlinear

equations) of initial conditions. Strictly speaking, it is the boundedness of the discrete solution
in terms of small perturbation of the initial data. So let us consider the differential

doitt =>" LA 6l = i-14,i41 7
7 - _ﬁj_— ) T‘—-‘-yl_ 71'71_‘_ PERIEIEE} ()
r T
for equation (5) denoting
(dgl_,)
J
: 8¢+t . deifl
e L
g .
@,
d013'+2 J

and use ||d67|| = (3_,.(d62)? h)1/2. Rewrite also relation (7) in the matrix form

A7t = T/ dol =TI+ TI a7t = [ 77 af°,

where df° is a small perturbation of initial data and the subscripts are omitted for simplicity.

Stability requires the boundedness of the product [], T" in a sense that the norm || [[. 77| is
bounded by some constant, i.e., || [[,77]| < C. Here, C is a constant, and the matrix norm is
a spectral norm. For this, the sufficient condition is ||T"|| < €*” where a is a constant, that is
independent of 7. The case ||T7|| < e¥{™M*" is a sufficient condition of stability also, but only if
la(r, h)| < const < oo. If |a(7, k)| < const, including 7, h — 0, for some dependence 7 = f(h),
then we can talk about conditional stability. Namely, this kind of stability will be established
below.
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To calculate T, rewrite scheme (6) in the form 67+' = 677(¢7,,,67,,,67,67_,,67_,). So,

(T4, = 8ir = (57 ) Borrr = Sicr) = (20) [6 Girrr = o) + 6 (60,0~ 61,

er
- (W) [5i+2,r - 25i+1,r + 251—1,7‘ - 61v2,7"] .

(8)

Rewriting (8) in terms of the identity (E), symmetric (S), and antisymmetric (A) matrices
Ti+l = F 4 S+ 4 A3+L,

!

(590, = (0 oo (L) 3 [~ ]
(A1), = == i = imral = 5 (84 841) uvnr = (60 4 60) 6o )

er
o3 [Oivzr — 20,41, + 2821 — b5-2.r],

I

) ,‘ Oii = M [0{-%1 - 95_1}

j+1 J /3 o
HS] “ S |g|T mzax( ez,i I ez,i (h) ) and z,0 (Zh) ’
+1)| < ol j| L | Slelr
47| < == max|6]) + == + =
one arrives at
TP = oy T = (- a5 (B a4 50
<1428+ (47 + [fs7 )’
« |, Ll | lel, 3lel)?
<1+42|glT max 8, + 72 (lgl max ;.| + 5, max 6 + 7t —h—s—)
< e, where a = 2|g| max |67 .| + 7 |g| max |67 +M max |6’ +H+% i
b ? z,i i z,i h i i h h3 3

which is a necessary condition of stability. The scheme is stable if ¢ < constant < oc in spite
of 7, h — 0. This is a conditional stability of the scheme. It means that it is required for stability
that 7 — 0 is faster than h — 0, or

7 < (constant). h®, constant < oco. 9)

Therefore, for small enough 7, we can simplify the expression for a

3¢\?
+ 7T —}.LE .
In practical calculations, the time step 7 should be chosen so that it would satisfy 7(3e/h%)%xty =
O(1), where t; is the time of simulation (0 < ¢ < ¢3). In the future, when we shall suggest some
better numerical scheme, we will essentially use our observation that stability depends only on

the dispersion terms. And now we will try to accomplish our short investigation of scheme (6)
by strongly proving the numerical scheme convergence.

a = 2|g| max

J
ez,i

2.2.2. The proof of the KdV scheme convergence

Now we prove that a solution of equation (6) converges to a solution of (5), if the exact
solution is a continuously-differentiable one. Let us denote by 8(x,t) a solution of equation (5).
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We substitute 67 = 8(z;,t;) + ! into (6); v/ is an error between the difference solution ¢/ and
the exact solution 6(z;,t;). We obtain the equation for v,

(vz“T— v!) X C(leQ—hvz_l) R (vzHQ—hvz_l) gy Bt~ o 1)
‘g (U{H - 'Ug—l) . (Uzj+2 - 2v], + 200 - Uzj—z)
* 2h 2h3
_ ((e(xi’tj-Fl)T_ 0z, t5)) +0(9($¢+1»tj)2“h9($z'~17tj)) +ge(%tj)(9($i+1,tj)2—h9(iﬂi—htj))
L (Bl@iia ty) = 29($i+17tj>2;329(mi—17tj) - 9(%—2’%‘))) .

Let us take into account that

Joo_ ]
j <U¢+1 Ui»l)

v T et + g6(zi, t;

(Ot — it
4 guy GEeenty) _Bleessty)

oo .J
)(UH-I ”Pl)

2h

J J J J
(”i+2 = 2up + 20 — Ui—2) 3 , .
_ F1y g
5 Kl = g (17 )i,c .

k

+e

Using the operator 77+! introduced above, this equation may be rewritten in the form
J+1 j+1 7 i i
(#7-swmat) ()
T + v 2h
- ((0($i,tj+1) = 6(zi,t5)) + C(G(Ii+latj) = 0(z;-1,t5))
T 2h

O(xiv1,t5) — 0(xi-1,t;
+99(3«"z,t])( (x1+17 J)Qh ('I 1 J))

(0(zir2,t5) — 20(Tit1,ty) +20(zi-1,t5) — 0(-Ti—2;tj))>
2h3 '

+ e

The right part of this relation is a quantity of order O(7 + h?). So, we can write

<v3+1 _ ; (T9+1)., vi) _ (vfﬂ _ qu) )
- + gu! o =0(7 +h?)

or

_ _ , . : Y
=S ol —rfl, =g BT 0 (r k). (10)
k

We finally arrive at the inequality that compares the norms

17 < A2 [0l +0 (7 4+ 42).

To explain how this estimate was obtained, follow the expressions
1/2

, O\ 2 g i\
1= (S)n) <w (S (ategt) ) voran)

1 i

(11)

1 (3

2 2 172
< gl (Z(vf) h*Z(v{) h) h—gl/—z+0(¢+h2).
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Using the Schwartz inequality || AB|| < || A||| B||, formulas (10) could be transformed as
o H < 7 H e+ 7 27 < W I+ (e 2+ 71D
B L e e T
+ 7 (N2 =+ 121D
S R Gl T Rl T B ) 12
< 9]+ M e (174

ea'r] _ 1

es” —1°

< e [0 + M (h_';% e RIS N

To derive (12), we have used the iteration of the first of formula (we substituted the formula into
itself, but for index less than 1) and using (11). Then we have utilized the formula for a sum of
geometric series. Further, the inequality obtained in (12) has a solution

(1 = VI=4M(gl/F7) (& o + MO(r + F)) )
(2M|gl/R3/2) '

o'+ <

If we take into account (9), and use ||v°] = 0, we obtain

o o (1~ V1= @Mgl/RT) MO (7 + h7))
I < (Mgl
- (1- (1 - (@M|gl/R¥)MO (7 + h?))) _ MO (r+h?).

(2M|gl/h3/2)

The constant M is bounded, in spite of j — oo, because of j7 < oo. Therefore, the convergence
is proved.

2.2.3. The coupled KdV scheme

The numerical scheme for the system of the cKdV (4.1),(4.2) is also conditionally stable and
convergent one. The proof for this scheme is close to that given before, but a bit bulky. We deal
with a vector

U:{g1 By - gN}t

as a dependent variable instead of the simple variable 8 in the case of one KdV. For this vector
case, the norm used has the form

N 1/2
iUl = (ZDW h) :

=1 1

The conditions connecting time and space steps for this scheme also look similar, but with different

constants
81 % 73

max(le,|) *
n

3. CHECKING THE NUMERICAL METHOD

The numerical method is tested by applying it to the Hirota-Satsuma system. Namely, the
two parameters one-soliton explicit solution is used [21].
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3.1. Analytic Solution (Explicit Formula) of Hirota-Satsuma System

Darboux transformation (DT} that accounts for a deep reduction for this specific HS case of
cKdV is used [21] to obtain explicit solutions to the HS system. The Lax representation of the HS
equations is based on the matrix 2 x 2 spectral problem of the second order. For this problem,
the deep reduction scheme [21] is applied (with the help of the conserved bilinear-forms) and
supports the constrains on the potential while the iterated DT are performed. The iterated DT
in determinant form and the covariance of the bilinear forms with respect to DT under restrictions

gives NV soliton solutions of the HS system. We use the system HS to check that the scheme has
the form

i

(61), —0.25 (61)5, — 1.5 (61), (61) + 3(62), (62)
(62), + 0.5 (82)5, + 1.5 (62), (61)

0, (13a)
0. (13b)

I

This system has a two-parameters one soliton solution

—2m? (~1 + d?® + 2d sin(\;) * sinh()2))
(dcos(A;) + cosh(Az))?
(24 2d2)0'5 m? -

#7 {dcos(A;) + cosh(X))’
A =05m* +ma  and

by =

)

Ag = 0.5m% — mx,

with real constants m, d. For small |d|, this solution is a smooth function, but for |d] > 1 poles
appear. The following figures show some choice of m and d to show the effect of these two

50 .
The first mode (u) 50 The second mode (v)
~—m=5, d=0 v ——m=5, d=0
- = =m=3, d=0 40 - = =m=3, d=0

-10

Figure 1. For a constant d, the amplitude is proportional to m while the wave width
is inversely proportional to m.

1 The first mode (u) 50 The second mode (v)
ual ~——m=5, d=0.5 v m=5, d=0.5
40} = = =m=5,d=0 40 = = =m=5, d=0
LN
3k 30!..
i
SR . P S
3 2 1 x 2 -3 1 x 2 3

4 ﬁ,
-10

ol

Figure 2. For the same m, d affects soliton shape, namely the first mode, while the

amplitude of the second mode is inversely proportional to d.
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parameters on the solution. Figure 1 shows that, for constant d, the amplitude is proportional
to m while the wave width is inversely proportional to it. Figure 2 shows that, for the given m,
d affects soliton shape, namely the first mode, while the amplitude of the second is inversely
proportional to d.

3.2. Calculations by Numerical Scheme and Comparison Results

HS system (13) is solved numerically using scheme (4) with initial condition from formula (14)
(t = 0), and the results are compared with the explicit solution. It is found that, keeping the
restriction on the choice of 7 and h and the relation between them, the initial wave modes
amplitude affects the accuracy of the results. Also, the error decreases as the mesh is refined.
Namely, smaller amplitude (of order one) gives better results as shown below in Figure 3. It gives
the percentage error calculated as follows:

|Explicit solution — Numerical solution]

E =
% Error Initial amplitude

We relate the error to the initial amplitude to show the physical significance of the error.

First mode, %Error, t=2 sec Second mode, %Error, t=2 sec
- A0=25, __Ao=3.4 _M=zg __Ao=34

44 !
- 3 : - 3 -
B 2 ; 2]
2 R

) MMA_AM
-10 10 -10 10

-5 0 -5 5
x (x=0 is the peak point) x (x=0 is thg peak point)

Figure 3. % error is proportional to the amplitude (A).

The plots show that the error is proportional to the amplitude (A), where as shown in the figure,
the maximum relative error in the case (A = 2) is 1% while in the case (4 = 3.4) is 3%. The
reason may be due to the higher velocity in the larger one, and hence, more interactions impact.
It also shows that the error increases near the peak points. The reason of these oscillations in
plot appearance is that the numerical and analytical plots intersect over the space domain.

4. APPLYING THE SCHEME
TO DIFFERENT APPLICATIONS

Stability analysis and checking performed on the scheme in the general cKdV equations give
the ability of using this scheme to solve other problems for which analytical solutions have not
been found. We first consider the multisoliton solution decay of the localized initial condition
for the single KdV equation of the HS system (Figure 4a) and then for the complete HS system
(Figure 4b). In both, we use the initial condition from formula (14) but with ten times the width
and twice the amplitude.

The second mode affects (interacts) the first one, which resuits in the right direction soliton-
like “tail” as shown in Figure 4b. We estimate, using the conservation low (derived below), the
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First KdV equation of HS system
\ __t=0
--t=8sec

-60 40 60

(a) The multisoliton decaying of the isolated (first) KdV of HS system (13a).

First mode, multi soliton of HS Second mode, multi soliton of HS
9 =0 9. __t=0
| --t=8sec i --- {=8sec
7 § 7
e '3
5 - o
.s 1

FEP s va—

(=

i B VO
S=mmee

— T

-60 -40 20 -1 o0x 20 40 60 -60 -40 20 16 x 20 40 60
(b) The multisoliton decaying of the complete HS system (13).
Figure 4.

expected number of solitons that are already obtained in the numerical solution as

B x (13.1) — 26, x (13.2)

d d

== [0.56% — 63] + - [~0.567 — 0.256010145 + 0.12503, — 8262,, + 0.563,] = 0,
6, and 6, — 0, as T — $00,
/ (0.567 — 63) dz = const.

Next we go to the solution of a nonintegrable HS system. The integrable HS system (13a,b) may
be shifted to a “slightly” nonintegrable one by a small change of the dispersion constant of the
first equation to have the new nonintegrable HS system

(61), — 0.2 (61)4, — 1.5 (61), (61) +3(62), (62) =0, (15a)

(62), + 0.5 (62);, + 1.5 (62), (61) =0. (15b)
Firstmode, __t=0 7 f. Second mode, __t=0 \
__t=6sec(integrable) 6 - . __t=6sec(integrable) 6 j

=== t=Gsec(non-integrable)d - ' === {—§sec(non-integrable)5
4 i 4 {
3- .'. ' 3 1 ','h ‘,‘
-10 -5 -1 iLx 5 10

Figure 5. The numerical solution of integrable and slightly nonintegrable HS system.
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. 8 First mode 8- Second mode
& . .
fi 7 . 1=0, === =2 sec T __ t=0, =t=2 sec
i 8
i 3
o 4
H : 3.
. . Y
H it ] N
AR
- 4 [ H i ’
-15 -10 5 1Y + ! s 10 15 20
Y
e o X

Figure 6. The numerical solution of nonsmooth initial condition for HS system (13).

Using our scheme with the initial condition from (14), we find that the scheme works satisfactorily

(in

the sense of convergence) even for the nonintegrable HS system as shown in Figure 5. The

solution looks like a soliton one for small time.
Also, the solution using a nonsmooth initial condition for HS system (13) is shown in Figure 6.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
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