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Abstract-we introduce a numerical method for general coupled Korteweg-deVries systems. The 
scheme is valid for solving Cauchy problems for an arbitrary number of equations with arbitrary 
constant coefficients. The numerical scheme takes its legality by proving its stability and convergence, 
which gives the conditions and the appropriate choice of the grid sizes. The method is applied to 
the Hirota-Satsuma (HS) system and compared with its known explicit solution investigating the 
influence of initial conditions and grid sizes on accuracy. We also illustrate the method to show the 
effects of constants with a transition to nonintegrable cases. @ 2003 Elsevier Science Ltd. All rights 
reserved. 

1. INTRODUCTION 

Coupled Korteweg-deVries (cKdV) system equations form a class of important nonlinear evo- 
lution systems. Its importance comes (physically) from the wide application field it covers and 
(mathematically) from including both (weak) nonlinearity and third-order derivatives (weak dis- 
persion). It describes the interactions of long waves with different dispersion relations. Namely, 
it is connected with most types of long waves with weak dispersion (w(k) --) 0, Ic -+ 0), e.g., 
internal, acoustic, and planetary waves in geophysical hydrodynamics. 

It was introduced by Maxworthy et al. [l] in studying the nonlinear atmosphere Rossby waves. 
Hirota and Satsuma [2] give single- and two-soliton solutions to some version of the system. Dodd 
and Fordy [3] found an L-A pair for Hirota-Satsuma equations. Leble derived the cKdV system 
for different hydrodynamical systems with explicit expressions for the nonlinear and dispersion 
constants [4]. He also developed the approach to the cKdV integration. Leble and Kshevet- 
skii [4,5] used the system in investigation of nonlinear internal gravity waves. Perelomova [6] 
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used it in description of interaction of acoustic waves with opposite directions of propagation in 
liquids with bubbles. 

Others deal with integrability of the system [3] from a Lax pair point of view: Leble [7] in 

Walquist-Estabrook theory. Foursov [8] described a new method for constructing an integrable 

system of differential equations that reduced to cKdV equations. Oevel [9] considers an integrable 

system of cKdV and found an infinite hierarchy of commuting symmetries and conservation laws 

in involution. Zharkov [lo] obtained a new class of integrable KdV-like systems. Gurses and 

Karasu [11] found infinitely many coupled systems of KdV type equations which are integrable. 

They also give recursion operators. In studying the Painlevi: test classification of the system, 

Karasu [12] found new KdV systems that are completely integrable in the sense of WTC paper. 

He was looking for the integrable subclass of KdV systems given by Svinolupov [13]. The latter has 

introduced a class of integrable multicomponent KdV equations associated with Jordan algebras. 

Weiss [14] derived the associated “modified” equations for the HS system, and from these the 

Lax pair is also derived. Kupershmidt [15] showed that a dispersive system describing a vector 

multiplet interacting with the KdV field is a member of a bi-Hamiltonian integrable hierarchy. 

The significant achievement in numerical solution of the single KdV equation starts from the 

famous paper of Zabusky and Kruskal [16]. It develops the idea of soliton solutions set for the 

integrable equations and enlighten the problems of effective integration scheme elaborating. The 

paper launched numerous investigations and inventions in this field. Perhaps the last publication 

that develops applications of recent theoretical achievements in numerical integration schemes is 

based on the notion of isospectral deformations [18]. Recently a multisymplectic twelve points 
scheme was produced [17]. This scheme is equivalent to the multisymplectic Preissmann scheme 

and is applied to solitary waves over a long time interval. 

Zhu [19] had produced a difference scheme for the periodic initial-boundary problem of the 

coupled KdV (Hirota-Satsuma case) system. He used the inner product of the discrete function 

to obtain a scheme keeping two conserved quantities. His scheme is a nonlinear algebraic system 

for which a catch-ran iterative method is designed to solve it. 

The coupled KdV system representing most possible physical applications (related to the weak 

nonlinear dispersion) to be considered in this work takes the following general form: 

(&), + cn (en), + -&?%kn Ok (&d,. + Al (in),,, = 0, n1m,Ic=1,2,3 . . .N. (I) 
k,m 

where &(z, t) is the amplitude of the wave mode as a function of space z and time t, respec- 

tively. The constants c, are the linear velocities and g&n, e, are the nonlinear and dispersion 

coefficients. 

In the present work, we introduce a numerical tool for solving a coupled KdV system which 

is a development of the two-step three-time levels as Lax-Wendroff scheme [5,20]. Proving the 

theorem about stability and convergence of the scheme gives the opportunity to use it for different 

applications like Cauchy problems for arbitrary number of equations and a wide class of initial 

conditions 0,(x, 0). We consider in our problem an infinite domain while the initial condition 

goes quickly enough to zero following the relation 

s (1 + Ixl)le(x, O)] dx = 0 < co, 

keeping in mind the choice of a smooth and integrable function. As an important corollary of 

the theorem, one obtains conditions that have to be taken into account in choosing grid sizes. 

This numerical method is checked by applying it to the HS system, for which a good number of 
explicit solutions exist [21]. We examine also the effects of equations coefficients and conditions 

of the problem on the solution. 
In Section 2, we introduce the difference scheme for an arbitrary number of coupled KdV 

equations. We investigate stability and prove the convergence giving the condition has to be 
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584 A. A. HALIM et al. 

2.2. Stability and Convergence Analysis 

For simplicity of the analysis, we start by considering one equation of the system and give the 
details of stability and convergence. Then we apply the idea to the general cKdV system because 
it is rather close to that for one KdV equation but more bulky. 

2.2.1. Stability analysis for KdV scheme 

Consider one KdV equation of system (l), 

Bt + CO, + g 88, + d&z,, = 0. (5) 

Note again that the investigation we perform can be generalized for the case of any finite number 
of modes. Considering the numerical scheme applied for equation (5), 

@+I - 0; e;+, - et1 
)+ge( j 

e;+, - ej_, 
) ( e:+, 

- 2e;+, + 2e;_, - e;_2) 

7 2h z 2h 
+e 

2h3 
= 0. (6) 

Let us select a suitable norm. For this, multiply equation (5) by &J and integrate to yield 

Id O3 
-- s ccl 

2dt --oo 
O2 da: = 0 or J O2 da: = const, 

--co 

and hence, by definition of the L2 norm, ( 118112)2 = J-“, O2 dx, it may be written as ( 118((2)2 = 
const, i.e., the norm IlOll 2 is conserved and the equation can be treated in the L2 norm. 

Now we will prove stability with respect to small perturbations (because we consider nonlinear 
equations) of initial conditions. Strictly speaking, it is the boundedness of the discrete solution 
in terms of small perturbation of the initial data. So let us consider the differential 

dg+’ = 
ae?+l Ec 1 - de:, ?“= _._, i-l,i,ifl,...) 

r ae; 
(7) 

for equation (5) denoting 

and use jld@II = (C,(d@)” h) li2. Rewrite also relation (7) in the matrix form 

where de0 is a small perturbation of initial data and the subscripts are omitted for simplicity. 
Stability requires the boundedness of the product n,. T’ in a sense that the norm )I n,, T’/I is 

bounded by some constant, i.e., II IJ.T’ll < C. Here, C is a constant, and the matrix norm is 
a spectral norm. For this, the sufficient condition is IlT’Ij < ea7 where a is a constant, that is 
independent of 7. The case llTrIj < e a(r&)*T is a sufficient condition of stability also, but only if 
la(r, h)l < const < 0;). If [a(~, h)l < const, including 7, h -+ 0, for some dependence T = f(h), 
then we can talk about conditional stability. Namely, this kind of stability will be established 
below. 
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Coupled Korteweg-de Vries System 585 

To calculate T’, rewrite scheme (6) in the form ez+’ = 19{+l(@ 93 0’ 19’ l9j ) so, 2+27 %fl’ il 2-l! 2-2 

(Tj+l),r = 6,,, - - &-l,Tl - (E) [e; (&+I,, - L-l,,) + hi,, (@+, - e:_,)] (8) 

Rewriting (8) in terms of the identity 
Tj+l = E + $+I + _,@+I 1 

(E)) symmetric (S), and antisymmetric (A) matrices 

F’“>,,, = -5 ((8: - @+,) b+l,r - (e{ - ef_,) bi_l,, + 2si,T [B;+, - ej_,]) 

{A’“),,, = -$ [&+I,, - &-I,,] - E ((ej + e:,,) &+l,, - (ef + e;l_,) 6,_1,r) 

- $ i6i+2,r - 2h+1,T + 2&-l,, - ~3_~,~] , 

IIS’+1ll 5 1917 my (l&l, I$$ ,’ ej,= [8:+1-e:] and e,j,= [si+1-Cl] 
5,2 (h) ’ x,2 (2h) ’ 

one arrives at 

llT’+11i2 = (/(T’+l)*T’+lll = II(E _ Aj+’ + $+l) (E + Aj+l + s3+l)ll 

5 1 + 2 IIs’+‘\/ + (IIAj+llj + Ils’“ll)” 

which is a necessary condition of stability. The scheme is stable if a 5 constant 5 00 in spite 
of T, h -+ 0. This is a conditional stability of the scheme. It means that it is required for stability 
that r --t 0 is faster than h -+ 0, or 

7 5 (constant). h6, constant < co. (9) 

Therefore, for small enough 7, we can simplify the expression for a 

In practical calculations, the time step 7 should be chosen so that it would satisfy r(3e/h3)2 * to = 
O(l), where to is the time of simulation (0 < t 5 to). In the future, when we shall suggest some 
better numerical scheme, we will essentially use our observation that stability depends only on 
the dispersion terms. And now we will try to accomplish our short investigation of scheme (6) 
by strongly proving the numerical scheme convergence. 

2.2.2. The proof of the KdV scheme convergence 

Now we prove that a solution of equation (6) converges to a solution of (5), if the exact 
solution is a continuously-differentiable one. Let us denote by 0(x, t) a solution of equation (5). 
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We substitute 0: = O(zc,, t3) + ~2 into (6); 1): is an error between the difference solution 6’: and 
the exact solution B(xi, tj). We obtain the equation for 212 1 

+ gvf 
$+1 - U2-l > ( vi,, - 274+, + 27J_, - vi-2 

+e > 
2h 2h3 

~_((o~x~,tlti)-B~x,,t~))+~~H~x,+~,t~)-~~x~-l,t~)) +g*jx,,tj)(B(xZ+11t))-Q(x2-11tJ)) 

7 2h 2h 

+ e(e(zi+Zj tj) - 2e(si+l,tj) + 2Q(2i-l~tj) - @(xi-2rtJ)) 
2h3 >- 

Let us take into account that 

j 
w,+1 

3 
- uv-1 > 

Vi+1 - qJ:-l 
+ gqxi, tj) 

> x,+1, tJ) - @(G-l, $1) 

2h 2h +gvp 2h 

Using the operator T j+’ introduced above, this equation may be rewritten in the form 

(eh, tj+d - Q(Xi, t3)) =- +c(8(Xi+l~tj) -0(Xx-l~tj)) 

+ @q:, tj) (O( 

2h 

xt+1> tj) - e(xi-1, tj)) 2h 

+ e(e(zi+2,tjj -2Q( 5 i+ , 1 tj) + 28(x4-1, tj) - qxz-2, tj)) 

2h3 >- 

The right part of this relation is a quantity of order O(r + h2). So, we can write 

+ gv: (v~+,-v~_l) =o( +h2) 
7 

2h 

or 
Vj+l = 1 (Tj+‘)& _ rfj z 7 

f’ = g21jv~+r - $1 _ 0 (r + h2) 
z z 2h (10) 

k 

We finally arrive at the inequality that compares the norms 

IIf3/j 5 -!& ll~‘/j~ + 0 (r + h2) hs/2 

To explain how this estimate was obtained, follow the expressions 

< I91 (c(v:)lh*~(~;)~h)~‘~$ f”kih2) 
i z 
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Coupled Korteweg-de Vries System 587 

Using the Schwartz inequality IIAB\( < [)A[\ 1jB11, f ormulas (10) could be transformed as 

< eaTi llw”ll + M ($ 11yi+3112 + 0 (7 + h2)) , M = 7-s. 

To derive (la), we have used the iteration of the first of formula (we substituted the formula into 
itself, but for index less than 1) and using (11). Then we have utilized the formula for a sum of 
geometric series. Further, the inequality obtained in (12) has a solution 

,l,i+l,I I (1 - ~‘1 - 4MM/h3/2) (ear lb~~ll + MO(7 + h2))) 
(2Wgl/h3’2) 

If we take into account (9), and use ]]zl’]] = 0, we obtain 

,./l - (4M(gl/h3/2)M0 (7 + h2)) 

(2Wgl/h3’2) 
~ (l - (l - (2Mki/h3’2)M0 (‘+ h2))) = M * 0 (T + h2), 

(2Mld/h3’2) 

The constant M is bounded, in spite of j + co, because of jr < M. Therefore, the convergence 
is proved. 

2.2.3. The coupled KdV scheme 

The numerical scheme for the system of the cKdV (4.1),(4.2) is a so 1 conditionally stable and 
convergent one. The proof for this scheme is close to that given before, but a bit bulky. We deal 
with a vector 

u = { L9i 65 ” olv}t 

as a dependent variable instead of the simple variable 0 in the case of one KdV. For this vector 
case, the norm used has the form 

IlUll = (~JQl,J’h)1’2 

The conditions connecting time and space steps for this scheme also look similar, but with different 
constants 

my(lenl) 
81 *r3 * 4*h12 * to = O(1). 

3. CHECKING THE NUMERICAL METHOD 

The numerical method is tested by applying it to the Hirota-Satsuma system. Namely, the 
two parameters one-soliton explicit solution is used [21]. 
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Coupled Korteweg-de Vries System 589 

parameters on the solution. Figure 1 shows that, for constant d, the amplitude is proportional 
to m while the wave width is inversely proportional to it. Figure 2 shows that, for the given m, 
d affects soliton shape, namely the first mode, while the amplitude of the second is inversely 
proportional to d. 

3.q. Calculations by Numerical Scheme and Comparison Results 

HS system (13) is solved numerically using scheme (4) with initial condition from formula (14) 
(t = 0), and the results are compared with the explicit solution. It is found that, keeping the 
restriction on the choice of T and h and the relation between them, the initial wave modes 
amplitude affects the accuracy of the results. Also, the error decreases as the mesh is refined. 
Namely, smaller amplitude (of order one) gives better results as shown below in Figure 3. It gives 
the percentage error calculated as follows: 

% Error = 
IExplicit solution - Numerical solution] 

Initial amplitude 

We relate the error to the initial amplitude to show the physical significance of the error. 

First mode, %Error, t=2 set 

_ Aod5, _ Ao=3.4 

47 

Second mode, %Error, t=2 set 

Aos2 
b-Ao=3.4 

1 
4: 

,-..,+&.-.-., ,----_./_ 

x&O is the p!!ak point) 
5 10 -10 -5 

x (x=0 is &peak point)5 
10 

Figure 3. % error is proportional to the amplitude (A). 

The plots show that the error is proportional to the amplitude (A), where as shown in the figure, 
the maximum relative error in the case (A = 2) is 1% while in the case (A = 3.4) is 3%. The 
reason may be due to the higher velocity in the larger one, and hence, more interactions impact. 
It also shows that the error increases near the peak points. The reason of these oscillations in 
plot appearance is that the numerical and analytical plots intersect over the space domain. 

4. APPLYING THE SCHEME 
TO DIFFERENT APPLICATIONS 

Stability analysis and checking performed on the scheme in the general cKdV equations give 
the ability of using this scheme to solve other problems for which analytical solutions have not 
been found. We first consider the multisoliton solution decay of the localized initial condition 
for the single KdV equation of the HS system (Figure 4a) and then for the complete HS system 
(Figure 4b). In both, we use the initial condition from formula (14) but with ten times the width 
and twice the amplitude. 

The second mode affects (interacts) the first one, which results in the right direction soliton- 
like “tail” as shown in Figure 4b. We estimate, using the conservation low (derived below), the 
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First KdV equation of HS system 

i 

-60 -40 -20 ox 20 40 60 

(a) The multisoliton decaying of the isolated (first) KdV of HS system (13a). 

First mode, multi soliton of HS Second mode, multi soliton of HS 

-16 x 20 40 60 

(b) The multisoliton decaying of the complete HS system (13) 

Figure 4 

expected number of solitons that are already obtained in the numerical solution as 

~9~ x (13.1) - 264 x (13.2) 

=+ ; [0.5@ - 0;] + & [-0.58; - 0.25816$,, + 0.125& - e2e2zz + 0.5eQ = 0, 

Q1 and Q2 + 0, as z + foe, 

J irn (0.58; - 8;) da: = const. 

Next we go to the solution of a nonintegrable HS system. The integrable HS system (13a,b) may 
be shifted to a “slightly” nonintegrable one by a small change of the dispersion constant of the 
first equation to have the new nonintegrable HS system 

Firstmode, _1=0 
_t=6sec(integrable) 

(W, - 0.2 (e,),, - 1.5 (4), (4) + 3 (e,), (0,) = 0, (15a) 

(e,), + 0.5 (e,),, + 1.5 (e2), (4) = 0. 05b) 

2 
!! 
:: 
!: 

Second mode, _t=O 
7 

_t=6sec(integrable) 

___ t=6sec(non-integrablep -- 1=6sec(nonGntegrable)6 4 

7 
-10 -5 

Figure 5. The numerical solution of integrable and slightly nonintegrable HS system 
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Coupled Korteweg-de Vries System 591 

a 
7 

First mode 

__t=O, -- t=2 set 

Second mode 

_ t=O, ---t=2 set 

::_,i - x 

Figure 6. The numerical solution of nonsmooth initial condition for HS system (13). 

Using our scheme with the initial condition from (14), we find that the scheme works satisfactorily 

(in the sense of convergence) even for the nonintegrable HS system as shown in Figure 5. The 

solution looks like a soliton one for small time. 

Also, the solution using a nonsmooth initial condition for HS system (13) is shown in Figure 6. 
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