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Abstract  

The paper presents results of theoretical and numerical investigation of guided wave propagation in two-

layer bars with geometric imperfections in the form of eccentric location of steel core. Steel rod of diameter 

equal to 1 cm embedded in composite mortar-type cover with external diameter equal to 5 cm has been taken 

into consideration. Several different rods with variable size of eccentricity are analysed. Results for rods with 

misalignment of the cover and the core are presented as dispersion curves which were calculated using SAFE 

method (semi-analytical finite element) and compared with results obtained for perfect axisymmetric rod. 

Moreover, numerical calculation for several cases of imperfect rods were conducted and results given in the 

form of displacements and accelerations maps and time-domain signals. 
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ANALIZA NUMERYCZNA WPŁYWU MIMOŚRODU RDZENIA NA PROPAGACJĘ  

FALI W PRĘCIE OSADZONYM 
 

Streszczenie 

Praca przedstawia wyniki analizy teoretycznej oraz numerycznej dotyczącej propagacji fal prowadzonych 

w prętach dwuwarstwowych z imperfekcjami geometrycznymi w postaci niecentrycznego położenia 

stalowego rdzenia. Pod uwagę wzięto pręt stalowy o średnicy 1 cm osadzony w warstwie materiału 

kompozytowego typu zaprawa o zewnętrznej średnicy równej 5 cm. Przeanalizowano kilka różnych 

przypadków mimośrodowego położenia pręta. Wyniki zarówno dla pręta bez imperfekcji, jak i dla prętów, 

dla których rdzeń i otulina nie są położone współosiowo zostały przedstawione w postaci krzywych dyspersji 

uzyskanych za pomocą metody SAFE (semi-analytical finite element). Ponadto, przeprowadzone zostały 

obliczenia numeryczne, a wyniki przestawione zostały w postaci przemieszczeń i przyspieszeń wywołanych 

ruchem falowym oraz sygnałów czasowych.  

 

Słowa kluczowe: propagacja fal sprężystych, nieniszcząca diagnostyka, mimośród, pręt osadzony 

 

1. INTRODUCTION 

 

In recent years interest in nondestructive 

methods of structures diagnosing has increased 

substantially. Noninvasive diagnostic methods 

allow for fast, low-cost monitoring of large areas of 

structure without compromising its integrity. 

One of the most popular nondestructive 

approach is method based on guided wave 

propagation. Since elastic wave potential for 

diagnostic evaluation has been recognized in 1951 

by Firestone and Ling [1], number of papers has 

been devoted to possible applications of guided 

waves in defects detection. The main advantage of 

nondestructive methods based on wave propagation 

is a possibility to detect and localize even small 

damages during single measurement. Wave 

propagation has been also successfully used in 

diagnostics several types of engineering and 

mechanical objects. However, because of 

insignificant reduction in signal amplitude during 

propagation, guided waves are particularly 

attractive diagnostic tool in the case of monitoring 

long objects like beams, rods, rails and pipes. 

Palacz et al. detected an additional mass of the rod 

[2]. Time reversal method and spectral element 

method in diagnostics of rodlike structures were 

used by Lucena and Dos Santos [3]. Tse and Wang 

[4] detected circumferential notches in pipes and 

investigated the influence of their depth on wave 

behaviour. The influence of pipe bends on wave 

propagation was analyzed by Sanderson et al. [5]. 

Corrosion damage in pipelines was detected by 

Lowe et al. [6]. Damage detection in rails using 

ultrasonic methods was considered by Zumpano 

and Meo [7]. Rail integrity was the topic of interest 

of Mariani et al. [8], who proposed high-speed, 

noncontact monitoring system based on wave 

propagation.  

Special attention was also paid to wave 

propagation in embedded waveguides. Metal rods 

embedded in material characterized by different 
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properties were research objects of many scientists. 

Theoretical works about guided waves in 

multilayered bars were published by Armenakas 

[9], Baltrukonis [10], Thurston [11] and many 

others. One of common example of embedded 

waveguide is steel rod covered with concrete or 

mortar. It is one of the most frequently used 

material for civil engineering applications. Concrete 

with various steel inserts like bars, wires, strings, 

cables and nets is used for construction of 

buildings, bridges, dams or silos and for this reason 

its effective diagnosis attracts interest of researchers 

and engineers. Diagnostics of embedded 

waveguides using guided wave propagation was 

considered by Pavlakovic [12]. He conducted 

numerically and analytically damage detection of 

the anchorages of tendons of post-tensioned 

bridges. Epoxy bonded rock bolts were objects of 

research of Beard et al. [13]. They analysed wave 

mode sensitivity to material and geometry changes. 

In [14] they investigated wave attenuation in 

embedded tendons. Zou and his team published a 

series of works on influence of quality of the grout 

forming outer cover [15], curing time [16], 

excitation frequency [17] and missing grout [18] on 

wave propagation in laboratory models of rock 

bolts. Zima and Rucka presented [19],[10] detailed 

description of wave propagation phenomenon in 

damaged multilayered rod and they proved that 

elastic waves can be used to detect debonding 

between steel rod and the cover. 

In most reported works the investigated objects 

are considered as perfectly axisymmetric while real 

objects are associated with geometric 

imperfections. An embedded waveguide is usually 

located eccentrically. Meanwhile, the presence of 

geometric imperfections like deviation form axial 

symmetry may significantly affect on wave 

propagation signals and in consequence prevent 

correct results interpretation. 

This work contains the results of theoretical and 

numerical investigation of wave propagation in 

embedded waveguide with geometric 

imperfections. The two-layer models with variable 

eccentricity of the steel rod were considered. The 

results are presented as dispersion curves which 

were calculated using software GUIGUW 

(Graphical User Interface for Guided Ultrasonic 

Waves) based on semi-analytical finite element 

method (SAFE). SAFE allows to track dispersion 

curves for arbitrary cross sections when analytical 

solution is unknown. Moreover, numerical 

calculations using finite element programme 

Abaqus/Explicit have been performed and the 

results are presented in the form of acceleration and 

displacements maps. The results obtained for 

perfect axisymmetric rod and rods with 

misalignment of the core and the cover are 

compared. 

 

 

2. MODEL OF THE COVERED BAR 

 

Geometry of the investigated two-layer bar 

models are presented in Fig. 1. The analysis 

concerns steel bar (E = 210 GPa; v= 0.3; 

ρ = 7850 kg/m3) with dimeter equal to 1 cm 

embedded in mortar cover (E = 10 GPa; v= 0.2; 

ρ = 2000 kg/m3). The external diameter of the rod 

equals to 5 cm. The analysis included one perfectly 

axisymmetric bar and five bars with imperfect 

eccentric steel rod location. Damping effects were 

neglected. The exemplary mesh of two-layer model 

of rod without imperfections performed in 

GUIGUW is given in Fig. 2. 

 

 

 

Fig. 1. Model of bar embedded in concrete 

cover a) without geometric imperfections and 

b) with variable eccentricity of the inside 

steel rod 

 

 

Fig. 2. Discretized cross section of two-layer 

cylindrical bar (yellow – steel; red – mortar) 
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4. DISPERSION CURVES 

 

In general, guided waves are dispersive which 

means that their velocity depends on excitation 

frequency. The relation between frequency and 

group velocity is usually presented in the form of 

dispersion curves. Determining the shape of the 

dispersion curves for the investigated cross-section 

is crucial aspect, necessary in subsequent stages of 

the nondestructive monitoring process. Tracing 

dispersion curves requires solution of dispersion 

equation. In the case of multilayered systems 

stresses and displacements can be expressed in the 

terms of amplitudes of partial waves existing in 

each layer. The assumption about the continuity of 

stresses and displacements at the common 

boundaries lead to global matrix equation: 

 0GA  (1) 

where G is global matrix and A is vector of partial 

wave amplitudes. Nontrivial solution of partial 

wave amplitudes vector A can be obtained when the 

following condition is satisfied: 

 det 0G  (2) 

Equation (2) is characteristic equation and its roots 

give dispersion curves. The full derivation of 

dispersion equation for multilayered systems is well 

documented in literature e.g. [12],[21],[22]. 

However, analytical solution can be formulated 

only for flat or cylindrical, axisymmetric layers. For 

more complex cross sections it is necessary to use 

numerical approach e.g. semi-analytical finite 

element method (SAFE) [23], wave finite element 

method (WFE) [24] or scale-boundary finite 

element method (SBFE) [25] to obtain dispersion 

curves. 

 

 

 

Fig. 3. Dispersion curves for bar embedded in concrete cover a) without geometric imperfections  

and with eccentricity equals to b) 1 mm, c) 5 mm, d) 10 mm, e) 15 mm, f) 19.9 mm
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Figure 3 presents the dispersion curves for 

healthy covered bar and bars with deviation from 

axial symmetry obtained using software GUIGUW 

and PCDISP. Out of consideration for readability 

dispersion curves were determined in limited 

frequency range 0-50 kHz. From the practical point 

of view, waves are usually excited in embedded 

metal waveguide and then are transmitted into 

surrounding medium [26]. In the case of eccentric 

location, waves are also excited non-centrally, what 

leads to excitation not only longitudinal modes, but 

also flexural modes. For this reason, all modes 

families, flexural, longitudinal and also torsional 

are considered here. Colored lines are dispersion 

curves for rod without eccentricity, while 

dispersion curves for imperfect rods are marked by 

black color. It can be seen that eccentric location of 

the steel waveguide affects dispersion solution. The 

influence of geometric imperfection is the most 

significant in the case of longitudinal modes. For 

the rod with relatively small imperfection 

(eccentricity equals to 1 mm what is 2% of the 

diameter or the rod – Fig. 1b) changes in waves 

velocity can be neglected but with the increasing of 

eccentricity the differences between dispersion 

curves are more and more significant. 

In general, wave velocity decreases with the 

imperfection size in the entire analyzed frequency 

range. Since wave propagation velocity is usually a 

key parameter in diagnostics process, changes in 

wave velocities may lead to inaccurate estimation 

of those quantities that can be determined on the 

basis of time-of-flight (ToF) during nondestructive 

evaluation of two-layer rods i.e. bonding length or 

debonding length [19],[26]. To minimize the 

influence of eccentricity on the obtained results one 

can choose frequency which is insensitive to this 

kind of imperfections. In the case of longitudinal 

modes one can see that starting point of the first 

dispersion curve remains stationary regardless of 

the level of the damage (Fig. 3b). Then, choosing 

relatively low frequencies in practice allows to omit 

the influence of the waveguide eccentricity on 

registered signals. 

Torsional and flexural modes proved to be less 

sensitive to the eccentricity of covered waveguide 

than longitudinal modes. Some differences in 

curves course for variable damage level seem to be 

negligible. In the case of first flexural mode, 

changes in dispersion curve course are found only 

for the extreme case of waveguide location (Fig. 

1b) when the minimal thickness of the cover was 

equal to 1 mm (Fig. 3f). For the other flexural 

modes changes in velocities are apparent, however 

they are not as clear as in the case of longitudinal 

modes. 

The torsional mode turned out to be the least 

sensitive to waveguide eccentricity. However, its 

application in the diagnostic process is difficult 

because of technical problems with an excitation, 

especially in specimens of big sizes. 

5. NUMERICAL INVESTIGATIONS 

 

3.1. Numerical model 

Numerical calculations were performed by 

means of commercial programme Abaqus/Explicit 

based on Finite Element Method. Eight-node brick 

finite elements with reduced integration (C3D8R) 

were applied here. The analysis was conducted for 

a 1 cm diameter steel rod embedded in mortar cover 

with a thickness equal to 2 cm. The same material 

parameters were adopted as in the case of the 

analytical model: for steel E = 210 GPa, v = 0.3, ρ = 

7850 kg/m3 and for the mortar E = 10 GPa, v = 0.2, 

ρ = 2000 kg/m3. The length of the specimen was 

equal to 0.5 m. 

Three different models were investigated 

numerically: rod without geometric imperfections 

(model #1), model with off-center position of steel 

core and eccentricity equal to 10 mm (model #2) 

and eccentricity equal to 19.9 mm (model #3). 

Waves were excited and registered at the middle 

point of the steel rod, in the longitudinal and 

perpendicular directions. It results in excitation of 

both longitudinal and flexural modes. Wave 

excitation and signal registration were realized at 

the opposite ends of specimen. 

The wave packet consisted of ten-cycle sine 

with a carrier frequency equal to 50 kHz modulated 

by the Hanning window. The excitation frequency 

was chosen because of its sensitivity to eccentricity 

of the steel core (see Fig. 3). The maximum 

element size (1 × 1 × 1 mm3) and the time 

integration step (10-7 s) were established on the 

basis on the wavelength and wave velocity. 

 

3.2. Numerical results 

 

Results of numerical calculations are presented 

in the form of the displacements and accelerations 

maps and wave propagation signals registered at the 

end of specimen. 

Figure 4 presents the comparison of snapshots 

of propagating wave for three different cases for the 

selected time instants. The first column contains 

snapshots for model #1, the second for model #2 

and the third for model #3. Wave is excited in metal 

core, so for rods with an artificial eccentricity 

disturbance starts propagating closer to the 

specimen edge (t=0.02 ms). In the case of perfect 

specimen deformation caused by disturbance 

travelling is axisymmetric (model #1 – case a, t=0.1 

ms), while for the other two models immediately 

after the wave is excited, a distinct asymmetry of 

deformation is visible (cases b and c for t=0.01 ms 

and t=0.016 ms). The violating of axial symmetry 

of propagating deformation is definitely more 

visible in the case of the greater geometric 

imperfection. 

The results in the form of maps allow to observe 

that wave velocity differs for particular models.  
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Fig. 4. FEM results of wave propagation in embedded waveguide for selected time instants: a) model #1  

without geometric imperfection; b) model #2 with eccentricity of 10 mm and c) model #3 with eccentricity of 19.9 mm 

 

 

Fig. 5. Numerical time-domain acceleration signals registered at the end of: a) model #1 without geometric imperfection;  

b) model #2 with eccentricity of 10 mm and c) model #3 with eccentricity of 19.9 mm for longitudinal excitation 
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Fig. 6. Numerical time-domain acceleration signals registered at the end of: a) model #1 without geometric imperfection;  

b) model #2 with eccentricity of 10 mm and c) model #3 with eccentricity of 19.9 mm for flexural excitation 

 

 

The reflection from the end of specimen is 

registered at t=0.3 ms for model #1 (Fig. 4a), while 

for the other two cases wave reflects later but the 

difference in their time-of-flight is not considerable. 

Then, one can conclude that wave velocity is lower 

for rods with eccentricity what is consistent with 

the results of the theoretical analysis and the course 

of dispersion curves (compare Fig. 3).  

Another difference between rods with and 

without imperfection is the clarity of the separated 

modes. In the case of the undamaged, axisymmetric 

rod two longitudinal modes can be easily indicated, 

the faster one is characterized by higher amplitude 

(Fig. 4, case a, t=0.3 ms). For the model #2 and #3 

it is difficult to unambiguously indicate particular 

wave modes. As a result, the phenomenon is more 

difficult to interpret. 

Figure 5 and 6 presents results in the form of 

time-domain signals for variable level of deviation 

from axial symmetry. Figure 5 contains the results 

for the longitudinal excitation while Fig. 6 concerns 

perpendicular excitation. 

In both cases first reflection from the end of the 

specimen is registered in different times for perfect 

and imperfect rods. As was proved in papers 

[19],[20] and [26] when for the analyzed excitation 

frequency more than one wave mode can propagate, 

mode with the highest velocity is registered first. 

Usually, from the point of view of the diagnostic 

procedure, this reflection is the most important as 

reflection which is characterized by the high 

amplitude and is the easy to identify. Rod 

eccentricity influences on dispersion curves courses 

and in consequences changes the time-of-flight of 

particular reflections. The presence of eccentricity 

of steel waveguide may lead to inappropriate 

estimation of the wave velocity which in turn may 

result in incorrect determination of e.g. geometric 

parameters. 

However, on the basis of dispersion curves 

steady velocity decrease of the longitudinal wave is 

expected, meanwhile disturbance caused by wave 

motion is registered earlier for the rod with 

imperfection of 19.9 mm than for imperfection of 

10 mm (compare Fig. 5b and 5c). A possible 

explanation of this fact may be the surface wave 

propagation. (Fig. 7). As the imperfection 

decreases, wave is excited closer to the outer 

surface what leads to inducing not only flexural and 

longitudinal modes, but also Rayleigh wave. 

Rayleigh wave characterized by high wave velocity 

is not taken into account in the dispersion solution 

(Fig. 3). In previously mentioned papers [26] it was 

proved that surface wave propagation can be 

effectively used in a dimension estimation e.g. 

thickness of the cover of a partially embedded bar, 

but in some cases also it can strongly affect the 

time-domain signals and consequently, prevent 

their use in the diagnostic procedure. 

Surface wave propagating in the model with 

imperfection of 19.9 mm was identified in Fig. 7. 

Particular amplitude changes indicative of Rayleigh 

wave propagation after the longitudinal excitation 

were identified and marked in signals in Fig. 5.  
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Fig. 7. Surface wave propagation in 

embedded waveguide with eccentricity of 

19.9 mm (model #3) 

 

The results in the form of signals for the flexural 

wave propagation are presented in Fig. 6. For the 

subsequent bars the first peak are registered later, 

so the velocity of the fastest flexural mode 

decreased. The difference in velocities is less 

significant than for the longitudinal modes because 

of lower sensitivity to this type of imperfections. 

Additionally, for the flexural time-domain signals it 

is difficult to isolate the wave package representing 

surface wave propagation. 

Waveguide eccentricity has an impact not only 

on wave velocity but also on the signal amplitude 

and shape. Despite applying the identical load in 

numerical model, signal amplitude decreased with 

an eccentricity for the longitudinal excitation and 

increased for the flexural excitation. Therefore, the 

presence of imperfection may require the use of 

high-energy excitation, which is a particular 

problem in the case of non-destructive testing of 

large sized objects. 

 

7. CONCLUSIONS 

 

The paper presents results of numerical and 

analytical investigation in the field of wave 

propagation in embedded specimen with artificially 

introduced geometric imperfection in the form of 

off-center position of the steel waveguide. First, the 

influence of variable level of geometric 

imperfection is analysed by comparing course of 

the dispersion curves. Next, numerically obtained 

deformations caused by wave motion and time-

domain signals are compared.  

Both, the dispersion curves and the results of 

numerical calculations for variable imperfection 

allowed to observe the impact of imperfection size 

on wave propagation velocity. Larger changes in 

wave velocity were noted for the longitudinal than 

the flexural modes due to their different sensitivity 

to damages in the form of eccentricities.  

The off-center position of embedded waveguide 

has also influence on shape and amplitude of 

recorded signals. Due to the fact that wave velocity 

and signal amplitude are often key parameters used 

in the diagnostic process that allow to determine 

e.g. geometric parameters or quality of adhesive 

bonding between layers, not taking into account the 

possibility of geometrical imperfection may lead to 

significant disturbance in the results interpretation. 
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