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Abstract The chapter concerns numerical issues encountered when the pipeline
flow process is modeled as a discrete-time state-space model. In particular, issues
related to computational complexity and computability are discussed, i.e., simula-
tion feasibility which is connected to the notions of singularity and stability of the
model. These properties are critical if a diagnostic system is based on a discrete
mathematical model of the flow process. The starting point of the study is deter-
mined by the partial differential equations obtained from the momentum and mass
conservation laws by using physical principles. A realizable computational model
is developed by approximation of the principal equations using the finite difference
method. This model is expressed in terms of the recombination matrix A which is
the key of the analysis by taking into account its possible singularity and stability.
The nonsingularity of the matrix A for nonzero and finite, time and spatial steps is
proven by the Lower-Upper decomposition. A feature of the discrete model allows
the derivation of a nonsingular aggregated model, whose stability can be analyzed.
By considering the Courant-Friedrichs-Lewy condition and data from experimental
studies, numerical stability conditions are derived and limitations for the feasible
discretized grid are obtained. Moreover, the optimal relationship between the time
and space steps which ensures a maximum stability margin is derived. Because the
inverse of matrix A, composed of four tridiagonal matrices, is required for the main
diagnosis methods, two analytical methods for the inversion are discussed which re-
duce the system’s initialization time and allow designing an accurate and fast diag-
nosis algorithm. By considering that each inversion method generates its particular
structure, two different flow models are generated: one based on auxiliary variables
and the other suitable if the stability condition of A is satisfied. The applicability of
the two models is shown by considering the norm of the difference between their
behaviors for a finer discretization grid. A similarity measure is proposed which
considers the number of pipeline segments as well as the ratio between the time and
spatial steps. Thus, the system’s computational efficiency is improved and satisfac-
tory results are shown with respect to the base model, if a highly dimensional model
with the approximated diagonal matrix is considered.



3.1 Introduction

Model-based approaches for leak detection and identification (LDI) require a ro-
bust mathematical description of the flow process with the same behavior as the real
pipeline. Throughout the years, many modeling methodologies have been developed
for the leak detection, monitoring of parameters, and complexity analysis of pipeline
installations. The dominant directions are the (linear) observer-based methods for
leaks in a single pipeline (Billmann and Isermann, 1987; Kowalczuk and Gunaw-
ickrama, 1998, 2004) or multiple leaks (Torres et al., 2012), as well as the artificial
neural network approaches (Belsito et al., 1998). Recently, Reddy et al. (2011) and
Verde and Torres (2015) have reported efforts to describe complex pipeline systems.

Behind every discrete-time model derived for LDI purposes, however, there is a
concern about the numerical stability and computability of the model. The specific
practical issues relate to computational complexity and computability, therefore, the
feasibility of simulation is discussed in this chapter. Section 3.2 starts with the prin-
cipal (physical) equations of the continuous-time nature, derived from the momen-
tum and mass conservation laws. The feasible models are developed by discretiza-
tion of the principal equations using the finite difference method, and are analyzed
considering possible singularity and stability. In Section 3.3, by LU decomposition,
the proof of the nonsingularity of the recombination matrix for nonzero and finite
time and spatial steps is presented. Once the invertibility of the matrix is proved, in
Section 3.4 a new aggregated model, named nonsingular, is derived and its features
are discussed. In Section 3.5 the question of the numerical stability of the model is
analyzed. By considering the Courant-Friedrichs-Lewy condition and data obtained
from experimental studies, one derives a necessary condition for numerical stability
that limits the choice of the discretization grid. This allows the search for the op-
timal relationship between the steps of time and space, which ensures a maximum
stability margin.

In Section 3.6, two analytical methods for the inversion of matrix A composed of
four tridiagonal matrices are introduced, and the utility of the proposed models for
diagnostic systems is discussed in Section 3.7. The analysis is based on the norm
of the difference between both models and considers the cardinality of the pipeline
segmentation as well as the ratio between the time and spatial steps.

3.1.1 Matrices’ Notations

Symmetric matrix: A matrix M is symmetric if it is square and equal to its trans-
position: M = MT .
Diagonal matrix: A matrix is diagonal if its elements out of the main diagonal are
all zero.
Diagonal of a matrix: The set of elements of a matrix located in the diagonal, i.e.,
the elements set mi, j with i = j.
Subdiagonal of a matrix: The set of elements of a matrix directly under the main
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diagonal (it is thus the first diagonal under the main diagonal).
Superdiagonal of a matrix: The set of elements of a matrix directly above the main
diagonal (it is thus the first diagonal above the main diagonal).
Tridiagonal matrix: A matrix is tridiagonal if it has nonzero elements only on its
main diagonal, subdiagonal, and superdiagonal.
Centrosymmetric matrix: A matrix M is called centrosymmetric if its elements
satisfy the following condition:

mi, j = mK−i+1,K− j+1 for i, j ∈ {1,2, ...,K}

where K is the number of the matrix rows (or columns, since it is square). In other
words, such matrix is symmetric around its center.
Row of a matrix: ri(M) denotes the i-th row of matrix M.

3.2 Base Model of the Flow Process

Consider the mathematical description of the pressure and flow rate for a flow pro-
cess in transmission pipelines, which is expressed by the two equations obtained
from the momentum and mass conservation laws (Billmann and Isermann, 1987):

A

ν2
∂ p
∂ t

+
∂q
∂ z

= 0 (3.1)

1
A

∂q
∂ t

+
∂ p
∂ z

=− λν2

2DA 2
q|q|

p
− gsinα

ν2 p (3.2)

where A is the cross-sectional area [m2], ν is the isothermal velocity of the sound
in the fluid [ m

s ], D is the diameter of the pipe [m], q is the mass flow [ kg
s ], p is the

pressure [Pa], t is the time [s], z is the spatial coordinate [m], λ is the dimensionless
generalized friction factor, α is the inclination angle [rad], and g is the gravitational
acceleration [ m

s2 ].
Since the practical operation of a model-based algorithm for pipeline diagnosis

requires emulation of the underlying process behavior, the presented set of equations
is discretized for the numerical implementation. The idea behind the discretization
is to divide the pipeline into N segments of equal size, each one of length ∆z, where
the pressure at the end of each odd segment and the flow rate at the end of each even
segment characterize the flow process. It is assumed that both variables, flow and
pressure, are measured at the inlet and outlet of the pipeline. Such a discretization
scheme is illustrated in Fig. 3.1.

The discrete-time model is simply obtained by introducing low-order central dif-
ference schemes:

∂x
∂ t

=
3xk+1

d −4xk
d + xk−1

d
2∆ t

(3.3)D
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Fig. 3.1: Discretization scheme of a pipeline with N even segments

∂x
∂ z

=
xk+1

d+1− xk+1
d−1 + xk

d+1− xk
d−1

4∆z
(3.4)

where ∆z is a spatial step, and ∆ t is a time step, subscripts and superscripts denote
the number of the pipeline’s segment and discrete-time step index, respectively.

The substitution of (3.3) and (3.4) into the composed model (3.1) and (3.2) gives
the following discretized set of equations for the flow process in the pipeline:

apk+1
d −b

(
qk+1

d−1−qk+1
d+1

)
=

a
3

(
4pk

d− pk−1
d

)
+b
(

qk
d−1−qk

d+1

)
(3.5)

b
(

pk+1
d+1− pk+1

d−1

)
+ cqk+1

d = b
(

pk
d−1− pk

d+1

)
+Yd pk

d +

(
4c
3

+Fk
d

)
qk

d −
c
3

qk−1
d (3.6)

with physical coefficients

a =
3A

2ν2∆ t
, b =

1
4∆z

, c =
3

2A ∆ t
, Yd =

gsinαd

ν2

where αd denotes the inclination angle of a d-th segment. The nonlinear function is
approximated by

Fk
d '−

λν2

DA

|qk
d |

pk
d−1 + pk

d+1

since pressure is monitored at the ends of odd segments only. At the inlet and outlet
(d = 0 and d = N) of the pipeline, the approximation is not required, because the

pressure is known or measured, that is Fk
d =− λν2

2DA
|qk

d |
pk

d
.

Thus, (3.5) and (3.6) can be represented by the compact state-space model

Ax̂k = Bx̂k−2 +C
(

x̂k−1
)

x̂k−1 +Duk−1 +Euk (3.7)

where B and C(x̂k−1) are associated with the nonlinear dynamic of the state

x̂k =
[

qk
0 qk

2 qk
4 · · ·qk

N pk
1 pk

3 pk
5 · · · pk

N−1

]T ∈ RN+1

and matrices D and E are associated with the input uk =
[

pk
0 pk

N
]T ∈ R2 (Gunaw-

ickrama, 2001). In particular, the matrices are given by
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B =
1
3



−c 0 · · · 0 0
0 −c · · · 0 0
...

. . .
... 0(N

2 +1)×(N
2 )

0 0 · · · −c 0
0 0 · · · 0 −c

−a 0 · · · 0 0
0 −a · · · 0 0

0(N
2 )×(

N
2 +1)

...
. . .

...

0 0 · · · −a 0
0 0 · · · 0 −a



∈ R(N+1)×(N+1) (3.8)

C(x̂k−1) =



Hk
0 0 · · · 0 0 2b 0 · · · 0 0

0 Hk
2 · · · 0 0 Γ2+ Γ2− · · · 0 0

...
. . .

...
...

. . .
...

0 0 · · · Hk
N−2 0 0 0 · · · Γ(N−2)+ Γ(N−2)−

0 0 · · · 0 Hk
N 0 0 · · · 0 +2b

b −b 0 · · · 0 4a
3 0 · · · 0 0

0 b −b · · · 0 0 4a
3 · · · 0 0

...
. . .

...
...

. . .
...

0 · · · b −b 0 0 0 · · · 4a
3 0

0 · · · 0 b −b 0 0 · · · 0 4a
3



∈ R(N+1)×(N+1)

(3.9)

where Γd± = Yd
2 ±b , Hk

0 = 4c
3 −

λv2 x̂k
(d/2+1)

2DA uk
1

, Hk
N = 4c

3 −
λv2 x̂k

(d/2+1)

2DA uk
2

,

Hk
d =

4c
3
−

λv2x̂k
(d/2+1)

DA
(

x̂k
(d/2+1+N/2)+ x̂k

(d/2+2+N/2)

) for d = 2,4, ...,N−2

.

D =



Y0 +2b 0
0 0
...

...
0 0
0 YN−2b

0(N
2 )×2


∈ R(N+1)×2, E =



2b 0
0 0
...

...
0 0
0 −2b

0(N
2 )×2


∈ R(N+1)×2 (3.10)
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One can see from (3.7) that the singularity of A affects the model. This descrip-
tion is called the singular state-space model. The term singular emphasizes the
specific form of the model in which A may be not invertible in general. The matrix
A itself is named recombination matrix, and it is written by

A=

[
A1 A2
A3 A4

]
=



r2b 0 · · · 0 0
−b rb · · · 0 0

D N
2 +1(c)

...
. . .

...

0 0 · · · rb 0
0 0 · · · −b rb
0 0 · · · 0 −2b

−b b 0 · · · 0 0 0
0 −b b · · · 0 0 0
...

. . .
... D N

2
(a)

0 0 0 · · · −b b 0
0 0 0 · · · 0 −b b



∈R(N+1)×(N+1)

(3.11)
where DW (θ) ∈RW×W denotes a diagonal matrix with θ on the diagonal. Note that
the upper right submatrix is non-square and belongs to R(N

2 +1)×(N
2 ).

3.3 Assessment of the Model’s Singularity

According to Kowalczuk and Tatara (2013), to determine the effect of the selected
discretization grid on the singularity in the model, the determinant of the recombi-
nation matrix A can be calculated by using the matrix LU factorization. To achieve
this, the augmented recombination matrix is defined as

Ā =
[

IN+1 A
]
=
[

L U
]

(3.12)

where IN+1 ∈R(N+1)×(N+1) is the proper identity matrix. The key to obtaining the
determinant of Ā is the calculation of the lower and upper triangular matrices on the
left-hand and right-hand sides of the augmented recombination matrix, respectively.
Thus, the determinant is reduced to the product of the diagonal values of the matrices
L and U (Kreyszig, 2006):

det(A) = det(L) det(U) (3.13)

To obtain the lower triangular matrix on the left-hand side of matrix

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Ā =



c 0 · · · 0 0 2b 0 · · · 0 0
0 c · · · 0 0 −b b · · · 0 0
...

. . .
...

...
. . .

...
0 0 · · · c 0 0 0 · · · −b b
0 0 · · · 0 c 0 0 · · · 0 −2b

IN+1 −b b 0 · · · 0 a 0 · · · 0 0
0 −b b · · · 0 0 a · · · 0 0
...

. . .
...

...
. . .

...
0 · · · −b b 0 0 0 · · · a 0
0 · · · 0 −b b 0 0 · · · 0 a


(3.14)

elementary row transformations are used.
The first elementary transformations of Ā are obtained by adding row r1

(
Ā
)

mul-
tiplied by d = b

c to the row r(N
2 +2)

(
Ā
)

and then by subtracting row r2
(
Ā
)

multiplied

by d from row r(N
2 +2)

(
Ā
)
. This iterative operation should be repeated by increasing

the rows’ indexes each time by 1, until they reach N
2 . Thus, the equivalent matrix

can be written by

Ā =



2b 0 · · · 0 0
−b b · · · 0 0

I N
2 +1 0( N

2 +1)× N
2

D N
2 +1(c)

...
. . .

...

0 0 · · · −b b
0 0 · · · 0 −2b

ln,1 · · · 1 · · · 0 a+3bd −bd · · · 0 0
−bd a+2bd −bd · · · 0

...
. . .

... 0 N
2

...
. . .

...

lN,1 lN,2 · · · 1 0 0 · · · −bd a+2bd −bd
lN+1,1 lN+1,2 · · · lN+1,N 1 0 0 · · · −bd a+3bd

,


(3.15)

where the coefficients l j,k for j = N
2 + 2, N

2 + 3, ...,N + 1 and k = 1,2, ...,N are
irrelevant for the determinant of A.

On the other hand, the upper triangular matrix on the right-hand side can be
obtained by removing the coefficients −bd of the subdiagonal on the right-hand
matrix by starting with n = N

2 + 2 and by ending at n = N. This is achieved by
adding to the row rn+1

(
Ā
)

the row rn
(
Ā
)

multiplied by bd
fn

, with fn being the n-
th coefficient of the main diagonal of the right-hand side matrix. Thus, (3.15) is
equivalent to
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Ā =



2b 0 · · · 0 0
−b b · · · 0 0

IN
2 +1 0(N

2 +1)×N
2

D N
2 +1(c)

...
. . .

...

0 0 · · · −b b
0 0 · · · 0 −2b

l′n,1 · · · 1 · · · 0 fn un,n+1 · · · 0 0
0 fn+1 un+1,n+2 · · · 0

...
. . .

... 0 N
2

...
. . .

...

l′N,1 l′N,2 · · · 1 0 0 · · · 0 fN uN,N+1

l′N+1,1 l′N+1,2 · · · l′N+1,N 1 0 0 · · · 0 fN+1


(3.16)

The coefficients f j for j = N
2 +2, N

2 +3, ..., N +1 are obtained recursively with

the initial condition f N
2 +2 = a+3bd and the final condition fN+1 = a+3bd− b2d2

fN
.

The rest of coefficients are obtained with

f j = a+2bd− b2d2

f j−1
for j =

N
2
+3,

N
2
+4, ..., N

Note that coefficients l′j,k for j = N
2 +2, N

2 +3, ...N+1 and k = 1, 2, ..., N under
the main diagonal of the left-hand side matrix have no effect on the det(Ā). Similarly
coefficients u j,k for j = n, ...,N and k = j+1 above the main diagonal of the right-
hand side matrix have no effect on the det(Ā). As an example, if N = 2, there exists
only one coefficient f3 = a+4bd.

As a consequence, the det(A) is given by

det(A) =
N+1

∏
j=1

l j, ju j, j (3.17)

which is generated by the diagonal coefficients of L and U , respectively. Since the
diagonal elements of L are equal to 1, and U consists of N

2 + 1 diagonal elements
with value c and N

2 diagonal elements of value f j, the expression (3.17) is reduced
to

det(A) = (c)
N
2 +1

N+1

∏
j=N

2 +2

f j (3.18)

and the general expression for a dimension N is written by

det(A) =

N
2

∑
i=0

CN
i a

N
2 −ib2ic

N
2 −i+1 (3.19)

with boundary values CN
0 = 1, for N = 0,2,4, ... and CN

N
2
= 2N, for N = 2,4,6, ....

The coefficients CN
i can be recursively calculated as
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CN
i = 2CN−2

i−1 +CN−2
i , for N = 4,6,8, ...and i = 1 (3.20)

CN
i = 2CN−2

i−1 +CN−2
i −CN−4

i−2 , for N = 4,6,8, ...; and i = 2,3...,
N
2
−1 (3.21)

The determinant values for N = 2,4,6 can be obtained by substituting the values
of f j into (3.18) and are reported in Table 3.1.

Table 3.1: Determinants of the recombination matrix for selected segmentation N

N Determinant of matrix A
2 ac2 +4b2c
4 a2c3 +6ab2c2 +8b4c
6 a3c4 +8a2b2c3 +19ab4c2 +12b6c

By analyzing (3.20) and (3.21), one can see that all of the coefficients are positive
for i > 0 and N > 0. Moreover, since (3.19) depends on a, b, and c, with even
exponentials, the only way to get a zero determinant is that any of them is equal
to zero. By considering that the cross-section and the sound velocity are always
positive, the only way to achieve singularity of the recombination matrix is if ∆z=∞

or ∆ t = ∞. The former is equivalent to an infinitely long pipeline, and the latter can
be neglected by maintaining the numerical stability of the algorithm discussed in
Section 3.5.

Note that the time and spatial steps are positive, and negative spatial steps could
not affect the non singularity of A, since b always has an even exponent. Negative
time steps also do not appear in the practical flow process. As a consequence, one
can establish that the recombination matrix A is nonsingular for every finite time
and spatial steps, and thus, invertible.

3.4 Aggregated Model

Once the invertibility of A has been shown, the base model (3.7) can be represented
in the nonsingular state-space form

x̂k = A−1
(

Bx̂k−2 +C
(

x̂k−1
)

x̂k−1 +Duk−1 +Euk
)

(3.22)

According to Kowalczuk and Tatara (2013), by defining an aggregated state vec-
tor x̃k =

[
x̂k T x̂k−1 T

]T and an augmented input vector, ũk =
[

uk T uk−1 T
]T , the

flow process model can be rewritten in the form of state-space equation:

x̃k = Acx̃k−1 +Bcũk (3.23)
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where

Ac =

[
A−1C

(
x̂k−1

)
A−1B

I 0

]
(3.24)

Bc =

[
A−1E A−1D

0 0

]
(3.25)

Note that matrix Ac is a function of the state vector x̃k−1 , and matrix Bc is depen-
dent on the friction factor λ . Thus, Ac must be recalculated during the operation of
the algorithm. Since (3.23) represents a regular state-space form, it can be analyzed
with well-known methods from control theory, but the recombination matrix A must
be inverted at each ∆ t. For this task, the following matrix inversion lemma (MIL)
can be applied at each time step (Brogan, 1991):

A−1 =

[
A′1 A′2
A′3 A′4

]
=

[
(A1−A2A−1

4 A3)
−1 −A−1

1 A2(A4−A3A−1
1 A2)

−1

−A−1
4 A3(A1−A2A−1

4 A3)
−1 (A4−A3A−1

1 A2)
−1

]
(3.26)

3.5 Selection of the Discretization Grid

The numerical stability problem in discretized differential equations is connected
with the choice of discretization grid, which determines information’s propagation
speed between the nodes of the algorithm. According to Strikwerda (2007), the
Courant-Friedrichs-Lewy condition (CFL) establishes that the propagation speed
of information in a numerical algorithm ∆z

∆ t must be greater or equal to the informa-
tion exchange velocity in the corresponding differential equations for maintaining
stability. This is only a necessary condition, but it is not sufficient and gives only a
lower boundary for the velocity. At the same time, discretization must allow online
simulation. Since the highest speed present in the flow process is the sound velocity
ν , the following inequality must be satisfied:

∆z
∆ t

> ν (3.27)

In addition, rewriting it as an equality, one obtains

∆ t = µ
∆z
ν

(3.28)

where µ is a coefficient within the range (0,1〉, binding the discretization steps.
According to Kowalczuk and Tatara (2016), there exists a coefficient µopt , which

maximizes the stability margin sm for the discrete-time system on the z-plane (do-
main of the Z-transform) for the specific physical parameters of a pipeline. The
stability margin is calculated as

sm = 1− emax (3.29)
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where emax is the largest absolute eigenvalue of the state transition matrix Ac.
The distribution of the stability margin versus the stability tuner, µ , for a few

values of a pipeline’s length is shown in Fig. 3.2.
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Fig. 3.2: Distribution of the stability margin versus coefficient µ for eight lengths
of the pipeline shown in [m]. Experimental setup: N = 10, D = 0.4 [m],
λ = 0.01, ν = 304 [m

s ], pinlet = 3.2 [MPa], and poutlet = 3.0 [MPa]

The eigenvalues are calculated after the transition response to diminish the in-
fluence of initial values on the stability margin. As one can see from Fig. 3.2, the
stability margin is in the magnitude order of 10−2, which emphasizes the need for
a detailed numeric stability analysis. Such a system can be easily destabilized, and
special attention must be paid during the discretization phase.

To find a maximum stability margin for a physical flow parameter, such as
pipeline dimension or fluid properties, the influence of each of them on the estima-
tion of µopt must be studied. In particular, numerical optimization was performed by
using the Hooke and Jeeves (1961) algorithm to find the values of µopt (the depen-
dent variable) for specified flow parameters. Six experiments were conducted where
one of the parameters was an independent variable, and the others were fixed.

The toolbox curve fitting tool (cftool) of The MathWorks, Inc. (2012) was used
to fit the curve to the experimental data. By assuming the common fitting curve

µopt =C1 pC2
p (3.30)

where C1 and C2 are the coefficients to be optimized and pp is the physical flow
parameter which could be: N, D, L, λ , the mean pressure pm in the pipeline and
the pressure drop pm along the pipeline. The quality of the fitting is evaluated via
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the R-squared coefficient of determination R2. The closer it is to 1, the better the
curve fits the experimental data (Walpole et al., 2012). The adjusted functions are
presented in Fig. 3.3, where each subplot refers to a different physical parameter as
the independent variable.

By interpreting the identified parameters of (3.30) for a global case as follows: (1)
the term pC2

p combined into the single parameter ξ which includes all the physical
parameters with a common power 1

2 ; and (2) the individual scaling factor C1 which
is united in a global scaling coefficient C3; the simple optimal stability adjustment
is proposed

µopt =C3

√
pdLλ

pmD
1
N

=C3ξ (3.31)

where C3 is the sought coefficient. For this task, the MATLAB’s cftool is used to
determine the value of the global scaling coefficient C3 in (3.31).

The data set for the experiment is generated by 10 pipelines with randomly gen-
erated parameters. The fitting result is shown in Fig. 3.4, where the experimental
data, aggregated to the single parameter ξ , are indicated by the symbol ×. The fit-
ted value of C3=0.36 is characterized by the coefficient of determination R2=0.97.
Note in Fig. 3.4 that some experimental data are slightly displaced with respect
to the fitting curve. The reason for this should be attributed to the most ’severe’
mathematical operation consisting in rounding the power coefficient 0.44 (the case
reflected in Fig. 3.3c) to 0.5 (the case implemented by Eq. (3.31)). In both cases,
the issue of fitting the µopt to the pressure drop along the pipeline is considered.
Nevertheless, the relatively high value of the computed determination coefficient R2

shows that the curve fits the experimental data satisfactorily, and thus the obtained
expression can be practically used for approximating µopt .

Thus the formula connecting the time and spatial steps with the maximal stability
margin is

µopt = 0.36

√
pdLλ

pmD
1
N

(3.32)

This stability margin is applicable to models (3.23) and (3.7). For models con-
structed with other assumptions, (3.32) does not guarantee stability; however, the
optimization process can be reproduced analogically, obtaining the result fitted to
the analyzed model.

3.6 Analytic Inversion of the Recombination Matrix

In the case of flow process model, there are two main reasons for applying efficient
computational analytic inversion matrix methods. The first relates to the Gauss-
Jordan elimination method, which has the time complexity O(n3), which implies
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(e) C1=0.38, C2=0.5, R2=1
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Fig. 3.3: Results of adjusted function (3.30) for µopt by varying the following: (a)
length of the pipeline, (b) diameter of the pipeline, (c) difference between
the inlet and the outlet pressure, (d) mean pressure in the pipeline, (e)
friction factor and (f) number of the pipeline’s segments. The used fixed
parameters for not independent variables are: N=12, D=0.4 [m], λ=0.01,
ν=304 [ m

s ], pinlet=4.1 [MPa], and poutlet=3.9 [MPa]
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Fig. 3.4: Adjusting of (3.31) to the experimental data

that the computation time strongly increases with the dimension of the model. The
second is caused by a property of the recombination matrix which has a ratio of its
largest to its smallest singular values of order 109, and as a consequence matrix A is
very sensitive to numerical errors.

The above facts motivated the inverse problem formulation within the framework
of the tridiagonal matrix with the matrix A divided into four submatrices

A =

[
A1 A2
A3 A4

]
=



2b 0 · · · 0 0
−b b · · · 0 0

D N
2 +1(c)

...
. . .

...

0 0 · · · −b b
0 0 · · · 0 −2b

−b b 0 · · · 0 0 0
0 −b b · · · 0 0 0
...

. . .
... D N

2
(a)

0 0 0 · · · −b b 0
0 0 0 · · · 0 −b b



(3.33)

Since matrix A consists of two diagonal submatrices and two submatrices having
elements only on two diagonals, by (3.26) the matrix A−1 can be represented as

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


A−1 =

[
A1 A2
A3 A4

]−1

=

[
A′1 A′2
A′3 A′4

]
(3.34)

with
A′1 =

(
D N

2 +1 (c)−A2D N
2
(a−1)A3

)−1
(3.35)

A′4 =
(

D N
2
(a)−A3D N

2 +1

(
c−1)A2

)−1
(3.36)

A′2 = D N
2 +1

(
−c−1)A2A′4 (3.37)

A′3 = D N
2

(
−a−1)A3A′1 (3.38)

From the set of matrices, one can see that A′2 and A′3 are dependent on matrices
A′4 and A′1, which have to be determined first. Thus, (3.35) and (3.36) can be directly
calculated which results in the following tridiagonal matrices:

A′1 =



c+ 2b2

a − 2b2

a 0 · · · 0 0 0
− b2

a c+ 2b2

a − b2

a · · · 0 0 0

...
. . .

...

0 0 0 · · · − b2

a c+ 2b2

a − b2

a
0 0 0 · · · 0 − 2b2

a c+ 2b2

a



−1

(3.39)

A′4 =



a+ 3b2

c − b2

c 0 · · · 0 0 0
− b2

c a+ 2b2

c − b2

c · · · 0 0 0

...
. . .

...

0 0 0 · · · − b2

c a+ 2b2

c − b2

c
0 0 0 · · · 0 − b2

c a+ 3b2

c



−1

(3.40)

3.6.1 Tridiagonal Matrix Inversion Method

Da Fonseca and Petronilho (2001) determined the analytical expression of the in-
verse matrix for a general tridiagonal matrix with the general structure
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T =


α1 β1 0
γ1 α2 β2

γ2
. . .

. . .

. . .
. . . βn−1

0 γn−1 αn

 (3.41)

The authors showed that the coefficients of T−1 are given by

T−1(i, j) = ti, j =


(−1)i+ jβi···β j−1θi−1φ j+1

θn
for i < j

θi−1φ j+1
θn

for i = j
(−1)i+ jγ j ···γi−1θ j−1φi+1

θn
for i > j

(3.42)

with the parameters θi and φi calculated recursively as

θi = αiθi−1−βi−1γi−1θi−2 for i = 2,3, . . . ,n; θ0 = 1, θ1 = α1 (3.43)

φi = αiφi+1−βiγiφi+2 for i = n−1,n−2, . . . ,1; φn+1 = 1, φn = αn (3.44)

Because the matrix (3.39) has a centrosymmetric structure, φi = θn+1−i, and its
inverse is also centrosymmetric, thus, only half of the coefficients of A′1 must be
calculated by using (3.42). Therefore, the general matrix is obtained:

A′1 =


a′1,1 a′1,2 · · · a′1,n−1 a′1,n

a′n−1,n a′2,2 a′2,n−1 a′2,n
...

. . .
...

a′2,n a′2,n−1 a′2,2 a′n−1,n
a′1,n a′1,n−1 a′1,2 a′1,1

 (3.45)

Similar reasoning applies to (3.40). Moreover, this matrix is symmetric not only
centrosymmetric. Thus, the number of elements to be calculated is only n2/4.
Hence, matrix A′4 has the following form

A′4 =


a′′1,1 a′′1,2 · · · a′′1,n−1 a′′1,n
a′′1,2 a′′2,2 a′′2,n−1 a′′1,n−1
...

. . .
...

a′′1,n−1 a′′2,n−1 a′′2,2 a′′1,2
a′′1,n a′′1,n−1 · · · a′′1,2 a′′1,1

 (3.46)

where the values of a′′i, j are calculated with (3.42). Once the matrices A′1 and A′4 are
evaluated, one can use them to calculate (3.37) and (3.38), resulting in
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A′2 =
b
c


−2a′′1,1 −2a′′1,2 · · · −2a′′1,n−1 −2a′′1,n

a′′1,1−a′′1,2 a′′1,2−a′′2,2 · · · a′′1,n−1−a′′2,n−1 a′′1,n−a′′1,n−1
...

. . .
...

a′′1,n−1−a′′1,n a′′2,n−1−a′′1,n−1 · · · a′′2,2−a′′1,2 a′′1,2−a′′1,1
2a′′1,n 2a′′1,n−1 · · · 2a′′1,2 2a′′1,1

 (3.47)

A′3 =
b
a


a′1,1−a′n−1,n a′1,2−a′2,2 · · · a′1,n−1−a′2,n−1 a′1,n−a′2,n

a′n−1,n−a′n−2,n a′2,2−a′n−2,n−1 · · · a′2,n−1−a′3,n−1 a′2,n−a′3,n
...

. . .
...

a′3,n−a′2,n a′3,n−1−a′2,n−1 · · · a′n−2,n−1−a′2,2 a′n−2,n−a′n−1,n
a′2,n−a′1,n a′2,n−1−a′1,n−1 · · · a′2,2−a′1,2 a′n−1,n−a′1,1


(3.48)

Matrices A′2 and A′3 are anti-centrosymmetric, which reduces again the number of
the required mathematical operations. Thus, the four submatrices which form matrix
A−1 are known and can be assembled into one. The state-space model expressed
in term of the A−1 will be called the analytical model of band matrix inversion
(AMBMI). A disadvantage of this method is that for high-order systems, the inverse
cannot be computed because some θi and ψi have values higher than the computer’s
numerical representation range (over 10300). Therefore, this model is recommended
only for a lower number of segments.

3.6.2 Diagonal Approximation Model

To avoid the disadvantage of the analytical inversion matrix, Kowalczuk and Tatara
(2016) suggested approximating the tridiagonal matrices (3.39) and (3.40) with their
diagonal counterparts. To make such approximation feasible, the coefficients’ values
on the subdiagonal and superdiagonal must be significantly lower than the ones on
the main diagonal. This sufficient condition satisfies if

|c| �
∣∣∣∣4b2

a

∣∣∣∣ (3.49)

By substituting physical parameters of the pipeline in (3.49), the inequality

| 3
2A ∆ t

| � |4 1
16∆z2

2ν2∆ t
3A

| (3.50)

is obtained. Since ∆ t, ∆z and ν are positive, the above equation can be simplified to

∆ t2� 9
∆z2

ν2 (3.51)

which is equivalent to
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∆ t� 3
∆z
ν

(3.52)

By incorporating the CFL condition (3.27) in (3.52), the restriction on µ is re-
duced to

µ � 3 (3.53)

By considering the practical assumption that µ must be at least two orders of magni-
tude fewer than the value obtained with (3.53), one suggests the following stability
tuner’s condition

µ < 0.03 (3.54)

By comparing inequality (3.54) with the Courant-Friedrichs-Lewy result dis-
cussed by Dick (2012), who says that µ must be lower than 0.90 to 0.95 for station-
ary flows (depending on flow parameters), it is clear that (3.54) is more restrictive
because it has been obtained by considering an approximated model. Moreover, the
CFL criterion solely defines a necessary condition; thus the values may not assure
numerical stability.

By considering (3.54), the two submatrices of the inverted recombination matrix
can be approximated as

A′1 ≈ Ă′1 =



c+ 2b2

a 0 0 · · · 0 0 0
0 c+ 2b2

a 0 · · · 0 0 0

...
. . .

...

0 0 0 · · · 0 c+ 2b2

a 0
0 0 0 · · · 0 0 c+ 2b2

a



−1

(3.55)

and

A′4 ≈ Ă′4 =



a+ 3b2

c 0 · · · 0 0 0
0 a+ 2b2

c 0 · · · 0 0 0

...
. . .

...

0 0 0 · · · 0 a+ 2b2

c 0
0 0 0 · · · 0 0 a+ 3b2

c



−1

(3.56)

The inverses of these matrices are obtained by substituting their reciprocals on the
main diagonal. Therefore, the inverse recombination matrix
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A−1 ≈



a
σ

0 · · · 0 0 − 2b
3b2+ca 0 · · · 0 0

0 a
σ

0 0 b
3b2+ca −

b
σ

0 0 0
0 b

σ
− b

σ
0 0

...
. . .

...
...

. . .
...

0 0 b
σ
− b

σ
0

0 0 a
σ

0 0 0 0 b
σ
− b

3b2+ca
0 0 · · · 0 a

σ
0 0 · · · 0 2b

3b2+ca
b
σ
− b

σ
0 · · · 0 0 c

3b2+ca 0 · · · 0 0
0 b

σ
− b

σ
0 0 0 c

σ
0 0

0 0 b
σ

0 0

...
. . .

...
...

. . .
...

0 0 − b
σ

0 0
0 0 b

σ
− b

σ
0 0 0 c

σ
0

0 0 · · · 0 b
σ
− b

σ
0 0 · · · 0 c

3b2+ca



(3.57)

is obtained by using (3.26) with σ = 2b2 + ca. This matrix constitutes an explicit
form of the inverted recombination matrix. Since this inversion is performed after
the estimation of the friction factor which could change with the operation condi-
tion, or during the initialization, the inversion algorithm consumes short computa-
tional time. Since (3.57) is now a sparse matrix, another advantage is that the online
computation of (3.24) and (3.25), and the premultiplication by a sparse matrix is
not time-consuming. The model obtained with this inverse method for the recom-
bination matrix is called the analytic model of diagonal approximation (AMDA).
Certainly, the model is an approximation of the base model; thus its accuracy and
calculation speed must be examined.

3.6.2.1 Note on the Model’s Dimension

By considering the maximum stability margin given in (3.32) with the CFL condi-
tion (3.54) for the AMDA model, one deduces that

µopt = 0.36

√
pdLλ

pmD
1
N

< 0.03 (3.58)

Thus, if the above condition is satisfied, the AMDA model is a good approximation
for the base model (3.7), and the stability tuner µopt for AMDA can be computed by
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using (3.32). The formula (3.58) can be rewritten in a practical form, which gives
us information about the minimal cardinality of the AMDA model as

N > 12

√
pdLλ

pmD
(3.59)

As a consequence, if a properly designed AMDA’s dimension is selected beyond
its minimum, one can apply (3.32) to calculate µopt , which, in turn, satisfies (3.58)
and assures a maximum stability margin.

Note that µopt differs slightly from model to model. When the accuracy of the
inversion improves, however, the optimal value of the coefficient for the AMDA
model approaches the value for the principal base model; certainly, the segmentation
(3.59) must be rounded up to the nearest even integer.

3.7 Analysis of the Models

Based on the two methods AMBMI and AMDA for inverting the recombination
matrix which have been presented in the previous section, one can say that the for-
mer method generates values beyond the acceptable computer representation range,
making it impossible to compare accuracy and convergence with other models from
a practical point of view. On the other hand, the AMDA model for lower (rough)
segmentation produces an inverse which is not similar to the numerically inverted
matrix considering the Euclidean norm of the variables as a measure. For this rea-
son, computation accuracy and speed will be assessed in detail only for the AMDA
model, if one compares it with the base model. The inversion time for the three
methods has been evaluated with respect to the model’s dimension, and the results
are shown in Fig. 3.5a. The inversion accuracy is assessed in terms of the Euclidean
norm of the difference between the matrices inverted by the AMDA or AMBMI
methods and the MATLAB inv function. The results are shown in Fig. 3.5b. The ex-
perimental data used are L=4000 [m], ν=304.23 [ m

s ], D=0.4 [m], and λ=0.01. Each
calculation was repeated 10 times, and the results are averaged.

A more detailed analysis has been conducted for the AMDA model as compared
to the inv function. The models are analyzed in terms of the Euclidean norm of
the difference between the two inverted matrices (which should ideally be equal
to zero). The inversion time of the matrix gained from the two methods has been
presented as a function of µ and the number of segments N. Finally, the models
have been compared in Fig. 3.6 in terms of the mean squared error between the
mass flow estimates (at the inlet and outlet) obtained by both of them.

Note that in Fig. 3.6 the axes in subplots (a, c, e,) have a log-log scale with N
ranging from 10 to 400. For subplots (b, d, f) N=100 and µ is calculated by us-
ing (3.32). Subplots a and b describe with a continuous line the Euclidean norm of
the difference between the inverted recombination matrices by AMDA and by inv
functions; the dashed line is the Euclidean norm of the difference between state tran-
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Fig. 3.5: Comparison of AMDA and AMBMI models. (a) inversion time; contin-
uous line is used for the AMBMI method, the discontinuous line for the
AMDA model, and the dots line for the MATLAB inv function. (b) accu-
racy measure, the continuous line denotes the norm of the difference be-
tween the AMBMI and inv function, and dashed line denotes the difference
between the functions AMDA and inv.

sition matrices obtained by AMDA and inv functions. The subplots c and d describe
the numerical inversion time results with continuous line for the inv function, and
dashed line for the analytic inversion time (AMDA). Finally, subplots e and f show
the result of the mean quadratic difference between mass flow estimated by the two
analyzed models. All the presented results were obtained with mean values of 10
runs.

3.8 Conclusions

In the case of inversion time, the AMDA outperforms other methods for almost each
segmentation, while AMBMI is the slowest one. Note, however, that the MATLAB
inv function is effectively optimized, which may not be available in a field computer
running the diagnostic algorithm. Note also that for N ≈140 segments, the AMBMI
model is not computable at all, though, because of the lower segmentation it results
in a better approximation of inversion. The AMBMI method is, however, limited to
a lower order due to the high values of the auxiliary variables. The upper boundary
for the use of this model depends on the physical parameters of the flow; therefore
it is difficult to give a number. A safe upper boundary seems to be N ≈50, however.

As seen in Figs. 3.6a and 3.6b, the norm difference between the two recombina-
tion matrices decreases by decreasing the coefficient µ or by increasing the order of
the model. Since the state transition matrices depend on the recombination matrix,
the norm difference is smaller in every case. The inversion time is almost inde-
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Fig. 3.6: Numerical results of the AMDA inversion method as compared to the
MATLAB inv function for a pipeline with L=2000 [m], ν=304.23 [ m

s ],
D=0.4 [m], pinlet=3.2 [MPa], poutlet=3.0 [MPa], and λ = 0.1

pendent from the coefficient µ for both methods; however, increasing the model’s
order increases the time necessary for inversion. For lower segmentation, the ana-
lytical approach is slower, but for the number of segments above approximately 50,
the analytic approach outperforms the numerical one. Figs. 3.6e and 3.6f show the
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mean quadratic difference between the two models. Clearly, for lower segmentation,
the difference level is significant and decreases when one increases segmentation.
Above 100 segments, the error line becomes flat, and this region seems to constitute
the preferred operation range for the model. In the case of the coefficient µ , the error
is almost flat for µ <0.02 and rapidly increases with µ above this limit.

In summary, the recommendations for using the AMDA model are that the num-
ber of segments should be higher than 100, for the following reasons: to benefit
from the low quadratic error of the mass flow estimates and from faster inversion,
while the coefficient µ should remain below 0.02. The model should also be tested
in an actual LDI algorithm, however, to assess the resulting accuracy of the target
estimates of leak parameters.
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