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The aim of the paper is a theoretical analysis of acoustic waves propagation through  
a bubble layer. The mathematical model of the pressure propagation in bubbly liquid layer is 
constructed by the linear non-dissipative wave and the Rayleigh-Plesset equations. The 
acoustic pressure field inside the layer, the reflected and transmitted waves, and suitable 
power spectral density are studied. Numerical analysis is carried out for different layer 
thicknesses, different values of physical parameters and generated signals. Some results of 
numerical investigations are also presented. 
 
 

INTRODUCTION 

The wave generation and propagation inside the layers with different physical properties 
is a very important problem in practice. The known mathematical models of this problem 
consist of a system of two differential equations. The first one is the linear non-dissipative 
wave equation which describes acoustic pressure changes in the bubble layer [3]. The second 
one is an equation which allows to predict the bubble radius changes, or equivalently, the 
bubble volume variation. Our mathematical model is based on the Rayleigh-Plesset equation, 
which allows to analyze radius changes of a bubble. 

In the paper we present a mathematical model and the results of numerical investigation 
of nonlinear waves propagation in a bubbly liquid layer obtained by using own computer 
programs. 
 

1. MATHEMATICAL MODEL 

We assume that plane layer with spherical bubbles of the same size and uniformly 
distributed is placed between 0=x  and Lx = . The media outside the layer are considered to 
be linear. The acoustic field is the sum of incident ip  and reflected rp  waves for 0≤x . 
When Lx ≥ , only transmitted wave tp  is propagated. 
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The mathematical model of the acoustic pressure p  propagated inside the layer is built 
on the basis of linear non-dissipative wave equation [2]: 
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where 0c  is sound speed of water, 0ρ is the density of water at the equilibrium state, β  is the 
local fraction of volume occupied by the gas. Assuming a constant number N of air bubbles 
per unit volume, the volume fraction is given by 
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where R  is the instantaneous radius of the bubbles.  

The local bubble radius )(tR  is calculated from the Rayleigh - Plesset equation  
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where vp  is gas and vapor pressure inside a bubble, statp  is ambient static pressure, )(tP  is 
incident signal acoustic pressure, 0R  is the equilibrium bubble radius, ω  is angular 
frequency, γ  is polytropic exponent of gas, σ  is surface tension coefficient, 

vstatg ppRp −+= 02σ , δ  is the total damping constant which is the sum of three 
components thviscrad δδδδ ++=  where 00 cRrad ωδ =  is the acoustic radiation damping 
constant, ( )2

004 Rvisc ωρμδ =  is the viscous damping constant, thδ  is damping constant due to 
thermal effects and μ  is the coefficient of molecular viscosity of seawater. 

 It is important to notice that the bubble radius R  and pressure P  in the Rayleigh-
Plesset equation (2) are functions of time variable t  only. In fact, we consider them as 
functions of two coordinates: the time coordinate t  and the one-dimensional coordinate x  
respectively. To be precise we put ),( txp  instead of )(tP . 

The initial conditions for 0≠x are as follows: 
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To complete the formulation of our problem, boundary conditions are defined. At the 

layer boundaries 0=x  and Lx =  the pressure should be continuous, which leads to 
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Additionally, taking into account the continuity of velocity we introduce two boundary 
conditions [1]: 
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Next, we consider two situations. Assuming that harmonic signal is generated, we have 

an incident wave  
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where sT  is the signal duration. When two different frequency waves are generated then for 

0=x  we define 
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When density and sound speed at the bubble layer and surrounded medium are different 

then equations (1), (2) and the boundary conditions must be modified. While 0c  and 0ρ  still 
denote the speed of sound and density in water without bubbles equations (1) and (2) are 
modified by replacing 0c  and 0ρ  with the sound speed Lc  and density Lρ  in the layer 
respectively. Moreover, the boundary condition at 0=x has the form 
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Similarly, at Lx = we find 
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We are looking for the solution of our problem for ],0[ Lx∈  and ],0[ maxTt∈ . To solve the 

problem nodal points are defined as follows: tntxix ni Δ=Δ= , , where xNLx /=Δ , 

tNTt /max=Δ , i=0,1,…,Nx, n=0,1,…,Nt. As a result of numerical calculations we obtain acoustic 
pressure ),(, nini txpp =  and bubble radius ),(, nini txRR =  at nodal points. After calculating mip ,  
and miR ,  for nm ≤  we can compute 1, +niR  using equation (2) and the pressure 1, +nip  using 
equation (1), i.e. we can calculate bubble radius and pressure at time 1+= ntt if we know the values 
of these functions for ntt ≤ . The finite-difference method was employed to solve equation (1) 
while equation (2) was solved using the classical Runge-Kutta method. 
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2. RESULTS OF NUMERICAL INVESTIGATIONS 

The first step of our theoretical analysis was to study harmonic wave propagation in 
bubble layer. We started with examination of correctness of proposed model. Figure 1 
presents the incident and reflected waves calculated numerically assuming that the harmonic 
signal (frequency f = 30 kHz, amplitude PA = 20 kPa) with the rectangular window is 
propagated in the layer of thickness λ3=L . We put the sound speeds c0 = 1450 m/s and  
cL = 1230 m/s, density 0ρ = 1000 kg/m3. Pressure changes calculated for fixed points inside 
the layer are shown in Figure 2. Calculations were carried out assuming that volume fraction 

0=β . It is equivalent to the situation when only linear effects are considered. 
 

  
 

Fig. 1. Incident (left figure) and reflected (right figure) waves: 0=β   
 

 
Fig. 2. Pressure as a function of time inside layer at fixed bubble layer points: 0=β  
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Fig. 3. Reflected (on the left) and transmitted (on the right) waves: 610−=β  
 
The reflected wave obtained for volume fraction 610−=β  is shown in Figure 3 (on the 

left). The result obtained for transmitted wave ( Lx = ) is given on the right of Figure 3. 
The results presented so far were obtained assuming short duration of generated signal. 

Figure 4 shows a reflected wave and its power spectral density for duration of incident wave 
Ts = 3 ms (Tmax = 10 ms). All parameters except for duration and investigated time interval are 
the same as used earlier.  

 

  
 

Fig. 4. Reflected wave and power spectral density: 610−=β  
 
Different frequency interaction problem is also very important in practice. Examples of 

numerical calculations related to this problem are presented below. Figure 5 displays reflected 
wave and power spectral density obtained as a result of calculations assuming that primary 
wave is the sum of two harmonic waves with frequencies f1 = 30 kHz and f = 33kHz 
respectively, and the same amplitudes PA = 20 kPa. Pressure and power spectral density at 
fixed bubble layer points ( 21,3 λλ=L ) are shown in Figure 6. The results presented in 

Figure 6 were achieved for volume fraction 610−=β . Figure 7 presents power spectral density 
of reflected and transmitted waves calculated for 810−=β . Similar results obtained for 

510−=β  are shown in Figure 8. The figure following Figure 8 represents power spectral 
density of reflected wave when 610−=β  and the bubble layer thickness 13λ=L . 
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Fig. 5. Reflected wave and power spectral density: 610−=β  
 

  

 
Fig. 6. Pressure inside layer and power spectral density at fixed bubble layer points: 610−=β  
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Fig. 7. Power spectral density of reflected (on the left) and transmitted (on the right) waves: 810−=β  
 

  
 

Fig. 8. Power spectral density of reflected (on the left) and transmitted (on the right) waves: 510−=β  
 

 
 

Fig. 9. Power spectral density of reflected wave : 610−=β , 13λ=L  
 
A theoretical analysis was carried out for different values of physical parameters. Examples 

of results obtained for different bubble distributions and layer thicknesses have been presented 
above. The last figure demonstrates a reflected wave and its power spectral density obtained for 
water density 0ρ = 1000 kg/m3 and density inside the layer Lρ = 1200 kg/m3.  
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Fig. 10. Reflected wave and power spectral density: 610−=β , Lρ = 1200 kg/m3 
 

3. CONCLUSIONS 

The nonlinear acoustic waves propagation in one-dimensional bubbly liquid layer was 
considered and its mathematical model presented. The linear non-dissipative wave equation 
was solved numerically by employing the finite-difference method. The Rayleigh-Plesset 
equation was solved using classical Runge-Kutta method of order four. Some results of 
theoretical investigation were also discussed.  

The proposed in this paper mathematical model can be used to study wave propagation 
for different signals propagated in media with different physical parameters. 

It is worth mentioning that a correct choice of physical parameters as well as a choice  
of values of numerical parameters are very important in the process of theoretical 
investigation as they influence accuracy and correctness of results.  

All presented in this paper results were obtained assuming that one bubble layer is 
surrounded by media with different physical properties. It is not difficult to extend this model 
to the case of more than one layer. 
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