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Abstract The flow of temperature distribution through a medium in thermodynamic studies plays

an important role in understanding physical phenomena in chemical science and petroleum engi-

neering, while temperature distribution indicates the degree of reaction that must be undergone

to obtain the final product. Therefore, this paper aims to present and apply the exponential matrix

algorithm (EMA), differential transformation algorithm (DTA), and Runge-Kutta (RK5) to simu-

late the temperature distribution in five heating tanks in series. successive preheating of multicom-

ponent oil solutions. A mathematical model of the energy balance equations of the reservoir is

considered. Two computer experiments were performed to test and investigate the relationship

between two constant parameters appearing in the model. Numerical simulation of saturated steam

Tsteam temperature of 500 �C and 1000 �C used to heat the tanks and initial temperature

T035
�
Cand 100

�
C of the first tank feed oil are considered. The fluids in the reservoirs were consid-

ered homogeneous throughout the experiment and changes in the cell configuration at two constant

parameters were presented in the 2D plot control with the use of the MAPLE 18 software package.

The study revealed the nature of the temperature distribution that the higher temperature distribu-

tion is obtained when heat is transferred from the first tank to the fifth tank and the reverse reaction
echanic

wczuk).

a series,
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Nomenclature

T0 The initial temperature 35
�
C ; 100

�
C

� �� �
Tsteam The temperature of the saturated steam

500
�
C; 1000

�
C

� �
V Mass flow rate 160 kg/min
M Mass of the fluid in the tank 2000 kg

Cp The specific heat capacity of the oil 2 kJ/kg�C
G The overall heat transfer coefficient 2
A The heat transfer area in each vessel 5
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occurs in all five reservoirs when w = 0.0025 and x = 0.0025 respectively. Numerical results

obtained are prototypes of oil temperature distribution performed under laboratory conditions in

a thermodynamic experiment.

� 2022 Production and hosting by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
Fig. 1 Experimental setup of five tanks for oil heating connected

in series.
1. Introduction

The science of thermodynamics deals with energy and its trans-
formations. It tells us about the direction in which heat
changes take place in nature. It also defines the conditions
under which a proposed change reaches equilibrium with no

further change in the given conditions. The thermodynamic
analysis is today applied to a wide variety of problems includ-
ing the physical and biological sciences. The thermodynamics

has many applications in chemical, mechanical, and petro-
chemical engineering [1–5]. In recent years, analytical and
numerical methods have aroused the interest of researchers

to find approximate solutions to ordinary differential equa-
tions, systems of differential equations, and direct equations.
eigenfunctions appear in many fields of applied sciences and
engineering [6]. The dynamic system has generated a great deal

of interest in many areas of applied mathematics in both indus-
try and science, leading to the study and understanding of
many physical phenomena such as [7] dynamic response of a

rod due to a thermal motion source under hyperbola. thermal
conduction model, [8] presented simultaneous solutions for the
frst and second order slips on micropolar fuid fow across a

convective surface in the presence of Lorentz force and vari-
able heat source/sink, [9] studied the influences of the viscous
dissipasion on MHD flow in micropolar fluid flow a slandering

stretching surface with modified heat flux model, [10] studied
the impact of frictional heating on MHD radiative ferrofuid
past a convective shrinking surface, [11] presented the hyper-
bolic heat conduction equation in anisotropic materials, [12]

isotope perturbation method was used to solve the system of
nonlinear linkage equations, [13] Maple 18 coded variational
iteration method was formulated to solve predator–prey mode,

[14] obtained the solutions of the LotkaVolterra random equa-
tion through the activity matrix, [15] the homotopy analysis
method was used to obtain a precise flow of tertiary fluids

through a porous plate, [16] presented a decomposition
method to solve gas dynamics equations, [17] discussed the
kinetic equations of gases, [18] used finite difference method

to solve a system of gas dynamics equations in a kind of con-
tinuous function and [19] obtained numerical solution of
chemically reactive non-Newtonian fluid flow dual to
stratification.
2. Formulation of the model

The computational framework to obtain the dynamic response
of five well-mixed and heated serial tanks is considered to pre-
heat the multicomponent oil solution before it is introduced
into the distillation column for separation as shown in

Fig. 1. Initially, each tank is full. with 2000 kg of oil at
35 �C and saturated steam at 500 �C condensing into coils sub-
merged in each barrel. Oil is fed into the first storage tank at a

rate of 160 kg/min and overflows into the second, third, fourth,
and fifth tanks at a corresponding rate. The temperature of the
oil supplied to the first tank is 35 �C. The tanks are mixed so

that the temperature inside the tanks is uniform. Considering
the outlet stream temperature as the tank interior temperature
and heat capacity, the oil Cp is 2.0 KJ/kg. The heat transfer
rate for oil from the steam coil and energy balance system of

differential equations for five tanks connected in series is given
as follows [20].

dT1

dt
¼ w T0 � T1ð Þ þ x Tsteam � T1ð Þ

dT2

dt
¼ w T1 � T2ð Þ þ x Tsteam � T2ð Þ

dT3

dt
¼ w T2 � T3ð Þ þ x Tsteam � T3ð Þ

dT4

dt
¼ w T3 � T4ð Þ þ x Tsteam � T4ð Þ

dT5

dt
¼ w T4 � T5ð Þ þ x Tsteam � T5ð Þ

8>>>>>>><
>>>>>>>:

ð1Þ

where parameters w ¼ V
M
and.x ¼ GA

MCp

with initial conditions:

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 2 Depict the simulated temperature distributions for the

tanks T1;T2;T3;T4; and T5 tanks in �C obtained when the uniform

initial temperature is 35 �C and Tsteam temperature of 500 �C
saturated steam for five connected oil heating tanks in series.
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T1 0ð Þ ¼ T2 0ð Þ ¼ T3 0ð Þ ¼ T4 0ð Þ ¼ T5 0ð Þ ¼ 35
�
C

100
�
C

(
ð2Þ

Where T1;T2;T3;T4, and T5 are the temperatures in �C in

tanks 1, 2, 3, 4, and 5, respectively, and Tsteam is the tempera-

ture of the saturated steam (500 �C, 1000
�
C) used to make hot

tank and T0 35
�
C ; 100

�
C

� �
is the temperature of the oil that is

put into the first tank; V is mass flow rate; M is the mass of the
liquid in the container; Cp is the specific heat capacity of the
oil; G is the overall heat transfer coefficient and A is the heat

transfer area in each vessel (see Fig. 2).

3. Methods of solution

In this section, we discuss solution techniques for the simula-
tion of the energy balance system of the differential equation
(1). Three computational algorithms are formulated and
applied to solve equation (1) coupled with assumptions given

in the nomenclature.

3.1. Exponential matrix algorithm (EMA)

The exponential matrix method is an analytic technique to a
solve system of differential equations, first, we build matrix
forms of exponential functions and their derivatives, then

replace the arranged points into matrix forms, and the basic
matrix equations are formed. This matrix equation corre-
sponds to a system of linear algebraic equations. By solving

this system, the unknown coefficients are determined and thus
approximate solutions are obtained. To simplify the proce-
dures involved in this technique, we hereby formulate and
apply-four steps algorithm for the numerical solution of the
energy balance system of differential equations (1) as follows:

restart :Step 1:

with linalgð Þ : with plotsð Þ : N :¼ 5 : Digits :¼ 10 : fori toNdo

Similute i½ � : ¼ diff T i½ �ð Þðð tð Þ; tÞ ¼ evalðw � T i� 1½ �ð tð Þ � T i½ �
tð ÞÞ þ x � ðTsteam � T i½ � tð ÞÞÞÞend do:

par :¼ T 0½ � tð Þð ¼ 35
�
C;

�
100

�
C�;T steam½ � ¼ 500; 1000½ �Þ : var :

¼ seq T i½ � tð Þ;ð½ i ¼ 1::NÞ� : systemequ : ¼ seq rhsðsimulate i½ �;ð½
i ¼ 1 � � �NÞÞ� :Step 2:

A :¼ genmatrix systemequ; var;Bð Þ : evalmðBÞ :
b :¼ matrix N:1ð Þ : forit oNdob i; 1½ � : ¼ �B i½ � :end do:

evalmðbÞ : mat :¼ exponential A; tð Þ :
Y½0� :¼ matrix 5; 1; ½35; 35; 35; 35; 35�ð Þ : sl :¼ evalm Y 0½ �ð
þinverse Að Þ& � bÞ :Step 3:

sol :¼ evalm mat& � sl� inverse Að Þð & � bÞ : forit oNdoT i½ � :
¼ sol i; 1½ � :end do:

pars :¼ W ¼ 160
2000 ;x

� ¼ 10
2000�2g:

sol1 :¼ subs pars;T 1½ �ð Þ : sol2 :¼ subs pars;T 2½ �ð Þ :
sol3 :¼ subs pars;T 3½ �ð Þ : sol4 :¼ subs pars;T 4½ �ð Þ :
sol5 :¼ subs pars;T 5½ �ð Þ :Step 4:

forifrom0by5to80doT 1½ � : ¼ evalf eval sol1; t ¼ ið Þð Þ :
T 2½ � :¼ evalf eval sol2; t ¼ ið Þð Þ : T 3½ � :¼ evalf eval sol3; t ¼ ið Þð Þ :
T 4½ � :¼ evalf eval sol4; t ¼ ið Þð Þ : T 5½ � :¼ evalf eval sol5; t ¼ ið Þð Þ :end
do:

2Dplot½ � :¼ plot sol1; sol2; sol3; sol4; sol5½ �;ð
t ¼ 0 � � � 360; color red; blue; yellow; purple; balck½ �;
axes ¼ boxed; title ¼ 5X5energy balance system of differe

ntial equatio nÞ; 2Dplot½ � : ¼ logplot sol1; sol2; sol3; sol4; sol5½ �;ð
t ¼ 0 � � � 360; color red; blue; yellow; purple; balck½ �;
axes ¼ boxed; title ¼ 5X5energy balance system of differen

tial equati onÞ;Output : SeeTables1and2 and Figures 2, 3, 4, . . .

15.
3.2. Differential transform algorithm (DTA)

The differential transformation method is an iterative proce-
dure for solving ordinary differential equations (ODEs), a
system of ordinary differential equations (SODEs), and par-

tial differential equations (PDEs) was proposed by Zhou [21]
and it has been in used to solve various problems in applied
mathematics such as application of Taylor transformation to
nonlinear predictive control problem was presented by [22],

authors [23] applied differential transformation method to
solve eigenvalue problems, [24] applied differential transfor-
mation method for a reliable treatment of the nonlinear bio-

chemical reaction model and solving system of first-order
linear and nonlinear differential equations in applied mathe-
matics was presented [25]. To obtain approximate solutions

of energy balance systems of differential equations (1), we
formulate five steps differential transformation algorithm
as follows:

http://mostwiedzy.pl
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restart :Step 1:

with plotsð Þ : N :¼ 10 : Digits :¼ 15 : W :¼ 160
2000 :

x :¼ 10
2000�2 : TðsteamÞ : ¼ 500

�
C; 1000

�
C

� �
T1 0ð Þ :

¼ 35
�
C; 100

�
C

� �
: T2 0ð Þ : ¼ 35

�
C; 100

�
C

� �
: T3 0ð Þ :

¼ 35
�
C; 100

�
C

� �
: T4 0ð Þ : ¼ 35

�
C; 100

�
C

� �
: T5 0ð Þ :

¼ 35
�
C; 100

�
C

� �
: d 0½ � :¼ 1; d �1½ � :¼ 1; fornfrom

1toNdod n½ � :¼ 0end do:

Step 2:

forkfro m0toNdoT1 kþ 1½ � : ¼ 1
ðkþ1Þ � W � T0 k½ � � d k½ � �W � T1 k½ �ð

þx � T steamð Þ � d k½ �� x � T1 k½ �Þ;T2 kþ 1½ � :¼ 1
ðkþ1Þ � W � T1 k½ ��ð

W � T2 k½ � þ x � T steamð Þ � d k½ �� x � T2 k½ �Þ : T3 kþ 1½ � :
¼ 1

kþ1ð Þ � W � T2 k½ ��ð W � T3 k½ � þ x � T steamð Þ � d k½ ��
x � T3 k½ �Þ : T4 kþ 1½ � : ¼ 1

kþ1ð Þ � WW � T3 k½ ��ð
W � T4 k½ � þ x � T steamð Þ � d k½ �� x � T4 k½ �Þ : T5 kþ 1½ � :¼

1
kþ1ð Þ � W � T4 k½ ��ð W � T5 k½ � þ x � T steamð Þ � d k½ ��
x � T5 k½ �Þ :end do:

Step 3:

T1 tð Þ :¼ sum T1 j½ � � tj; j ¼ 0;ð
� � � ;Nþ 1Þ : T2 tð Þ :¼ sum T2 j½ � � tj; j ¼ 0;ð
� � � ;Nþ 1Þ : T3 tð Þ :¼ sum T3 j½ � � tj; j ¼ 0;ð
� � � ;Nþ 1Þ : T4 tð Þ :¼ sum T4 j½ � � tj; j ¼ 0;ð
� � � ;Nþ 1Þ : T5 tð Þ :¼ sum T5 j½ � � tj; j ¼ 0;ð
� � � ;Nþ 1Þ : Sol1 :¼ T1 tð Þ : Sol2 :¼ T2 tð Þ :
Sol3 :¼ T3 tð Þ : Sol4 :¼ T4 tð Þ : Sol5 :¼ T5 tð Þ :Step 4:

for i from0by 5 to 80 doT1 ið Þ :¼ evalf eval sol1; t ¼ ið Þð Þ:
T2 ið Þ :¼ evalf eval sol2; t ¼ ið Þð Þ : T3 ið Þ :¼ evalf eval sol3; t ¼ ið Þð Þ :
T4 ið Þ :¼ evalf eval sol4; t ¼ ið Þð Þ :
T5 ið Þ :¼ evalf eval sol5; t ¼ ið Þð Þ :end do:

Step 5:

2Dplot½ � :¼ plot sol1; sol2; sol3; sol4; sol5½ �;ð
t ¼ 0 � � � 360; color red; blue; yellow; purple; black½ �;
axes ¼ boxed; title ¼ 5X5ene rgy bal ance system of dif feren

tial equati onÞ; 2Dplot½ � :
¼ logplot sol1; sol2; sol3; sol4; sol5½ �; t ¼ 0ð
� � � 360; color red; blue; yellow; purple; black½ �;
axes ¼ boxed; title ¼ 5X5energy balance system of diffe

rential equa tionÞ;Output : See Tables 1 and 2 and Figures 2, 3, 4,

. . . 15
3.3. Runge-Kutta (RK5)

The Runge-Kutta method is step by step numerical method for
obtaining the approximate solutions of ordinary differential
equations and was proposed Carl Runge (1856–1927) in which
the original idea was formulated by Wilhelm Kutta. It has

been used extensively to obtain approximate numerical solu-
tions of differential equations of first, second, and higher
orders. It transforms second and higher orders into a system

of equations of first-order. In the last one decade, several
authors have applied Runge-Kutta to solve many applied
problems that arise in biological and physical sciences such

as [26] applied fifth-order Runge-Kutta-Nystrom methods
for solving linear second-order oscillatory problems, [27] intro-
duced the direct explicit integrators of RK type for solving spe-

cial fourth-order ordinary differential equations with an
application, [28] applied of the Euler and Runge-Kutta gener-
alized methods for FDE and symbolic packages in the analysis
of some fractional attractors, [29] employed Runge-Kutta
scheme for the numerical results of Group theoretical analysis
for MHD flow fields, [30] presented symmetry analysis on ther-
mally magnetized fluid flow regime with heat source/sink, [31]

applied Runge-Kutta (RK5) and new iterative method (NIM)
for numerical comparison of or solving metastatic cancer
model. In other to apply the Runge-Kutta (RK5), we present

two steps algorithm as follows:

restart:

Step 1:

Digits :¼ 10 : h :¼ 4:0 : t 0½ � :¼ 0 : W :¼ 160
2000 : x :¼ 10

2000�2 :
TðsteamÞ :¼ 500

�
C; 1000

�
C

� �
:

T1½0� :¼ 35
�
C; 100

�
C

� �
: T2½0� :¼ 35

�
C; 100

�
C

� �
: T3½0� :¼

35
�
C; 100

�
C

� �
: T4½0� :¼ 35

�
C; 100

�
C

� �
: T5½0� :¼

35
�
C; 100

�
C

� �
: T1½t� :¼f

! W � T0 � T1ð Þ þ x � Tsteam � T1ð Þ : T2½t� :¼
! W � T1 � T2ð Þ þ x � Tsteam � T2ð Þ : T3½t� :¼
! W � T2 � T3ð Þ þ x � Tsteam � T3ð Þ : T4½t� :¼
! W � T3 � T4ð Þ þ x � Tsteam � T4ð Þ : T5½t� :¼
! W � T4 � T5ð Þ þ x � Tsteam � T5ð Þ : :Step 2:

fornfrom1to10dot n½ � :¼ n � h : k1 :¼ T½j� t n� 1½ �; t n� 1½ �ð Þ;
k2 :¼ T½j� t n� 1½ �ð þ h

3 ; t n� 1½ � þ h
3 � k1Þ;

k3 :¼ T½j� t n� 1½ � þ 2�h
5 ; t n� 1½ �� þ 1

25 � ð4 � k1þ 6 � k2Þ;
k4 :¼ T½j� t n� 1½ � þ h; t n� 1½ �ð þ 1

4 � ðk1� 12 � k2þ 15 � k3ÞÞ;
k5 :¼ T½j� t n� 1½ � þ 2�h

3 ; t n� 1½ ��
þ 1

81 � ð6 � k1þ 90 � k2� 50 � k3þ 8 � k4ÞÞ;
k6 :¼ T½j� t n� 1½ � þ 4�h

5 ; t n� 1½ ��
þ 1

75 � ð6 � k1þ 36 � k2þ 10 � k3þ 8 � k4ÞÞ;T j½ � : ¼ T n� 1½ � þ h
192

� 23 � k1þ 125 � k3� 81 � k5þ 125 � k6ð Þ;od;jfrom1to5

2Dplot½ � :¼ plot sol1; sol2; sol3; sol4; sol5½ �;ð
t ¼ 0 � � � 360; color red; blue; yellow; purple; black½ �; axes ¼ boxed;

title ¼ 5X5energy ba lance syst emof diffe rential equ

ationÞ; 2Dplot½ � : ¼ logplot sol1; sol2; sol3; sol4; sol5½ �;ð
t ¼ 0 � � � 360; color red; blue; yellow; purple; black½ �;
axes ¼ boxed; title ¼ 5X5energy balance sy stemof dif ferenti

al equa tionÞ;Output : SeeTables1and2 and Figures 2, 3, 4, . . . 15
4. Computational experiments, results and plots presentation

In this section, we applied the proposed techniques to examine

and investigate the relationship between w and x parameters
that appeared in the energy balance system of differential
equations for five tanks connected in series (1). We considered

a test case W ¼ 0:0800 greater than x ¼ 0:0025 for the two
experiments and the results obtained are presented in Table 1
and Table 2 as follows:

2DPlots representation.

5. Discusion and conclusion

5.1. Discusion

The temperature distribution plays an important role in the

thermodynamic properties of heat transferred through the
fluid flow in a given medium. Therefore, efficient and simple
computational algorithms are required to simulate the temper-

ature distribution of a given environment which this article
aims to do. Simulation solutions were presented for the two

http://mostwiedzy.pl


Table 1 Simulated temperature distribution at T0 initial temperature 35
�
C and Tsteam temperature of the saturated steam 500

�
C five

tanks for oil heating connected in series.

t (mins) Tð1Þ�C Tð2Þ�C Tð3Þ�C Tð4Þ�C Tð5Þ�C
s0 Exact 35.00000000 35.00000000 35.00000000 35.00000000 35.00000000

EMA 35.00000000 35.00000000 35.00000000 35.00000000 35.00000000

DTA 35.00000000 35.00000000 35.00000000 35.00000000 35.00000000

RKð5Þ 35.00000000 35.00000000 35.00000000 35.00000000 35.00000000

5.0 Exact 39.76282314 40.65008392 40.76421114 40.77538038 40.77626117

EMA 39.76282314 40.65008392 40.76421113 40.77538038 40.77626120

DTA 39.76282314 40.65008392 40.76421114 40.77538038 40.77626118

RKð5Þ 39.76282380 40.65008151 40.76421420 40.77537887 40.77626124

10.0 Exact 42.91577965 45.65158364 46.32844306 46.45784722 46.47794116

EMA 42.91577965 45.65158363 46.32844305 46.45784722 46.47794114

DTA 42.91577964 45.65158364 46.32844307 46.45784721 46.47794117

RKð5Þ 42.91578100 45.65157936 46.32844734 46.45784631 46.47794054

15.0 Exact 45.00301541 49.79743674 51.50328912 51.98013563 52.08933822

EMA 45.00301541 49.79743672 51.50328910 51.98013563 52.08933824

DTA 45.00301542 49.79743674 51.50328912 51.98013562 52.08933820

RKð5Þ 45.00301771 49.79743039 51.50329370 51.98013638 52.08933710

20.0 Exact 46.38475129 53.09465763 56.13735149 57.24043879 57.57113770

EMA 46.38475129 53.09465762 56.13735147 57.24043877 57.57113766

DTA 46.38475128 53.09465763 56.13735148 57.24043877 57.57113771

RKð5Þ 46.38475618 53.09464763 56.1373540 57.2404427 57.57113752

25.0 Exact 47.29945104 55.64327533 60.15134035 62.13418661 62.86264125

EMA 47.29945104 55.64327531 60.15134032 62.13418659 62.86264126

DTA 47.29945105 55.64327532 60.15134034 62.13418660 62.86264122

RKð5Þ 47.29945526 55.64326685 60.15134119 62.13419138 62.86264187

30.0 Exact 47.90497605 57.57265291 63.53188269 66.57814004 67.89265270

EMA 47.90497605 57.57265289 63.53188267 66.57814002 67.89265271

DTA 47.90497601 57.57265291 63.53188269 66.57814004 67.89265269

RKð5Þ 47.90498125 57.57264481 63.53187991 66.57814520 67.89265571

35.0 Exact 48.30582948 59.01022912 66.31274094 70.52161994 72.59231595

EMA 48.30582948 59.01022910 66.31274091 70.52161993 72.59231596

DTA 48.30582947 59.01022910 66.31274092 70.52161994 72.59231592

RKð5Þ 48.30583688 59.01022165 66.31273268 70.52162341 72.59232219

40.0 Exact 48.57119173 60.06803969 68.55554542 73.94750430 76.90539068

EMA 48.57119173 60.06803967 68.55554540 73.94750428 76.90539069

DTA 48.57119171 60.06803960 68.55554535 73.94750434 76.90539064

RKð5Þ 48.57120013 60.06803455 68.55553341 73.94750393 76.90539843

45.0 Exact 48.74685973 60.83857029 70.33442554 76.86719981 80.79421623

EMA 48.74685973 60.83857027 70.33442551 76.86719980 80.79421623

DTA 48.74685970 60.83857030 70.33442540 76.86719986 80.79421608

RKð5Þ 48.74686824 60.83856819 70.33441193 76.86719467 80.79422322

50.0 Exact 48.86315076 61.39517271 71.72536975 79.31310832 84.24149320

EMA 48.86315076 61.39517269 71.72536973 79.31310830 84.24149320

DTA 48.86315060 61.39517260 71.72536960 79.31310834 84.24149334

RKð5Þ 48.86315841 61.39517316 71.72535690 79.31309962 84.24149791

55.0 Exact 48.94013462 61.79443328 72.79971088 81.33089987 87.24891309

EMA 48.94013462 61.79443326 72.79971085 81.33089986 87.24891309

DTA 48.94013450 61.79443320 72.79971000 81.33089975 84.24149324

RKð5Þ 48.94014098 61.79443499 72.79969961 81.33088945 87.24891586

60.0 Exact 48.99109742 62.07912617 73.62071754 82.97283499 89.83388047

EMA 48.99109742 62.07912615 73.62071750 82.97283498 89.83388047

DTA 48.99109750 62.07912640 73.62071650 82.97283489 89.83388145

RKð5Þ 48.99110356 62.07912999 73.62070742 82.97282094 89.83387899

65.0 Exact 49.02483444 62.28108574 74.24230322 84.29262223 92.02541759

EMA 49.02483444 62.28108572 74.24230319 84.29262222 92.02541759

DTA 49.02483460 62.28108550 74.24230320 84.29262194 92.02541976

RKð5Þ 49.02484132 62.28109344 74.2422954 84.29260281 92.02540726

70.0 Exact 49.04716812 62.42371507 74.70905375 85.34184050 93.86004507

EMA 49.04716812 62.42371505 74.70905372 85.34184049 93.86004507

DTA 49.04716790 62.42371500 74.70905200 85.34184067 93.86004628

RKð5Þ 49.04717442 62.42372517 74.70905123 85.34182131 93.86002703

75.0 Exact 49.06195287 62.52404862 75.05699007 86.16772140 95.37812789

(continued on next page)
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Table 1 (continued)

t (mins) Tð1Þ�C Tð2Þ�C Tð3Þ�C Tð4Þ�C Tð5Þ�C
EMA 49.06195287 62.52404860 75.05699004 86.16772139 95.37812789

DTA 49.06195230 62.52404500 75.05698740 86.16771078 95.37813780

RKð5Þ 49.06195736 62.52405703 75.05699000 86.16770657 95.37811051

80.0 Exact 49.07174027 62.59438371 75.31467258 86.81199954 96.62092484

EMA 49.07174027 62.59438369 75.31467255 86.81199953 96.62092484

DTA 49.07173932 62.59438800 75.31466100 86.81199959 96.62092243

RKð5Þ 49.07174426 62.5943923 75.31467476 86.81198582 96.62090451

Table 2 Simulated temperature distribution at T0 initial temperature 100
�
C and Tsteam temperature of the saturated steam 1000

�
C five

tanks for oil heating connected in series.

t (mins) Tð1Þ�C Tð2Þ�C Tð3Þ�C Tð4Þ�C Tð5Þ�C
0 Exact 100.0000000 100.0000000 100.0000000 100.0000000 100.0000000

EMA 100.0000000 100.0000000 100.0000000 100.0000000 100.0000000

DTA 100.0000000 100.0000000 100.0000000 100.0000000 100.0000000

RKð5Þ 100.0000000 100.0000000 100.0000000 100.0000000 100.0000000

5.0 Exact 109.2183674 110.9356463 111.1565377 111.1781556 111.1798603

EMA 109.2183674 110.9356463 111.1565376 111.1781557 111.1798604

DTA 109.2183674 110.9356463 111.1565377 111.1781555 111.1798603

RKð5Þ 109.2183705 110.9356359 111.1565496 111.1781504 111.1798604

10.0 Exact 115.3208639 120.6159684 121.9260188 122.1764785 122.2153700

EMA 115.3208639 120.6159683 121.9260188 122.1764786 122.2153700

DTA 115.3208638 120.6159683 121.9260188 122.1764785 122.2153699

RKð5Þ 115.3208697 120.6159511 121.9260341 122.1764761 122.2153678

15.0 Exact 119.3606750 128.6402002 131.9418499 132.8647786 133.0761385

EMA 119.3606750 128.6402001 131.9418498 132.8647787 133.0761385

DTA 119.3606750 128.6402001 131.9418499 132.8647786 133.0761385

RKð5Þ 119.3606841 128.6401780 131.9418623 132.8647827 133.0761360

20.0 Exact 122.0350025 135.0219180 140.9110029 143.0460105 143.6860730

EMA 122.0350025 135.0219179 140.9110028 143.0460107 143.6860730

DTA 122.0350025 135.0219180 140.9110029 143.0460105 143.6860729

RKð5Þ 122.0350104 135.0218989 140.9110114 143.0460176 143.6860708

25.0 Exact 123.8053891 139.9547265 148.6800136 152.5177805 153.9276927

EMA 123.8053891 139.9547264 148.6800135 152.5177806 153.9276928

DTA 123.8053891 139.9547264 148.6800136 152.5177805 153.9276927

RKð5Þ 123.8054021 139.9547036 148.6800124 152.5177925 153.9276961

30.0 Exact 124.9773730 143.6890057 155.2229988 161.1189807 163.6631987

EMA 124.9773730 143.6890056 155.2229987 161.1189808 163.6631988

DTA 124.9773730 143.6890057 155.2229988 161.1189807 163.6631988

RKð5Þ 124.9773928 143.6889795 155.2229846 161.1189951 163.6632106

35.0 Exact 125.7532184 146.4714112 160.6053050 168.7515224 172.7593211

EMA 125.7532184 146.4714111 160.6053049 168.7515226 172.7593212

DTA 125.7532184 146.4714113 160.6053051 168.7515225 172.7593212

RKð5Þ 125.7532404 146.4713891 160.6052802 168.7515324 172.7593397

40.0 Exact 126.2668227 148.5187864 164.9462170 175.3822664 181.1072077

EMA 126.2668227 148.5187864 164.9462168 175.3822665 181.1072078

DTA 126.2668227 148.5187866 164.9462170 175.3822665 181.1072078

RKð5Þ 126.2668452 148.5187718 164.9461847 175.3822665 181.1072292

45.0 Exact 126.6068253 150.0101361 168.3892107 181.0332899 188.6339668

EMA 126.6068253 150.0101360 168.3892106 181.0332900 188.6339669

DTA 126.6068253 150.0101361 168.3892106 181.0332901 188.6339670

RKð5Þ 126.6068482 150.0101302 168.3891740 181.0332756 188.6339857

50.0 Exact 126.8319047 151.0874311 171.0813608 185.7673064 195.3061158

EMA 126.8319047 151.0874310 171.0813607 185.7673065 195.3061158

DTA 126.8319047 151.0874312 171.0813609 185.7673070 195.3061161

RKð5Þ 126.8319258 151.0874334 171.0813264 185.7672815 195.3061266

55.0 Exact 126.9809058 151.8601935 173.1607307 189.6727094 201.1269285

EMA 126.9809058 151.8601934 173.1607306 189.6727095 201.1269286

DTA 126.9809057 151.8601948 173.1607304 189.6727092 201.1269295
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Table 2 (continued)

t (mins) Tð1Þ�C Tð2Þ�C Tð3Þ�C Tð4Þ�C Tð5Þ�C
RKð5Þ 126.9809222 151.8601990 173.1607029 189.6726817 201.1269330

60.0 Exact 127.0795434 152.4112120 174.7497759 192.8506483 206.1300912

EMA 127.0795434 152.4112119 174.7497758 192.8506484 206.1300912

DTA 127.0795432 152.4112120 174.7497762 192.8506490 206.1300925

RKð5Þ 127.0795576 152.4112204 174.7497521 192.8506162 206.1300885

65.0 Exact 127.1448409 152.8021015 175.9528449 195.4050753 210.3717760

EMA 127.1448409 152.8021014 175.9528448 195.4050754 210.3717760

DTA 127.1448408 152.8021022 175.9528464 195.4050719 210.3717810

RKð5Þ 127.1448567 152.8021187 175.9528262 195.4050304 210.3717534

70.0 Exact 127.1880674 153.0781582 176.8562331 197.4358203 213.9226678

EMA 127.1880674 153.0781581 176.8562330 197.4358204 213.9226678

DTA 127.1880677 153.0781586 176.8562223 197.4358268 213.9226613

RKð5Þ 127.1880821 153.0781815 176.8562268 197.4357754 213.9226263

75.0 Exact 127.2166830 153.2723522 177.5296582 199.0342995 216.8608927

EMA 127.2166830 153.2723521 177.5296581 199.0342996 216.8608927

DTA 127.2166845 153.2723488 177.5296621 199.0342828 216.8608988

RKð5Þ 127.2166932 153.2723711 177.5296574 199.0342650 216.8608534

80.0 Exact 127.2356264 153.4084846 178.0283985 200.2812894 219.2663061

EMA 127.2356264 153.4084845 178.0283984 200.2812895 219.2663061

DTA 127.2356255 153.4084905 178.0283872 200.2812908 219.2662679

RKð5Þ 127.2356358 153.4085053 178.0284037 200.2812570 219.2662579
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experiments carried out for the heat transfer rate of the oil
steam coil of the system of energy balance differential equa-

tions for five tanks connected in series, the principal outcomes
are listed below:

i. That the five tanks are well mixed so that the tempera-
ture inside the buckets is evenly distributed for the two
calculated experiments at the initial temperature

(35 �C, 100 �C) and the T steam temperature of saturated

steam ð500�
C; 1000

�
CÞ respectively (see Figs. 3 and 5).
Fig. 3 Simulated logarithm functions of the temperature distri-

bution for the tanks T1;T2;T3;T4; and T5 in �C when the uniform

initial temperature is 35 �C and temperature Tsteam saturated steam

is 500 �C five tanks for heating oil in series.

Fig. 4 Depict the simulated temperature distributions for the

tanks T1;T2;T3;T4; and T5 tanks in �C obtained when the uniform

initial temperature is 100 �C and Tsteam temperature of 1000 �C
saturated steam for five connected oil heating tanks in series.
ii. The variation of the parameters are considered sepa-

rately from tank 1 to tank 5 (Figs. 6–15).
iii. The higher temperature distribution is obtained when

heat is transferred from the first to the fifth tank (see

Figs. 2 and 4).
iv. The higher the initial temperature of 100 �C and the

T steam temperature of the saturated steam of 1000 �C,
the higher the temperature distribution is compared to

the initial temperature of 35 �C and the T steam tempera-
ture of the saturated steam of 500 �C (see Table 1 and
Table 2).

http://mostwiedzy.pl


Fig. 5 Simulated logarithm functions of the temperature distri-

bution for the tanks T1;T2;T3;T4; and T5 in �C when the uniform

initial temperature is 100 �C and temperature Tsteam saturated

steam is 1000 �C five tanks for heating oil in series.

Fig. 6 Present the temperature distribution profile of Tank 1

when parameter W ¼ 0:0025 is fixed and varies

x ¼ ½0:08; 0:18; 0:28; 0:38; 0:48; 0:58�.

Fig. 7 Present the temperature distribution profile of Tank 1

when parameter x ¼ 0:0025 is fixed and varies.

W ¼ 0:08; 0:18; 0:28; 0:38; 0:48; 0:58½ �:

Fig. 8 Present the temperature distribution profile of Tank 2

when parameter W ¼ 0:0025 is fixed and varies

x ¼ ½0:08; 0:18; 0:28; 0:38; 0:48; 0:58�.
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v. The two constant parameters in equation (1) are fixed
and tested where W ¼ 0:0025 gives a larger temperature
distribution across tank 1 to tank 5 than x ¼ 0:0025 (see
Figs. 6–15).

vi. The reverse reaction occurs in all five reservoirs when
w = 0.0025 and x = 0.0025 respectively (see Figs. 6–

15 indicated in red).
vii. Steady (convrges) temperatures are recorded within the
time interval 60mins to 80 mins for all five tanks in con-
sideration (see Table 1 and Table 2).

viii. The novelty of the constructed algorithms is shown by
good agreement with the exact solutions given in Table 1
and Table 2, which shows a close comparison of our

proposed algorithms.
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Fig. 9 Present the temperature distribution profile of Tank 2

when parameter x ¼ 0:0025 is fixed and varies.

w ¼ 0:08; 0:18; 0:28; 0:38; 0:48; 0:58½ �:

Fig. 10 Present the temperature distribution profile of Tank 3

when parameter W ¼ 0:0025 is fixed and varies

x ¼ ½0:08; 0:18; 0:28; 0:38; 0:48; 0:58�.

Fig. 11 Present the temperature distribution profile of Tank 3

when parameter x ¼ 0:0025 is fixed and varies.

W ¼ 0:08; 0:18; 0:28; 0:38; 0:48; 0:58½ �:

Fig. 12 Present the temperature distribution profile of Tank 4

when parameter W ¼ 0:0025 is fixed and varies

x ¼ ½0:08; 0:18; 0:28; 0:38; 0:48; 0:58�.
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Fig. 13 Present the temperature distribution profile of Tank 4

when parameter x ¼ 0:0025 is fixed and varies.

W ¼ 0:08; 0:18; 0:28; 0:38; 0:48; 0:58½ �:

Fig. 14 Present the temperature distribution profile of Tank 5

when parameter W ¼ 0:0025 is fixed and varies

x ¼ ½0:08; 0:18; 0:28; 0:38; 0:48; 0:58�.

Fig. 15 Present the temperature distribution profile of Tank 5

when parameter x ¼ 0:0025 is fixed and varies.

W ¼ 0:08; 0:18; 0:28; 0:38; 0:48; 0:58½ �:
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5.2. Conclusion

Our simulation results obtained from the system of energy bal-
ance differential equations for five tanks connected in series
show that the built algorithms can be considered structurally

simple algorithms and easy to apply to solve systems of differ-
ential equations. The two computational experiments per-
formed have shown a significant contribution in the

utilization and implementation of the MAPLE 18 software
which eventually reduces the time taken to simply mathemati-
cal evaluations and simplifications involve in applying some

numerical techniques in applied computational engineering
sciences. A good agreement with exact solutions suggests that
the techniques presented are easy, efficient, and practically fea-
sible which can be extended to more physical and biological

problems in applied mathematics. All computations and cod-
ing for the proposed algorithms are performed using the
MAPLE 18 software package.
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