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Abstract
Numerical simulations of the behaviour of cohesionless sand were carried out using a discrete
element method. A drained triaxial test of a homogeneous sand specimen under constant
lateral pressure was modelled. To simulate the behaviour of sand, a 3D spherical discrete
model YADE was used, enhanced by including rolling resistance in order to take into account
grain roughness. Numerical results were directly compared with corresponding laboratory
tests. The effects of lateral pressure, initial void ratio and micro-parameters on the global
behaviour of sand were investigated.
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List of Symbols

ai – acceleration of sphere i,
Ȧ, Ḃ – current orientation of sphere A and sphere B (unit quaternion

related to global coordinate system),
Ȧ′, Ḃ′ – orientation of sphere A and sphere B at contact,
~C – position of contact between two spheres,
Ec – modulus of elasticity,
~Fi – force acting on sphere i,
~Fn – normal contact force,
~Fs – tangential contact force,
Ii – moment of inertia of sphere i,
Kn – normal stiffness of contact between two spheres,
Kr – rotational stiffness of contact between two spheres,
Ks – tangential stiffness of contact between two spheres,
mi – mass of sphere i,
~M – contact moment,
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~Mi – moment acting on sphere i,
~N – normal vector of contact (vector of unit length),
RA, RB – radius of sphere A and sphere B,
U – penetration depth between two spheres,
~VA, ~VB – current velocity of sphere A and sphere B,
~XA, ~XB – current position of sphere A and sphere B,
α – damping coefficient,
β – dimensionless rotational stiffness coefficient,
∆t – time increment between two iterations,
∆Q̇ – orientation displacement increment between two spheres (unit

quaternion),
∆ ~X – distance between centers of two spheres,
∆~V – velocity increment between two spheres,
∆~VS – tangential velocity increment between two spheres,
∆ ~XS – tangential displacement increment between two spheres,
∆ ~ω – angular rotation increment between two spheres,
η – dimensionless rolling limit coefficient,
µ – inter-particle friction angle for spheres,
νc – Poisson’s ratio of grain contact,
~ωA, ~ωB – current rotation of sphere A and sphere B,
→
·
ωA,

→
·
ωB – current angular velocity of sphere A and sphere B,

→
··
ωi – rotational acceleration of sphere i.

1. Introduction

Granular materials consist of grains in contact and surrounding voids, which change
their arrangement depending on environmental factors and initial density. Their mi-
cromechanical and fabric behaviour is inherently discontinuous, heterogeneous and
non-linear. To describe their behavior, two main approaches are employed: contin-
uum and discrete. In the former approach, simulations are performed at the global
scale using the finite element method on the basis of e.g. elasto-plastic and hypoplas-
tic constitutive models, enhanced by a characteristic length of micro-structure to
describe strain localization (e.g. Tejchman and Wu 1993, Brinkgreve 1994, Tejch-
man 2004, Gudehus and Nübel 2004). In turn, the latter type involves simulations at
the grain scale, i.e. each grain is modelled individually (Thornton et al 1996, Bardet
1998, Iwashita and Oda 1998, Peña et al 2007, Luding 2008). Such approaches are
becoming increasingly popular for modelling granular materials due to ever faster
processing speeds of computers and a possibility of connection to the FEM (Rojek
2007).

The aim of our calculations is to check the capability of a discrete element
method to simulate the behavior of real cohesionless sand under monotonic load-
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ing during a typical drained homogeneous triaxial test, which is among the most
important geotechnical tests to determine soil properties. We have used the pro-
gram YADE based on the so-called soft-particle approach developed at Grenoble
University (Kozicki and Donze 2008, 2009, Belheine et al 2009). The effect of
micro-parameters on the global behaviour of sand was studied carefully. To simu-
late the behaviour of real sand, a 3D spherical discrete model was used with rolling
resistance in order to take into account grain roughness. The numerical results were
quantitatively compared with the experimental data from triaxial tests performed
by Wu (1992) at Karlsruhe University for so-called Karlsruhe sand.

The second author took part in the program development by implementing
contact moments into a 3D YADE model.

2. Discrete Element Method

The discrete element method (DEM) is widely used to model a range of processes
across many industries (Thornton et al 1996, Herrmann and Luding 1998, Jiang
et al 2005, Kruyt and Rothenburg 2006, Zhu et al 2007, Ketterhagen et al 2008,
Alonso-Marroquin et al 2008). The DEM is a numerical approach where statistical
measures of the macro-mechanical response of material behavior are computed
from the individual motion and mutual interactions of a large number of discrete
elements (Cundall and Strack, 1979). It assumes, namely, that a solid material can
be represented by a collection of particles interacting among themselves in the
normal and tangential direction. The state of every particle in the system and all
particle interactions are determined using physical laws. This method provides new
insight into constitutive modeling, because a physical process which governs the
constitutive behavior can be described at the local scale which is usually responsible
for the global behaviour. This approach is particularly advantageous due to the high
level of detail in the output describing the behavior of the particles. In spite of their
simplicity, particle-based models are able to reproduce the complex structure of the
incremental stress-strain response of granular materials (Calvetti et al 2003). The
limitations of the method are: necessity of long computational time and difficulty
of experimental validation.

In our model, the so-called soft-particle approach is used (i.e. the model allows
for particle deformation which is modeled as an overlap of particles). The dynamic
behaviour of the discrete system is solved numerically using a force-displacement
Lagrangian approach and tracks the positions, velocities, and accelerations of each
particle individually. It uses an explicit finite difference algorithm, assuming that
velocities and accelerations are constant in each time step. To calculate forces
acting in particle-particle or particle-wall contacts, a particle interaction model is
assumed in which the forces are typically decomposed into normal and tangential
components. The total forces and moments acting on each particle are summed.
Next, the problem is reduced to the integration of Newton’s equations of motion
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for both translational and rotational degrees of freedom. As a result, the accelera-
tions of each particle are obtained. The time step is incremented and accelerations
are integrated over time to determine updated particle velocities and positions. To
maintain the numerical stability of the method and to obtain a quick convergence
to a quasi-static state of equilibrium of the assembly of particles, damping forces
have to be introduced.

Discrete elements can have different geometries (Ketterhagen et al 2008), but
to keep a low calculation cost, usually the simplest spherical geometry is chosen
(dealing with realistic shapes would lead to a prohibitive calculation cost). However,
such a spherical geometry is too idealized to accurately model phenomena exhibited
by real granular materials. It has been shown that spherical particles have a smaller
angle of repose and reduced shear strength as compared to non-spherical particles
(Rothenburg and Bathurst 1992, Poeschel and Buchholz 1993). This is due to the fact
that the rotation is only resisted by frictional contacts with neighbouring particles;
whereas for non-spherical particles, the rotation tends to be inhibited by mechanical
interlocking.

In the paper, only spherical elements were used. To simulate grain roughness,
moments were introduced into a 3D model which were transferred through contacts
and which resisted particle rotations (Kozicki and Donze 2008, 2009). In this way,
grains are in contact with their neighbours through a certain contact surface. The
importance of rolling resistance on the contact behaviour of granular bodies in
2D simulations was shown, among others, by Oda et al (1997), Iwashita and Oda
(1998) and Jiang et al 2005.

A complete set of formulae used in this model is presented in Table 2 in
Appendix A. Below, only the most important ones are listed. A complete set of
symbols used is listed in the List of Symbols of the beginning of the paper.

Figure 1 presents two spherical discrete elements A and B in contact. The radii
of two spheres are RA and RB. The positions of their centres are denoted by XA
and XB. During each time step, two spheres may remain in contact. The interaction

force vector
→

F represents the action of the element A on the element B and may be

decomposed into a normal
→

Fn and tangential vector
→

Fs, respectively. Both forces are
linked to displacements through the normal stiffness Kn and tangential stiffness Ks

~Fn = KnU ~N , (1)

~Fs = ~Fs + Ks∆ ~Xs, (2)

where U is the penetration depth between elements,
→

N denotes the normal vector
at the contact point and ∆ ~Xs is the incremental tangential displacement. The tan-

gential force
→

Fs is obtained by summing its increments. The stiffness parameters
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Fig. 1. Two spheres in contact (
→

Fs – tangential contact force vector,
→

Fn – normal contact

force vector,
→

M – contact moment vector,
→

N – contact normal vector)

are calculated with the aid of the modulus of elasticity of the grain contact Ec and
grain radii R (to determine the normal stiffness Kn) or with the aid of the modulus
of elasticity Ec and Poisson’s ratio νc of the grain contact, and grain radii R (to
determine the tangential stiffness Ks) of two neighbouring spheres, respectively:

Kn = Ec
2RARB

RA + RB
and Ks = Ecνc

2RARB

RA + RB
. (3)

If RA = RB = R, the stiffness parameters are equal to: Kn = EcR and Kt = νcEcR
(thus Kn/Ks = 1/νc), respectively. Shearing starts at the contact point when the con-

tact forces
→

Fs and
→

Fn satisfy a frictional Mohr-Coulomb equation (Fig. 2)∥∥∥∥ ~Fs

∥∥∥∥ − ∥∥∥∥ ~Fn

∥∥∥∥tanµ ≤ 0 (4)

with µ denoting the inter-particle friction angle.
The program YADE differs from other DEM codes by the fact that contact

moments between spheres are introduced to increase the rolling resistance. Con-
sequently, the real grain roughness can be simulated in 3D simulations. Only the
normal force contributes to rolling resistance. The contact moment increments are
calculated using the rolling stiffness Kr

∆M = Kr∆ ~ω, (5)

with

Kr = βKsRARB, (6)
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Fig. 2. Mechanical response of normal, tangential and rolling contact model (Kozicki et al
2008)

Fig. 3. Grain distribution curve for sand assumed for numerical simulations of a monotonic
triaxial test (mean grain diameter d50 = 0.5 mm)
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where ∆ ~ω is the angular increment rotation between two spheres (see the List
of Symbols) and β is the dimensionless rolling stiffness coefficient. In turn, the
dimensionless coefficient η controls the limit of the rolling behavior (Fig. 2)∥∥∥∥ ~M∥∥∥∥−ηRA + RB

2

∥∥∥∥ ~Fn

∥∥∥∥ ≤ 0. (7)

No forces and moment are transmitted when grains are separated. Figure 2 dis-
plays the assumed normal, tangential and rolling contact relationships in the model.
To dissipate kinetic energy, a local non-viscous damping scheme was adopted (Cun-
dall and Hart 1992):

~Fk = ~Fk−α · sgn(~V k)
∣∣∣∣ ~Fk

∣∣∣∣, (8)

~Mk = ~Mk−α · sgn( ~ωk)
∣∣∣∣ ~Mk

∣∣∣∣. (9)

A positive numerical damping coefficient α is smaller than 1 (sgn(·) returns
the sign of the argument). The equations are separately applied to each k-th com-
ponent of a 3D vector. In general, the damping parameter α can be different for
each translational and rotational degree of freedom (but this is not the case in our
calculations).

As compared to other discrete models incorporating contact moments (e.g. to
the 2D model by Jiang et al 2005), the program YADE is designed primarily for 3D
simulations, rolling resistance is an independent parameter, rotations are described
by means of quaternions, and a grain shape coefficient is not included.

The following five main local material parameters are needed for discrete sim-
ulations: Ec, νc, β, µ and η, which were calibrated with corresponding triaxial
laboratory test results with Karlsruhe sand (Wu 1992). In addition, the particle
radius R, particle density ρ and damping parameters α are required.

3. Triaxial Test

The numerical results of a triaxial test for cohesionless sand were directly compared
with the corresponding experimental results of several triaxial tests performed by
Wu (1992) at Karlsruhe University with so-called Karlsruhe sand (Figs. 5 and 6).
In numerical comparative simulations of a homogeneous triaxial test, a cubic gran-
ular specimen of 10 × 10 × 10 cm3 including about 10000 spheres with a radius
varying between 0.2 mm and 0.8 mm (d50 = 0.5 mm) was used (Fig. 3). The
spheres were distributed at random. The test was modeled using confining smooth
rigid wall elements (Fig. 4). Isotropic compression took place under gravity free
conditions. The top and bottom boundaries moved vertically as loading platens
under strain-controlled conditions to simulate the confining pressure p. The initial
density of a granulate was obtained using a radius expansion method based on
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Fig. 4. Simulation of a monotonic triaxial test for sand using DEM

a Weibull distribution (Kozicki and Donze 2008). In this method, the inter-particle
friction was assumed to be zero and gravity was varied to obtain a different initial
density caused by grain overlapping (thus, it was possible to exactly reproduce the
experimental value). The initial void ratio eo was varied between eo = 0.50 for an
initially dense specimen and eo = 0.90 for an initially loose specimen.

Table 1 lists the material parameters assumed in discrete simulations. The nu-
merical damping was α = 0.3 for each translational and rotational degree of freedom
(its effect on our quasi-static results was negligible). In turn, the particle density
was ρ = 2.6 kNs2/m.

4. Numerical Results

Figure 7 shows a direct comparison between numerical and experimental results
(Wu 1992) with initially very dense Karlsruhe sand (eo = 0.53, d50 = 0.5 mm) at
confining pressure p = 200 kPa up to ε1 = 12%. Both experimental curves (global
axial normal stress versus global axial strain and global volumetric strain versus
global axial strain) are reproduced very well. The calculated maximum internal
friction angle, φ = 42.3◦, compares well with the experimental value of φ = 43.7◦

(Wu 1992) (Fig. 6). The calculated dilatancy angle ψ = 27.1◦ and modulus of elas-
ticity E = 101 MPa are also in a satisfactory agreement with experimental results
of ψ = 28.5◦ and E = 104 MPa (Fig. 6).
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Fig. 5. Experimental results of triaxial tests by Wu (1992): relationship between σ1/σc and
ε1, and between εv and ε1 for Karlsruhe sand at different confining pressures σc: A) initially
very dense (eo = 0.53) sand, B) initially loose sand (eo = 0.80) (σ1 – vertical axial stress,

ε1 – vertical axial strain, εv – volumetric strain)

Table 1. Microscopic material parameters for discrete simulations

Material parameters Value
Modulus of elasticity of grain contact Ec [GPa] 3–30
Poisson’s ratio of grain contact νc [–] 0.3
Grain size [mm] 0.2 − 0.8 mm or 2.0 − 8.0 mm
Mean grain diameter d50 [mm] 0.5 mm or 5.0 mm
Normal stiffness Kn [kPa] 7.5×103 (d50 = 0.5 mm)

7.5×104 (d50 = 5.0 mm)
Tangential stiffness Ks [kPa] 2.25×103 (d50 = 0.5 mm)

2.25×104 (d50 = 5.0 mm)
Inter-particle friction angle µ [◦] 20 − 40
Rolling stiffness coefficient β [–] 0.1 − 50.0
Moment limit coefficient η [–] 0.1 − 3.0
Initial void ratio e0 [–] 0.53 − 0.90
Mass density ρ [kNs2/m] 2.6
Damping coefficient α [–] 0.3

The initial simulations showed a small effect of the mean grain diameter on
the results of the global internal friction angle at peak (which was smaller by 5%
only with d50 = 0.5 mm, Fig. 8). The shape of both curves with a different d50 was
similar due to the fact that shear localization was not taken into account. Therefore,
to save computation time, subsequent discrete simulations, showing the capabilities
of DEM, were carried out with d50 = 5 mm using the same parameters as for
d50 = 0.5 mm (2000 spheres were used).
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Fig. 6. Experimental results of triaxial tests for initially very dense sand (eo = 0.53): (a)
effect of confining pressure σc on maximum internal friction angle φ, (b) dilatancy angle

ψ, (c) normalized modulus of elasticity E0/σc (Wu 1992)
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Fig. 7. Triaxial test for granular specimen: vertical stress versus vertical axial strain and
volumetric strain versus axial strain (p = 200 kPa, e0 = 0.53, d50 = 0.5 mm): a) experiment

(Wu 1992), b) discrete simulation (Ec = 30 GPa, νc = 0.3, µ = 30◦, η = 1.0, β = 0.15)

4.1. Effect of the Contact Moments

Figure 9 demonstrates the influence of contact moments on the behaviour of initially
dense sand (µ = 30◦, η = 1.0, p = 100 kPa, e0 = 0.60, d50 = 5 mm). The rolling
stiffness coefficient was β = 0.15 (with contact moments) or β = 0 (no contact
moments). The test was performed until a critical state was reached. The numerical
results of the deviatoric stress versus axial strain and volumetric strain versus the
axial strain show a huge impact of contact moments. In the case of contact moments
(β = 0.15), a significant increase of the initial stiffness, global internal friction
angle at peak φp and at the residual state φres, dilatancy angle ψ and material
softening occurs. The elastic modulus is 95 MPa (with contact moments) or 32 MPa
(without contact moments). The global peak internal friction angle φp (calculated
with principal stresses from the Mohr’s equation) grows from 22◦ up to 40◦, global
residual internal friction angle φres increases from 11◦ up to 29◦, and the dilatancy
angle ψ rises from 4◦ up to 16◦, respectively. The results show that the rolling effect
is very pronounced.
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Fig. 8. Discrete simulations of triaxial test for granular specimen: global deviatoric stress
versus axial strain (Ec = 30 GPa, νc = 0.3, µ = 30◦, β = 0.15, η = 1.0, p = 200 kPa, e0 =

0.53): a) d50 = 5 mm, b) d50 = 0.5 mm

Fig. 9. Discrete simulations of triaxial test for granular specimen: global deviatoric stress and
volumetric strain versus axial strain (Ec = 30 GPa, νc = 0.3, µ = 30◦, η = 1.0, p = 100 kPa,
e0 = 0.60, d50 = 5 mm): a) calculations without contact moments (β = 0), b) calculations

with contact moments (β = 0.15)

4.2. Effect of Inter-Particle Internal Friction Angle

The numerical results (global deviatoric stress versus axial strain and global vol-
umetric strain versus axial strain) with the inter-particle friction angle µ changing
between 20◦ and 40◦ are shown in Figs. 10 and 11 for initially dense sand (η = 1.0,
β = 0.15, p = 100 kPa, e0 = 0.60, d50 = 5 mm). The local friction angle µ has
a strong effect on both the peak stress and dilatancy angle, but an insignificant effect
on the residual deviatoric stress. An increase of µ obviously causes the growth of
φp and ψ. Dependent upon µ, the calculated maximum and residual overall internal
friction angles φ are 35◦ − 45◦ and 30◦, respectively (Fig. 11). The dilatancy angle
ψ varies between 6◦ (µ = 20◦) and 16◦ (µ = 40◦).
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Fig. 10. Discrete simulations of triaxial test for granular specimen: global deviatoric stress
and volumetric strain versus axial strain for different inter-particle local friction angle µ: a)
40◦, b) 35◦, c) 30◦, d) 20◦ (Ec = 30.0 GPa, νc = 0.3, µ = 30◦, β = 0.15, η = 1.0, p = 100

kPa, e0 = 0.60, d50 = 5 mm)

Fig. 11. Discrete simulations of triaxial test for granular specimen: global internal friction
angle φ versus axial strain: a) µ = 40◦, b) µ = 35◦, c) µ = 30◦, d) µ = 20◦ (Ec = 10.0 GPa,

νc = 0.3, µ = 30◦, β = 0.15, η = 1.0, p = 100 kPa, e0 = 0.60, d50 = 5 mm)

4.3. Effect of Rolling Stiffness

The effect of rolling stiffness coefficient β in the range of 0.10–50 is presented in
Fig. 12 (p = 100 kPa, e0 = 0.60, d50 = 0.5 cm). The coefficient has a very strong
effect on the entire stress-strain curve and a small effect on volume changes. The
higher the parameter β, the greater is the mobilized global internal friction angle.
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Fig. 12. Discrete simulations of triaxial test for granular specimen: global deviatoric stress
and volumetric strain versus axial strain for different rolling stiffness parameter β: a) β =
0.10, b) β = 0.15, c) β = 1.0, d) β = 3.0, e) β = 50 (Ec = 30 GPa, νc = 0.3, µ = 30◦, β = 0.15,

η = 1.0, p = 100 kPa, e0 = 0.60, d50 = 5 mm)

4.4. Effect of Moment Limit Coefficient

Figure 13 demonstrates the influence of the coefficient η varying between 0.1–3.0
(p = 100 kPa, e0 = 0.60, d50 = 5 mm). The coefficient has a pronounced influence
on the stress-strain curve up to the residual state but an insignificant effect on
volume changes. The higher the coefficient η, the greater is the peak global friction
angle.

Fig. 13. Discrete simulations of triaxial test for granular specimen: global deviatoric stress
and volumetric strain versus axial strain for different parameter η: a) η = 3.0, b) η = 1.0,
c) η = 0.15, d) η = 0.1 (Ec = 30.0 GPa, νc = 0.3, µ = 30◦, β = 0.15, η = 1.0, p = 100 kPa,

e0 = 0.60, d50 = 5 mm)

4.5. Effect of Modulus of Elasticity of Contact

The effect of the normal and tangential stiffness in initially dense specimen (p = 100
kPa, e0 = 0.60, d50 = 5 mm) is presented in Fig. 14 (the contact modulus of elasticity
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Fig. 14. Discrete simulations of triaxial test for granular specimen: global deviatoric stress
and volumetric strain versus axial strain for different parameter Ec (µ = 30◦, η = 1.0, β =

0.15, p = 100 kPa, e0 = 0.60, d50 = 5 mm): a) Ec = 30 GPa, b) Ec = 3 GPa

Ec was decreased by the factor 10). The global modulus of elasticity and Poisson’s
ratio of sand grow with increasing Ec: from E = 82 MPa and ν = 0.18 (with Ec = 3
GPa) up to E = 95 MPa and ν = 0.26 (with Ec = 30 GPa).

4.6. Effect of Confining Pressure

Figure 15 demonstrates the numerical results with an initially dense specimen (e0 =

0.60, d50 = 5 mm) for a larger confining pressure of p = 300 kPa. Similarly as in the
experiment (Fig. 5, Wu 1992), the global peak internal friction angle φp decreases
with increasing p (φp = 40◦ for p = 100 kPa and φp = 39◦ for p = 300 kPa). The
global residual internal friction angle φres decreases with p as well (φres = 30◦ for
p = 100 kPa, φres = 29◦ for p = 300 kPa). In turn, the dilatancy angle ψ is reduced
from ψ = 16◦ at p = 100 kPa to ψ = 14◦ at p = 300 kPa.
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Fig. 15. Discrete simulations of triaxial test for granular specimen for p = 300 kPa: global
deviatoric stress and volumetric strain versus axial strain (Ec = 30 GPa, νc = 0.3, µ = 30◦,

β = 0.15, η = 1.0, e0 = 0.60, d50 = 5 mm)

Fig. 16. Discrete simulations of triaxial test for granular specimen: global deviatoric stress
and volumetric strain versus axial strain for different initial void ratio e0: a) e0 = 0.50, b)
e0 = 0.60, c) e0 = 0.70, d) e0 = 0.80, e) e0 = 0.90 (Ec = 30 GPa, νc = 0.3, µ = 30o, β = 0.15,

η = 1.0, p = 100 kPa, d50 = 5 mm)

4.7. Effect of Initial Void Ratio

The numerical results (deviatoric stress versus axial strain and volumetric strain
versus axial strain) for different initial void ratios of sand (e0 = 0.50 ÷ 0.90) are
demonstrated in Fig. 16 (p = 100 kPa, d50 = 0.5 cm). Similarly as in the real exper-
iment (Fig. 5, Wu 1992), initially loose granulates indicate continuous hardening
(the peak strength is not observed) connected to contractancy only. The initially
dense specimens exhibit a higher initial stiffness than the loose ones. The con-
tractancy and dilatancy increase with increasing and decreasing e0, respectively.
All calculated curves reach, at large vertical strain of 20%, the same value of
the stress deviator, with the granular specimen deforming at constant volume, i.e.
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Fig. 17. Effect of local material parameters µ, β and η on global internal friction angle at
peak during triaxial test from discrete simulations (Ec = 30 GPa, νc = 0.3, µ = 30◦, β = 0.15,

η = 1.0, p = 100 kPa, e0 = 0.60, d50 = 5 mm)

a critical state is always reached independently of initial void ratio. The global
residual internal friction angle is almost identical and is equal to 28◦.

4.8. Effect of Micromechanical Parameters

Figures 17–19 present the effect of the micromechanical parameters (inter-particle
friction angle µ, rolling stiffness coefficient β and moment limit coefficient η) on
the global predictions (internal friction angle at peak φp, internal friction angle
at the residual state φres and dilatancy angle ψ) for σc = 100 kPa, e0 = 0.60 and
d50 = 0.5 cm.

The internal friction angle at peak, internal friction angle at the residual state,
and dilatancy angle increase with increasing β and η (relationship is parabolic) and
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Fig. 18. Effect of local material parameters µ, β and η on global internal friction angle at
residual state during triaxial test from discrete simulations (Ec = 30 GPa, νc = 0.3, µ = 30◦,

β = 0.15, η = 1.0, p = 100 kPa, e0 = 0.60, d50 = 5 mm)

reach an asymptote at β ≈ 5 and η ≈ 5, respectively. In turn, the internal friction
angle at peak increases linearly with µ. The internal friction angle at the residual
state does not depend on µ and the dilatancy angle increases non-linearly with
increasing µ reaching an asymptote at µ ≈ 50◦.

4.9. Internal Work, External Work and Dissipation

Finally, Figs. 20 and 21 show the calculated internal work, external work and
dissipation in initially dense sand of Fig. 7 (Ec = 30 GPa, νc = 0.3, µ = 30◦, η = 1.0,
β = 0.15, p = 200 kPa, e0 = 0.53, d50 = 0.5 mm). The internal work δU was done
by contact tangential forces on tangential displacements, contact normal forces on
penetration depths and contact moments on angular rotations. The external work
δW was done by the external vertical force and horizontal forces on vertical and
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Fig. 19. Effect of local material parameters µ, β and η on global dilatancy angle during
triaxial test from discrete simulations (Ec = 30 GPa, νc = 0.3, µ = 30◦, β = 0.15, η = 1.0,

p = 100 kPa, e0 = 0.60, d50 = 5 mm)

horizontal displacements, respectively. The total dissipation δD was calculated from
the difference between the external work done on the assembly and internal work
done by contact forces and moments.

Fig. 20. Triaxial test for granular specimen: a) external work, b) internal work, c) dissipation
from discrete simulations (Ec = 30 GPa, νc = 0.3, µ = 30◦, η = 1.0, β = 0.15, p = 200 kPa,

e0 = 0.53, d50 = 0.5 mm)
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Fig. 21. Internal work done by normal contact forces a), tangential contact forces b) and
contact moments c) from discrete simulations (Ec = 30 GPa, νc = 0.3, µ = 30◦, η = 1.0,

β = 0.15, p = 200 kPa, e0 = 0.53, d50 = 0.5 mm)

The evolutions of three components of the internal work (Fig. 21) are similar to
the evolution of shear strength (Fig. 7). The largest internal work was performed by
contact normal forces (50% at the residual state) and the smallest was by contact
moments (20% at the residual state). The total dissipation was about 20% at peak
and 10% at the residual state, respectively.

5. Conclusions

The numerical simulations of a triaxial test show that a simplified numerical model
based on the discrete element method is capable of reproducing the most important
macroscopic properties of cohesionless granular materials without necessitating
a description of the granular structure perfectly. Comparing the numerical simula-
tions with the experimental triaxial tests conducted with different initial void ratios
and confining pressures shows that the model is able to predict realistically the
experimental results for cohesionless sand.

The sand grain roughness can be modeled by means of spheres with contact
moments. The presence of contact moments has a significant effect on the global
behavior of sand (stress-strain curve and volumetric curve).

The model is capable of closely reproducing the behavior of cohesionless soils
in the elastic, contraction, and dilatancy phase and at the critical state. At large
strains, the granular specimen always reaches a critical state independently of its
initial density.

The model requires five main micro-mechanical parameters: contact modulus of
elasticity, contact Poisson’s ratio, rolling contact stiffness parameter β, inter-particle
friction angle µ and rolling limit parameter η, which can all be calibrated effectively
with a true geotechnical triaxial test.

The peak global internal friction angle is controlled by micromechanical pa-
rameters µ, β and η. The residual internal friction angle is affected by β only. In
turn, the dilatancy angle is solely affected by µ.

The higher the confining pressure, the smaller are both the global friction and
dilatancy angle.
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Our research will be continued. The discrete simulations will be carried out
with sand by taking into account shear localization.
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APPENDIX A

Table 2. Formulae used to calculate interactions between two spheres: displacements, rota-
tions, velocities, forces and moment (all symbols are listed in List of Symbols)

No. Description Formula
1.1 Calculation of distance between sphere

centers A and B
∆
→

X = ~XA − ~XB

1.2 Calculation of penetration depth U = RA + RB−

∥∥∥∥∆ ~X∥∥∥∥
1.3 Calculation of contact normal vector ~N =

∆ ~X∥∥∥∥∆ ~X∥∥∥∥
1.4 Calculation of center of overlapping

volume of two spheres
~C = ~XA +

(
RA −

U
2

)
~N

1.5 Initial orientation of contacting spheres Ȧ′ = Ȧ

Ḃ′ = Ḃ

1.6 Calculation of contact normal stiffness Kn Kn = 2
EcRARB

RA + RB

1.7 Calculation of contact tangential stiffness Ks Ks = 2
EcνcRARB

RA + RB

1.8 Calculation of contact rotational stiffness Kr Kr = βKsRARB

1.9 Calculation of contact normal force ~Fn ~Fn = KnU ~N

1.10 Calculation of total velocity increment ∆~V =
[(
~VB + ~ωB ×

(
−RB ~N

))
+

at contact point of two spheres −
(
~VA + ~ωA

(
RA ~N

))]
1.11 Calculation of normal and tangential

velocity increment at contact point
∆ ~Vn =

(
~N · ∆

⇀

V
)
~N ,∆~Vs =

of two spheres
= ∆~V−

(
~N · ∆

⇀

V
)
~N

1.12 Calculation of tangential displacement
increment at contact point of two spheres

∆ ~Xs = ∆~Vs∆t

1.13 Calculation of total shear force ~Fs ~Fs = 0, if contact began, otherwise
~Fs = ~Fs + Ks∆ ~Xs

1.14 Correction of total tangential force

if Coulomb criterion is not satisfied ~Fs = ~Fs

∥∥∥∥ ~Fn

∥∥∥∥tanµ∥∥∥∥ ~Fs

∥∥∥∥∥∥∥∥ ~Fs

∥∥∥∥ − ∥∥∥∥ ~Fn

∥∥∥∥ tan µ ≥ 0

1.15 Calculation of total forces acting ~FA = ~FA −
(
~Fn + ~Fs

)
on spheres A and B ~FB = ~FB −

(
~Fn + ~Fs

)
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Table 2 continued

1.16 Calculation of total moment acting ~MA = ~MA −
(
~C − ~XA

)
×

(
~Fn + ~Fs

)
on spheres A and B (due to Fn and Fs) ~MB = ~MB −

(
~C − ~XB

)
×

(
~Fn + ~Fs

)
1.17 Calculation of angular orientation

displacement increment (a unit quaternion)

∆Q̇ between two spheres (on the basis of ∆Q̇ = Ȧ
(
Ȧ′

)−1
Ḃ′

(
Ḃ
)−1

original relative orientation and current
relative orientation)

1.18 Conversion of quaternion increment

∆Q̇ = a + bi + c j + dk into three-dimensional ∆ ~ω =



x = φ
b

sin(φ/2)

y = φ
c

sin(φ/2)

z = φ
d

sin(φ/2)

,

rotation vector increment ∆ ~ω = {x, y, z} (if rotation
angle φ = 0, zeros are assigned to axes x, y and z) φ = 2arccos(a)

1.19 Calculation of contact moment increment ∆ ~M

between two spheres (rotational stiffness ∆
→

M = Kr∆ ~ω

for twist and bending has the same value Kr),
1.20 Correction of contact moment vector

if criterion
∥∥∥∥ ~M∥∥∥∥−ηRA + RB

2

∥∥∥∥ ~Fn

∥∥∥∥ ≥ 0 is not ~M = ~M
η

RA + RB

2

∥∥∥∥∥→Fn

∥∥∥∥∥∥∥∥∥ ~M∥∥∥∥
satisfied

1.21 Calculation of current moment acting on ~MA = ~MA− ~M

spheres A and B (due to M) ~MB = ~MB + ~M

1.22 Consideration of gravity (g=9.81 m/s2) ~F = ~F + mg

1.23 Calculation of local non-viscous damping for ~F = ~F−α · sgn(~V )
∣∣∣∣ ~F∣∣∣∣

forces and moment ~M = ~M−α · sgn( ~ω)
∣∣∣∣ ~M ∣∣∣∣

1.24 Calculation of accelerations according ~a = ~F/m

to Newton’s 2nd law on the basis of forces
→
··
ω =

→

M/I
and moments (Ii =

2
5 R2

i )

1.25 Calculation of current velocities and ~V = ~V + ~a∆t

displacements ~X = ~X + ~V∆t

1.26 Calculation of current angular velocities and
→
·
ω =

→
·
ω +

→
··
ω∆t

rotations
→
ω =

→
ω +

→
·
ω∆t
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