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Abstract—In this contribution, a new numerical test for the
stability evaluation of analog circuits is presented. Usually, if
an analog circuit is unstable then the roots of its characteristic
equation are localized on the right half-plane of the Laplace s-
plane. Because this region is unbounded, we employ the bilinear
transformation to map it into the unit disc on the complex plane.
Hence, the existence of any root inside the unit disc implies circuit
instability. In our test, we employ the global roots and poles
finding algorithm based on phase analysis to detect the roots
of the characteristic equation inside the unit disc. Unlike other
stability tests, our approach allows one to evaluate the stability
of analog circuits and systems whose characteristic equations are
not polynomials. In order to demonstrate its efficiency, generality
and applicability, we analyze a memristor-based chaotic circuit
whose stability depends on the value of the fractional-order
parameter. The proposed test correctly detects the parameter
ranges of either stability or instability for the considered analog
circuit.

Keywords—Circuit theory, stability analysis, circuit simulation,
fractional calculus.

I. INTRODUCTION

Stability is a fundamental property required in the design

process of most analog circuits. Therefore, stability evaluation

is the topic of numerous chapters in encyclopedias [1] and

circuit theory handbooks [2], in addition to being an active

topic of scientific publications [3]. Usually, the stability of an

analog circuit stems from the lack of roots of its characteristic

equation on the right half-plane of the Laplace transform

domain (i.e., the Laplace s-plane). It is currently fairly easy

to evaluate the circuit stability if its characteristic equation

is a polynomial. For this purpose, one can use Hurwitz and

Routh criteria [2] or numerical tools for the computations

of polynomial roots which are available, e.g., in Matlab [4].

However, there are various nonlinear circuits and systems (e.g.,

refer to [5], [6]) whose characteristic equations are general,

nonlinear complex functions of the complex variable. In this

case, one can apply the investigated by us methods for stability

evaluation.

In [7], [8], we present general methods for stability eval-

uation of discrete-time circuits and systems, such as digital

filters, employing the global roots and poles finding (GRPF)

algorithm based on phase analysis [9]. These methods can be

extended with the bilinear transformation in order to allow for

evaluating the stability of continuous-time circuits and systems

(e.g., analog circuits). This procedure is the main result of

this contribution. We hereby propose mapping the instability

region into the unit disc on the complex plane and introduce an

efficient numerical method for root detection in this region. In

order to demonstrate its applicability, we analyze a memristor-

based chaotic circuit whose stability depends on the value

of the fractional-order (FO) parameter [10]. The proposed

test correctly detects the parameter ranges of either stability

or instability for the considered analog circuit, proving the

efficiency and generality of our stability test.

II. PROPOSED STABILITY TEST

Let us introduce the stability test applicable to analog cir-

cuits and systems, which are described by FO derivatives. This

approach yields characteristic equations of the non-polynomial

type.

A. Stability Definition

Let us consider the continuous-time autonomous system

Dq
tx(t) = f [x(t)] x(0) = x0 (1)

where x(t) ∈ R
n denotes the state vector, f : Rn �→ R

n is

the continuously differentiable vector function, x(0) = x0 is

the initial condition set at t = 0, n ∈ N and q ∈ (0, 1). In

(1), the FO derivatives of vector elements are defined based

on the Caputo definition

Dα
t f(t) = Jm−α

t Dm
t f(t) (2)

where α ∈ (m − 1,m), m ∈ N, Dm
t is the integer-order

derivative, and Jα
t is the Riemann-Liouville integral defined

as

Jα
t f(t) =

1

Γ(α)

∫ t

a

f(τ)(t− τ)α−1 dτ. (3)

In (3), a is the fixed base point. Although the applications

of the Caputo definition in the circuit theory cause serious

theoretical difficulties [11], [12], we employ it to maintain

consistency with the results of an exemplary circuit analysis

[10]. Next, we employ the following property of the Laplace

transformation L for the Caputo derivative:

L{Dα
t f(t)} = sαL{f(t)} −

m−1∑
k=0

sα−k−1f (k)(0). (4)
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Remark. The complex power function is, in general, multi-

valued. In this investigation, we define it as the single-valued

map s �→ sq on the domain C \ {x+ jy : x ≤ 0 ∧ y = 0} by

the formula

sα = |s|αejαarg(s) (5)

where arg(s) ∈ (−π, π).
Definition II.1. The point xeq is the equilibrium point of (1)

if f [xeq] = 0, which is equivalent to Dq
tx(t) = 0 at this point.

Remark. The equilibrium point xeq can be shifted to the origin

x̃(t) = 0 by the substitution x̃(t) = x(t) − xeq . It is further

assumed, without loss of generality, that the equilibrium point

of the considered system (1) is located in the origin.

One can linearise the system (1) at the equilibrium point

xeq . Then one obtains

Dq
tx = Jx (6)

where

J =

(
∂f

∂x

)
x=xeq

(7)

is the Jacobian matrix.

Definition II.2. The equilibrium point xeq of the autonomous

system (1) is said to be:

• stable iff

∀ε>0∃δ>0∀t≥0 ‖x0 − xeq‖ < δ =⇒ ‖x(t)− xeq‖ < ε
(8)

• asymptotically stable iff it is stable and

∃σ>0 ‖x0 − xeq‖ < σ =⇒ lim
t→+∞‖x(t)− xeq‖ = 0

(9)

• unstable iff it is not stable.

Remark. For the nonlinear function f in the system (1),

the term locally stable (or globally stable) is often used

to underline the local (or global) character of the stability

definition.

A theorem can be formulated which relates the local stabil-

ity of system (1) (i.e., in the neighbourhood of the equilibrium

point) to the stability of its linearised counterpart (6).

Theorem II.1. If the equilibrium point xeq is asymptotically

stable for (6), then this point is also locally asymptotically

stable for (1).

For integer-order systems with q = 1, this theorem is the

conclusion from the first method of Lyapunov (for continuous-

time autonomous systems) [1]. The justification and applica-

tion of such a stability theorem, formulated for FO systems

described with the use of Caputo derivative, can be found in

[10], [13], [14].

Remark. The concept of asymptotic stability in Theorem II.1

is local, hence the region of asymptotic stability can be large

for some systems and very small for others. There is no general

method allowing one to determine the limits of this stability

region.

Let us transfer (6) into the Laplace domain and provide

the conditions for the stability of this system. In the Laplace

domain, one can write (6) as follows:

sqx = Jx+ sq−1x0. (10)

The characteristic equation of (10) is given by

det(sqI− J) = 0 (11)

where I denotes the identity matrix. Therefore, we can formu-

late a theorem relating eigenvalues of J (i.e., spec(J)) to the

system stability.

Theorem II.2. [15] The system (6) is

• asymptotically stable iff |arg(spec(J))| > qπ/2. In this

case, the components of the state vector decay towards

zero like t−q

• stable iff either it is asymptotically stable, or the critical

eigenvalues which satisfy |arg(spec(J))| = qπ/2 have

geometric multiplicity equal to one.

The theorem given above defines the stability region in

terms of eigenvalues of the matrix J. Alternatively, one can

formulate Theorem II.2 in terms of solutions to the non-

polynomial characteristic equation (11). It is expressed in the

following way:

Theorem II.3. The system (6) is

• asymptotically stable iff all the roots of the characteristic

equation (11) are on the left half-plane of the complex

s-plane. In this case, the components of the state vector

decay towards zero like t−q

• stable iff either it is asymptotically stable, or those critical

solutions on the imaginary axis �s = 0 correspond to

eigenvalues of geometric multiplicity equal to one.

This theorem implies that one can find the roots of the

characteristic equation (11) and state that the considered

system is unstable if any (1/q)-th power of an eigenvalue

exists on the right half s-plane. This version of the theorem

allows us to work with the complex half-plane rather than a

cone (or wedge) given in Theorem II.2, which appears to be

a more general approach. That is, it targets all the systems

whose roots of the characteristic equation on the right half-

plane imply instability.

B. Conformal Mappings

Our aim is to evaluate the stability of analog circuits which

are unstable, if any root exists on the right half-plane of the

complex s-plane. In order to employ the GRPF algorithm for

this purpose, one has to transform the right-hand side of the

complex plane into a bounded region. We employ the bilinear

transformation

s =
1− w

1 + w
(12)

for this purpose, which is the 1–1 mapping between the open

right half-plane and the unit disc |w| < 1.
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C. GRPF Algorithm

GRPF operates on four complex-plane quadrants ({Q1 :
0 ≤ arg[g(w)] < π/2}, {Q2 : π/2 ≤ arg[g(w)] < π},
{Q3 : π ≤ arg[g(w)] < 3π/2}, {Q4 : 3π/2 ≤ arg[g(w)] <
2π}), related to the values of the considered function g(w) [9].

Roots of the characteristic equation g(w) = 0 are detected

based on the unit-disc triangulation (or the triangulation of

a rectangular domain containing the unit disc inside), and

Cauchy’s argument principle [16]. That is, GRPF verifies if

any root exists and then locates it with the use of Delaunay’s

triangulation [17] of the complex plane. In the first step,

the complex plane is triangulated, and GRPF searches for

the edges of the mesh whose nodes belong to the opposite

quadrants of the considered-function values. These edges are

called candidate edges. Then, if such an edge is found, the

mesh resolution is increased in the region around it, and the

number of quadrant changes is computed. Each change of the

quadrants by four means that the phase changes by 2π. Each

increase of the phase by 2π in the counterclockwise direction

means that the root exists around the candidate edge. If the

root is detected inside the unit disc, then the considered system

is unstable.

The operation principle of GRPF is demonstrated in Fig.

1, where the quadrants of the phase are presented for the

function h(w) = (w − 1)(w + 1)2/(w − j)/(w + j)3. For

this function, the first-order zero is visible in w = 1 as the

change of phase between quadrants Q1 → Q2 → Q3 → Q4 in

the counterclockwise direction on the complex w-plane (i.e.,

colours � → � → � → � change in the counterclockwise

direction around w = 1). Then, the second-order zero is

visible in w = −1 as the change of phase between quadrants

Q1 → Q2 → Q3 → Q4 → Q1 → Q2 → Q3 → Q4 in

the counterclockwise direction on the complex w-plane (i.e.,

colours � → � → � → � → � → � → � → � change

in the counterclockwise direction around w = −1). Next, the

first-order pole is visible in w = j as the change of phase

between quadrants Q1 → Q2 → Q3 → Q4 in the clockwise

direction on the complex w-plane (i.e., colours � → � →
� → � change in the clockwise direction around w = j).

Finally, the third-order pole is visible in w = −j as the change

of phase between quadrants Q1 → Q2 → Q3 → Q4 → Q1 →
Q2 → Q3 → Q4 → Q1 → Q2 → Q3 → Q4 in the clockwise

direction on the complex w-plane (i.e., colours � → � → �
→ � → � → � → � → � → � → � → � → � change

in the clockwise direction around w = −j).

Remark. GRPF can naturally be used for meromorphic func-

tions [18], but it is also able to find FO roots of the type

(w − w0)
α, where 0.5 < α < 1. Because GRPF verifies

the existence of a root based on a phase change between the

quadrants on the complex plane, it is able to find FO roots
as long as the phase change across a branch cut [19] on the

complex w-plane is less than π/2. If this change is greater than

π/2, GRPF is divergent because it tries to refine the mesh in

the branch-cut region, which does not lead to a reduction in the

phase change. Multiplying the considered function numerous

Fig. 1. Quadrants of phase (� Q1, � Q2, � Q3, � Q4) for function
h(w) = (w − 1)(w + 1)2/(w − j)/(w + j)3.

times by itself, which can reduce the phase change across the

branch cut and ensure the convergence of GRPF, can be the

solution to the problem. This approach increases the order of

roots, but does not change their location on the complex plane.

D. Numerical Test of Stability

The proposed numerical test of stability is executed in the

following steps:

• the right half-plane is mapped into the unit disc

• GRPF searches for roots of the transformed characteristic

equation (11) within the unit disc

• if any root is found within the unit disc, then the analog

circuit is unstable.

Remark. The proposed numerical test, like any computations,

provides information about the stability of the considered

circuit for the assumed accuracy of computations.

III. EXEMPLARY ANALOG CIRCUIT ANALYSIS

In [10], the FO LC circuit with memristor is considered as

in Fig. 2. It includes the FO inductor and capacitor which are

respectively described by the following formulas:

vL = LqD
q
t iL (13)

iC = CqD
q
t vC . (14)

In (13)–(14), Lq and Cq are, respectively, the fractional in-

ductance and capacitance. One should note that the respective

units are given as [Lq] = H/s1−q and [Cq] = F/s1−q , refer to

[20]. The memristor is described by the following equations:

vM = R(u)iM (15)

u̇ = f(u, iM ). (16)
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vL

vC vMCq

Lq

R(u)

iM

iL

Fig. 2. FO LC circuit with memristor.

In (15)–(16), R(u) is the memristance, f(u, iM ) is the

internal-state function and u denotes the internal-state variable.

In the circuit considered in [10], the memristance and the

internal-state function are respectively taken as follows:

R(u) =
3

2
(u2 − 1) (17)

f(u, iM ) = iM − 3

5
u− iMu. (18)

For the circuit in Fig. 1, additional two equations can be

formulated based on Kirchhoff’s circuit laws

iM = −iL (19)

vM = vL + vC . (20)

Hence, by reducing the number of variables in the system of

equations (13)–(20), one obtains⎧⎪⎨
⎪⎩
Dq

tx =
1
Cq

y

Dq
t y = − 3

2Lq
(z2 − 1)y − 1

Lq
x

Dq
t z = −y − 3

5z + yz

(21)

where x = vC , y = iL and z = u. Let us define the state

vector x = [x y z]ᵀ, which allows one to write (21) in the

following compact form:

Dq
tx = f(x). (22)

Then, let us linearise (21) in the equilibrium point xeq =
[0 0 0]ᵀ = 0. Hence, we can write the linear approximation to

(22) in the equilibrium point

Dq
tx = Jqx (23)

where

Jq =

(
∂f

∂x

)
x=xeq=0

=

⎡
⎣ 0 1

Cq
0

− 1
Lq

3
2Lq

0

0 −1 − 3
5

⎤
⎦ (24)

is the Jacobian matrix of f in the equilibrium point xeq ,

which depends upon the order of differentiation q due to the

parameters Lq and Cq . Applying the Laplace transformation

to (23), one obtains the matrix equation

sqx = Jqx+ sq−1x0. (25)

Its characteristic equation is given by

det(sqI− Jq) = 0. (26)

Using the bilinear transformation (12), one can detect any

unstable root of (26) making use of the GRPF algorithm inside

the unit disc |w| < 1. That is, the GRPF algorithm searches

for the roots of the equation

g(w) = det

[(
1− w

1 + w

)q

I− Jq

]
= 0. (27)

In order to avoid singularity around w = −1, we write (27)

in the form

g(w) = det [(1− w)
q
I− (1 + w)

q
Jq] = 0 (28)

and analyze this characteristic equation further.

Remark. We use the GRPF algorithm for the function which

is not an entire function, i.e., it is not holomorphic [21] in the

entire complex plane. We actually use the algorithm for the

function which is not even meromorphic. We should observe,

however, that in the case of the map being the left-hand side

of the equation (26), the domain contains the entire complex

right half-plane, so the transformed map

w �→ det

[(
1− w

1 + w

)q

I− Jq

]
(29)

(refer to (28)) is a holomorphic map in the entire open unit disc

|w| < 1. It means that GRPF can be applied to the considered

case, even if the function is not meromorphic.

Let us take Lq = 3H/s1−q and Cq = 1F/s1−q as in [10].

Then, the circuit is unstable when q > 0.715, according to the

classical stability test for commensurate FO systems (Theorem

II.2 [15]). Let us investigate it numerically with the use of

GRPF.

Remark. Of course, one could refer to Theorem II.2 rather than

Theorem II.3 and search for zeroes of the rational map yielded

by the conformal map transformation z �→ det(zI − Jq),
where z = sq . This would require checking if the zeroes are

located within the cone |arg(spec(Jq))| < qπ/2. However, the

considered example allows us to verify the correctness of the

proposed stability test, based on GRPF, against the reference

stability test for commensurate FO systems (Theorem II.2

[15]).

In Fig. 3, the results of the stability test are presented for

q = 0.5. The roots are visible as changes of phase between

quadrants Q1 → Q2 → Q3 → Q4 in the counterclockwise

direction on the complex w-plane (i.e., colours � → � →
� → � change in the counterclockwise direction around the

considered point). The algorithm detects two conjugated roots:

s1 = 1.28 − j0.749 and s2 = 1.28 + j0.749, whose absolute

value is equal to 1.483. This means that the system is stable

as predicted by the classical stability test for commensurate

FO systems.

In Fig. 4, the results of the stability test are presented for

q = 0.714. The algorithm detects two conjugated roots: s1 =
0.648 − j0.764 and s2 = 0.648 + j0.764, whose absolute
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Fig. 3. Quadrants of phase (� Q1, � Q2, � Q3, � Q4) for function g(w)
when q = 0.5. Unit circle is denoted by - -.

value is equal to 1.002. This means that the system is stable

as predicted by the classical stability test for commensurate

FO systems. For q = 0.716, one obtains a very similar graph

Fig. 4. Quadrants of phase (� Q1, � Q2, � Q3, � Q4) for function g(w)
when q = 0.714. Unit circle is denoted by - -.

of phase quadrants to the one in Fig. 4. However, the algorithm

detects two conjugated roots: s1 = 0.644 − j0.763 and s2 =
0.644 + j0.763, whose absolute value is equal to 0.998. This

means that the system is unstable as predicted by the classical

stability test for commensurate FO systems. It is worth noting

that a slight change of parameter q from 0.714 to 0.716 is

precisely detected by GRPF.

In Fig. 5, the results of the stability test are presented for

q = 0.99. The algorithm detects two conjugated roots: s1 =
0.369−j0.573 and s2 = 0.369+j0.573, whose absolute value

is equal to 0.682. This means that the system is unstable as

predicted by the classical stability test for commensurate FO

systems.

Fig. 5. Quadrants of phase (� Q1, � Q2, � Q3, � Q4) for function g(w)
when q = 0.99. Unit circle is denoted by - -.

To sum up, the proposed test correctly detects parameter

ranges of either stability (q < 715) or instability (q > 0.715)

for the considered analog circuit, proving the efficiency and

generality of our stability test.

IV. CONCLUSION

In this contribution, we present complex-plane mapping

of the instability region into the unit disc, and the efficient

numerical method (GRPF) for root detection in this region. It

allows one to detect the instabilities of analog circuits whose

characteristic equations do not have to be polynomials. In

order to demonstrate the applicability of our stability test, the

memristor-based chaotic circuit is analyzed, whose stability

depends on the value of the FO parameter. The proposed test

correctly detects circuit instabilities, confirming its efficiency

and generality.

SOURCE CODE

The source code for GRPF can be found at:

https://github.com/PioKow/GRPF, and it is licensed under the

MIT License.
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