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Objectivity constitutes one of the main features of the macroscopic classical world. An important aspect of
the quantum-to-classical transition issue is to explain how such a property arises from the microscopic quantum
theory. Recently, within the framework of open quantum systems, there has been proposed such a mechanism
in terms of the so-called spectrum broadcast structures. These are multipartite quantum states of the system of
interest and a part of its environment, assumed to be under an observation. This approach requires a departure from
the standard open quantum systems methods, as the environment cannot be completely neglected. In the present
paper we study the emergence of such a state structure in one of the canonical models of the condensed-matter
theory: the spin-boson model, describing the dynamics of a two-level system coupled to an environment made
up by a large number of harmonic oscillators. We pay much attention to the behavior of the model in the
non-Markovian regime, in order to provide a testbed to analyze how the non-Markovian nature of the evolution
affects the surfacing of a spectrum broadcast structure.
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I. INTRODUCTION

Quantum mechanics is one of the most successful theories,
correctly predicting a huge class of physical phenomena. Its
validity remains confined to the microscopic regime, where
such a theory provides a good explanation of the behavior of the
constituents of matter. In contrast, there is no trace of quantum
effects on macroscopic scales fully ruled by classical physics
[1–3]. The rare counterexamples involve typically unstable
systems, and phenomena such as super-radiance [4], super-
fluorescence [5], or spontaneous stimulated Raman scattering
[6], where the quantum fluctuations might become macroscop-
ically enhanced. Another prominent counterexample concerns
obviously Bose-Einstein condensation and superfluidity and
superconductivity [7]. Despite these important but rather rare
counterexamples, one natural question arises: How do the
classical features of the macroscopic world emerge from the
underlying quantum domain?

In particular, from everyday experience we are accustomed
to perceive nature as objective: We all observe the same
(modulo different reference frames) properties of an observed
object, without disturbing it. This point of view has been
fundamentally challenged by quantum mechanics, since the
act of observation generally modifies a state of the observed
system. So it is natural to wonder how the objective character
of the classical theory can be derived from the (inherently
subjective) quantum theory.

An important contribution to this fundamental problem has
been given by the quantum Darwinism program [8], which is a
more realistic and elaborated form of the decoherence theory.
It attributes objectification of information about a quantum
system to an unavoidable interaction of the latter with its
environment. The main breakthrough of this approach lies
in the role played by the environment: It is no longer a mere
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source of noise and dissipation, but is recognized to be an
information carrier as indeed most of our everyday observa-
tions are indirect. Moreover, the environment is considered
to be divided into several different portions, {E1, . . . ,EN },
each representing degrees of freedom available for observation
for a single observer. Inevitably, some portions will escape
observation and are lost and hence observed and unobserved
portions of the environment deserve to be distinguished. A
good example here is a visual observation of the same object
by a group of people: Each person perceives a portion of the
object’s photonic environment, given by the solid angle of the
observation. But of course not all of the photons scattered by
the object will be detected. If it happens that each of these
portions contains the same information about the object and it
can be extracted without any disturbance, then we may speak
of a certain operational form of objective existence of this
information [8].

One important step beyond the quantum Darwinism pro-
gram has been accomplished in [9,10] where the authors
analyzed so-defined operational objectivity directly in terms of
quantum states. Under certain assumptions, they have proven
that a state of the system becomes objective if and only if
a joint state of the system plus the observed portions of its
environment, {E1, . . . ,Ef N }, is of the following form, called
spectrum broadcast structure (SBS):

ρS:f E =
∑

i

pi |xi〉〈xi | ⊗ ρ
E1
i · · · ⊗ ρ

Ef N

i , (1)

ρ
Ek

i ⊥ ρ
Ek

i ′ for every i ′ �= i and k = 1, . . . ,f N. (2)

Here {|xi〉} is the so-called pointer basis of the central system
to which it decoheres, pi are initial pointer probabilities, and
ρ

Ek

i are some states of the observed parts of the environment
with mutually orthogonal supports for different pointer index i.
Simply put, the reason why this state structure corresponds to a
form of objectivity is the following. The mutual orthogonality
of the supports of ρ

Ek

i means those states are one-shot
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perfectly distinguishable. Hence, by performing the right
measurements (projections on the orthogonal supports of
ρ

Ek

i ), each of the observers extracts the same information
about the system—the value of the index i, enumerating
the possible states the system can be in. On average (after
forgetting the results) this extraction does not disturb either
the other observers or the central system, as the whole state
in Eq. (1) stays unchanged. The implication in the other
direction—that demanding objectivity in the above sense
(under certain assumptions) uniquely leads to the structure
in Eq. (1)—is much more elaborate and can be found in
[9]. The central points of the reasoning are Bohr’s definition
of nondisturbance [11] and so-called strong objectivity: The
only correlation between the portions of the environment
is common information about the system. Let us stress the
conceptual importance of the SBS states Eq. (1): They put a
rather philosophical notion of objectivity into a concrete form
of a multipartite quantum state—a form that in principle can
be checked in concrete models.

Let us note that Eq. (1) is an idealized structure and an
approach to it by real-life states has been analyzed in [12]. The
quantities which control this approach are (i) the decoherence
factor due to the unobserved part of the environment and
(ii) the fidelities of the states ρ

Ek

i for different i’s [10].
Spectrum broadcast structures have been so far found in a
number of paradigmatic for the open quantum systems theory
models, including the illuminated sphere model [10], massive
quantum Brownian motion [13–15], and the spin-spin model
[12]. Recently it has also been shown that SBSs are typical
for von Neumann measurements with measuring apparatuses
composed of a large number of degrees of freedom [16]. This
motivates further their studies as an important bridge in the
quantum-to-classical transition.

The main purpose of the current paper is to investigate
the objectification processes through the SBS formation in
another canonical model of decoherence—the spin-boson
model. It consists of a two-level central system interacting
with a large reservoir of bosonic modes [1,17–20]. The model
plays an important role in quantum computing, as well as in
experiments on macroscopic quantum coherence, for instance
in those aimed to analyze the role of quantum coherence in
biological systems. An important part of the paper is devoted
to explore the behavior of the model in the non-Markovian
regime. By non-Markovianity we mean the presence of
memory effects making the evolution of the central system
strongly dependent on its past history [19,21]. This situation
constitutes a rule rather than an exception, especially in the
low-temperature regime, or when the interaction between the
central system and the surrounding degrees of freedom gets
sufficiently strong. It is then a natural question to ask if and
how the non-Markovianity affects objectification processes
in this model. This analysis is one of the main goals of
the present paper. We would like to stress that there are
many different definitions of non-Markovianity (see the recent
reviews [22,23]). Here we use the definition of [24] based on
nonpositivity of decoherence rates.

The paper is organized as follows. In Sec. II we introduce
the spin-boson model. In Sec. III we study the partially reduced
state ρS:f E , which describes the system plus a fraction of
its environment. We are focused on checking weather the

partially reduced state approaches the SBS form in Eq. (1),
which can be studied by calculating (i) the decoherence
factor induced by the unobserved part of the environment and
(ii) the fidelity [25] for different values of the central spin of the
fragments of the observed part of the environment. Derivation
of the fidelity as a function of the physical parameters of the
model, such as the temperature, the coupling strength, etc., is
an original result of our paper. In Sec. IV we move our analysis
towards the non-Markovian regime. In particular, we look for
the range of the model parameters defining the non-Markovian
behavior. Such issues have been extensively studied before (see
[22,23]), however our approach requires a distinction between
the observed and the unobserved environment, which needs to
be taken into account in the evaluation of non-Markovianity.
This extension is also an original outcome of the present paper.
Finally, in Sec. V we focus on the analysis of an influence of
the non-Markovianity on the emergence of a SBS. A similar
problem has also been treated in [26] in the context of the
quantum Brownian motion model. Based on our analysis,
we conclude that there is no direct connection between the
non-Markovianity and the objectification processes in the
spin-boson model.

II. INTRODUCTION TO THE SPIN-BOSON MODEL

The spin-boson model is described by the following
Hamiltonian:

H = HS + HE + Hint, (3)

where

HS = 1

2
�σz, HE =

∑
i

(
p2

i

2mi

+ 1

2
miω

2
i x

2
i

)
(4)

are, respectively, the self-Hamiltonian of the central system
and the environment. The former is represented by a two-level
system while the latter is represented by a set of uncoupled
harmonic oscillators. In Eq. (4) we set h̄ = 1, and hereafter we
work with these units. The interaction Hamiltonian is given by
the expression

Hint = σz ⊗
∑

i

gi(ai + a
†
i ). (5)

It is important to stress that the above model is not the most
general one, since the interaction Hamiltonian in Eq. (5) does
not lead to dissipation processes because

[HS,σz] = 0. (6)

In fact, in the literature this model is commonly called the
pure dephasing spin-boson model, although we still refer
to it as spin-boson for brevity. In realistic systems the time
scale for decoherence is typically many orders of magnitude
shorter than the time scale of the energy exchange. Thus, our
model can be regarded as a good representation of such rapid
decoherence processes during which the energy dissipation is
negligible.

Because of Eq. (6), the self-Hamiltonian HS can be
effectively neglected. Passing to the interaction picture, the
interaction Hamiltonian takes the following form:

HI
int(t) = σz ⊗ (gka

†
ke

iωkt + gkake
−iωkt ). (7)
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Since for two arbitrary instances of time t,t ′ the commutator
[Hint(t),Hint(t ′)] is a c number,

[
HI

int(t),H
I
int(t

′)
] = −2i

∑
k

|gk|2 sin[ωk(t − t ′)], (8)

the evolution can be easily solved, using, e.g., the Magnus
series:

U (t) = exp

(
1

2

∫ t

0
dt ′

∫ t ′

0
dt ′′[HI

int(t
′),H I

int(t
′′)]

)

× exp

(
−i

∫ t

0
dt ′HI

int(t
′)
)

= e−iξ (t)
1∑

n=0

|n〉〈n| ⊗
⊗

k

exp

(
−i

∫ t

0
dt ′Hn

k (t ′)
)

≡ e−iξ (t)
1∑

n=0

|n〉〈n| ⊗
⊗

k

UEk
(n,t), (9)

where ξ (t) is a global phase factor, which we drop out as it is
not important for our considerations,

Hn
k (t) ≡ (−1)n(gka

†
ke

iωkt + gkake
−iωkt ), (10)

and n = ±1 are the eigenvalues of σz, while the evolution of
the environment is governed by

UEk
(n,t) ≡ Di{[−1]nαk(t)}, (11)

αi(t) = 2
gk

ωk

(1 − eiωkt ), (12)

where D(α) is a displacement operator.

III. STRUCTURE OF A PARTIALLY REDUCED STATE

In this section we investigate the structure of a partially
reduced state, describing the central spin and a fraction of its
oscillatory environment. We derive tools that allow us to con-
clude if in the course of evolution the partially reduced state ap-
proaches the SBS form, defined in Eq. (1). We assume that the
environment consists of N oscillators, f N (0 < f < 1) out of
which are under a potential observation and constitute what we
call the observed fraction f E of the environment, while the rest
is assumed to be lost and is the unobserved fraction (1 − f )E.
This promotion of a part of the environment from a mere source
of noise to an information carrier is the key point of the current
approach, inherited from the quantum Darwinism idea [8], and
a novelty in comparison with the traditional point of view in
open quantum systems, where environment is always treated
as a set of unobserved and uncontrollable degrees of freedom.

The partially reduced state is obtained by simply tracing
out the nonobserved fragment of the environment:

ρS:f E(t) = Tr(1−f )E

[
U (t)ρ0S ⊗

N⊗
k=1

ρ0kU (t)†
]
, (13)

where as customary we assumed a fully product initial state
for the global system:

ρSE(0) = ρ0S ⊗
N⊗

k=1

ρ0k. (14)

Equation (13) can be expressed as follows:

ρS:f E(t) =
∑

n

cnn
0S |n〉〈n| ⊗ ρnn

f (t)

+
∑
m

∑
n�=m

�nm(t)cnm
0S |n〉〈m| ⊗ ρnm

f (t), (15)

where cnm
0S ≡ 〈n|ρ0S |m〉, and

ρnm
f (t) ≡

f N⊗
k=1

UEk
(n,t)ρ0kUEk

(m,t)† ≡
f N⊗
k=1

ρ(k)
nm(t). (16)

The quantity

�nm(t) =
∏

k∈(1−f )E

Tr
[
UEk

(n,t)ρ0kUEk
(m,t)†

]
(17)

represents the decoherence factor between the state |n〉 and
|m〉 of the central system due to the unobserved fraction of the
environment (1 − f )E.

From Eq. (15) one sees that one necessary condition to
approach an SBS is given by the usual decoherence condition:
�nm(t) = 0. However, it is not sufficient. One has also to check
whether the information deposited in the environment during
the decoherence can be perfectly read out, i.e., if the system-
dependent states of the fragments of the environment have
nonoverlapping supports [10],

ρ(k)
nn (t)ρ(k)

mm(t) = 0, (18)

and hence are perfectly one-shot distinguishable. Among
different measures of distinguishability, the most suitable turns
out to be the generalized overlap (also known as Uhlmann’s
fidelity [27]):

B(ρ1,ρ2) ≡ Tr
√√

ρ1ρ2
√

ρ1. (19)

One cannot expect Eq. (18) to hold at the level of single
fragments. To the contrary, since each of the unitaries UEk

(n; t)
weakly depends on the parameter n, the states ρ(k)

nn (t) are
almost identical for different n’s. However, it can happen
that by grouping subsystems of the observed part f E into
larger fractions, called macrofractions M, one can approach
the perfect distinguishability in Eq. (18) at the level of
macrofraction states ρM

n (t) ≡ ⊗
k∈M ρ(k)

nn (t) [10]. Generalized
overlap is well suited for such tests due to its factorization with
the tensor product:

BM
nm(t) ≡ B

[
ρM

n (t),ρM
m (t)

] =
∏
k∈M

B
[
ρ(k)

nn (t),ρ(k)
mm(t)

]
. (20)

We stress that the measure of distinguishability we introduce
refers to macrofractions of the observed part of the environ-
ment.

Summarizing, the formation of SBS in Eq. (1) is equivalent
to [12]

|�nm(t)| ≈ 0, BM
nm(t) ≈ 0. (21)
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We will refer to the decoherence factor and the fidelity as
to indicator functions. As it is well known, for the thermal
environment

ρ0E = e−βHE

ZE

(22)

where β = 1/T and ZE is the partition function, the deco-
herence factor can be written in the analytical form [1,19]:

�(t) = exp

[
−2

∫
(1−f )E

dω coth (ω/2T )g(ω,t)

]
, (23)

where

g(ω,t) ≡ J (ω)
1 − cos (ωt)

ω2
, (24)

and the integral is performed over the frequency range related
to the unobserved part of the environment (1 − f )E. The
quantity J (ω) is the spectral density containing the information
of the coupling with the environment [1,19]:

J (ω) = 2
∑

i

|gi |2δ(ω − ωi). (25)

We postpone to next section further discussion of the spectral
density as it plays a fundamental role in defining Markovian
and non-Markovian behavior.

The expression for the fidelity in the present model
constitutes in turn the result

B(t) = exp

[
−2

∫
M

dω tanh (ω/2T )g(ω,t)

]
, (26)

where the integral is performed over the frequency range asso-
ciated with a macrofraction M. The derivation is presented
in Appendix B for the case of the initial thermal state of
the environment (see [14]). The most important difference
between the fidelity Eq. (26) and the decoherence Eq. (23) lies
in the dependence on the temperature. In particular, when
T → 0 both quantities approach the same form, and the
emergence of a SBS reduces just to decoherence. This is in
agreement with the fact that at low temperature the state of the
fragments of the environment becomes pure.

IV. NON-MARKOVIAN ENVIRONMENTS

One of the main purposes of the current paper is to
investigate if and how non-Markovianity affects the emergence
of objective properties in the pure-dephasing spin-boson
model. As presented in the introduction, the technical tools we
use for checking for objectification are SBS states (1)—their
formation implies objectification of a state of the central spin
as it becomes redundantly stored in the bosonic environment
in many perfect copies. Yet more technically, we argued in
the previous section that the above state structures arise when
both the decoherence factor and the appropriate fidelity vanish.
These quantities, as well as the amount of non-Markovianity,
depend on the system parameters: the temperature and the
couplings as summarized by the spectral density. We proceed
thus by manipulating appropriately these parameters in order
to increase non-Markovianity, and to analyze how decoherence
and fidelity react.

First, we have to carefully introduce a measure of non-
Markovianity, adapted to our specific scenario. We will use
the measure from [24] but based on the dynamics of the
partially reduced state, i.e., the state of the central spin and
the observed part of the environment. The evolution of the
latter [see Eq. (15)] can be expressed in terms of the following
local-in-time master equation (see Appendix A for the details):

ρ̇S:f E = −i[HS:f E(t),ρS:f E]

+ γ (t)(σz ⊗ If EρS:f Eσz ⊗ If E − ρS:f E), (27)

where

HS:f E(t) ≡
∑

n

|n〉〈n| ⊗ Hn
f E(t), Hn

f E(t) ≡
f N⊗
k=1

Hn
k (t)

(28)

and

γ (t) = �̇(t)

�(t)
. (29)

The structure of Eq. (27) allows one to identify γ (t) as the
only nonzero canonical decoherence rate for the considered
problem [24]: Its positivity guarantees that the evolution is
completely positive or “time-dependent Markovian” [24,28].
Accordingly, if γ (t) becomes strictly negative the evolution is
non-Markovian. To quantify the amount of non-Markovianity
in a given interval of time we will adopt the measure introduced
in [24]:

N = −
∫

γ<0
γ (t)dt. (30)

The above expression is formally similar to definitions of non-
Markovianity based on the reduced dynamics of the spin only
[23,24,28]. However, as we are interested in the structure of
the partially reduced state, in the present case γ (t) incorporates
nonunitary effects caused by the nonobserved fraction of the
environment. To the best of our knowledge such a situation
has not been studied so far in the context of non-Markovianity
measures.

In the high-temperature limit, T  s�, Eq. (30) becomes

γ (t) = T

∫
(1−f )E

dω
J (ω)

ω2
sin (ωt). (31)

Let us now specify the spectral density. We will follow the
usual approach and choose [1,19]

J (ω) = ωs

�s−1
exp (−ω/�), (32)

where � is the cutoff frequency and s is the Ohmicity
parameter. The case s = 1 corresponds to pure Ohmic,
whereas s < 1 corresponds to sub- and s > 1 corresponds
to super-Ohmic regimes. The spectral density provides an
information about the coupling of the two-level system with the
environment. We note that the integral in Eq. (31) is performed
over the frequencies belonging to the unobserved part of the
environment. We will use the spectral density in Eq. (32) in
two basic ways to define the observed and unobserved parts of
the environment: (i) Each part is so large that the full spectral
density applies to it (we call it uncut ); and (ii) each part is
defined by some frequency range of Eq. (32) only (cut case).
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200
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800

1000

FIG. 1. Non-Markovianity measure in Eq. (30) as a function of
the Ohmicity parameter.

Let us first briefly recall known facts about the connection
between the non-Markovianity and the uncut spectral density
(see, e.g., [29]). Figure 1 shows the plot of the measure
in Eq. (30) as a function of the Ohmicity parameter s for
different values of the cutoff � scaled to the thermal frequency
�T = kBT /h̄. The degree of non-Markovianity monotonically
increases with s for s > 3, as for s < 3 the dynamics is purely
Markovian, i.e., N = 0. Moreover, in [23], where the measure
in Eq. (30) has been calculated in the zero-temperature limit, it
has been proved that the threshold at s = 3, distinguishing the
Markovian regime from the non-Markovian one, holds even
for other measures.

Figure 1 also provides the dependence on the cutoff � of
the present measure, at fixed s. Precisely, it monotonically
decreases as � grows, whatever values of the Ohmicity
parameter we consider. This result could also be inferred by
looking to the self-correlation function for the environment,
decaying exponentially as 1/�, as discussed in [19]. Finally,
it is easy to infer, considering Eq. (31), that in the high-
temperature limit non-Markovianity decreases linearly as T

grows, provided s > 3.
So far we have described the unobserved part of the

environment by means of the whole spectral density in
Eq. (32). Now, we consider a more realistic case in which such
a spectral density represents the whole environment, while
its observed and unobserved part are constituted just by sets
of oscillators related to different frequency ranges, separated
by a cut β. Here, the f E is represented by the oscillators
with frequency ω ∈ [0,β], while (1 − f )E is constituted by
the complement ω ∈ [0,β]c. This situation corresponds to that
sketched in Fig. 2 once one sets α = 0.

An interesting question is how the measure in Eq. (30)
depends on the cut β, distinguishing the observed and
unobserved part of the environment. This behavior is presented
in Fig. 3. In general, the dependence on the cut does not
show a monotonic trend, but there is a monotone decrease
for large values of β, i.e., at the tight edge of the frequency
domain. The distinction between observed and unobserved
environment may be implemented also in another manner. We
introduce two cuts, rather than just one. The observed part of
the environment is constituted by the oscillators with frequency
in the range ω ∈ [α ≡ β − ,β], while the unobserved one

2 4 6 8 10 12 14

5

10

15

20

FIG. 2. Spectral density in Eq. (32). Observed and unobserved
part of environment are represented, respectively, by the yellow and
green portion of spectral density.

is related to the complementary set [α,β]c. This is sketched
in Fig. 2. We calculated the non-Markovianity measure as a
function of β and various interval widths  for s = 4 (Fig. 3).
We see that the degree of non-Markovianity depends on the
position of the cuts in a nonmonotonic way.

We remark on an important feature of the plot in Fig. 3
for s = 3 for the single cut case: The value of the measure
is nonzero (see [29]). Thus, the introduction of the frequency
cut changes the behavior from Markovian to non-Markovian.
One can show it also for more than one cut. We conclude
that the typical framework of quantum Darwinism, entailing
a distinction into the observed and the unobserved parts
of the environment, can lead to a certain amount of non-
Markovianity, as certified by the measure (30). We make one
last remark concerning the implementation of the cuts. We used
here sharp cuts defined by the step function. To exclude any
artifacts connected with that, we also performed the parallel

3 4 5 6 7

0.5

1.0

1.5

2.0

2.5

3.0

FIG. 3. Non-Markovianity measure in Eq. (30) as a function of
β. The blue solid line and the red dashed one correspond to the case
in which there is only one cut in the spectral density and the observed
frequencies belong to an interval [0,β]: the former is related to s = 4,
while the latter is related to s = 3. The green dotted line and the orange
dot-dashed one regard the situation where the observed environment
is constituted by the oscillators with frequencies belonging to the
interval [α,β] ≡ [β − ,β], i.e., the so-called two cuts case. Here,
the two lines are associated, respectively, to  = 1 and 2, while both
have been obtained for s = 4.
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analysis using soft cuts (modeled by the tanh x function) and
found that there is no quantitative difference between the two
implementations. Thus, the non-Markovianity induced by the
cuts does not depend on the their sharpness.

V. FORMATION OF SPECTRUM BROADCAST
STRUCTURES IN NON-MARKOVIAN ENVIRONMENTS

We now move to the main study of the current paper: the
study of the connection between Markovianity and emergence
of an objective value of the central spin in the sense of SBS
formation. We first study the full, uncut spectral density in
Eq. (32) and then introduce the cuts, defining the observed and
unobserved parts of the environment.

A. Case I: Uncut spectral density

In the first part of the discussion, we consider both observed
and unobserved environment to be so large as to include the
whole frequency domain; namely, we start with the simple
case in which there are no cuts in the spectral density. In this
case, the integrals in Eqs. (23) and (26), defining, respectively,
the decoherence and the fidelity, are both performed for
ω ∈ [0,∞), with the spectral density given by Eq. (32)—
note that |�(t)| � B(t) because, for T > 0, tanh [ω/(2T )] >

coth [ω/(2T )]. The integrals can be performed analytically.
For the integer values of s, the results are presented below
with both the decoherence and the fidelity factors decomposed
into a vacuum and thermal parts:

ln|�(t)| = ln|�vac(t)| + ln|�th(t)|, (33)

where

1

2
ln|�vac(t)| ≡ ℘(s − 1)

[
1 − cos[(s − 1) arctan(�t)]

(1 + �2t2)
s−1

2

]
,

(34)

1

2
ln|�th(t)| ≡

(
−T

�

)s−1[
2�(s−2)

(
1 + T

�

)

− �(s−2)

(
1 + T

�
− iT t

)
− c.c.

]
, (35)

and

lnB(t) = lnBvac(t) + lnBth(t), (36)

where Bvac(t) = |�vac(t)| as for pure states decoherence and
fidelity factors become equal, and

1

4
lnBth(t) ≡

(
− T

2�

)s−1{
�(s−2)

(
1 + T

2�

)

−�(s−2)

(
1

2
+ T

2�

)

+ 1

2
�(s−2)

(
1

2
+ T

2�
+ i

T t

2

)

− 1

2
�(s−2)

(
1 + T

2�
+ i

T t

2

)
+ c.c.

}
. (37)

0.5 1.0 1.5 2.0 2.5 3.0

5

10

15

FIG. 4. Minus logarithm of the decoherence factor presented in
Eq. (23) as a function of time for different values of the s parameter.

In the above formulas c.c. stands for the complex conjugate,
℘(z) is the Euler gamma function, and �m(z) is the so-called
polygamma function defined as [30]

�m(z) ≡ dm+1

dzm+1
ln ℘(z) =

∞∑
k=0

(−1)m+1m!

(z + k)m+1
. (38)

Generalization to the noninteger s is presented in Appendix C.
From our point of view, the most interesting regime is the

intermediate temperature one:

0 � T � s�, (39)

since for low temperatures the decoherence and fidelity factors
become identical modulo the macrofraction sizes. For high
temperatures T  s�; on the other hand, by approximating
the hyperbolic functions involved in the formulas one sees that
the decoherence process is very strong but fidelity will be close
to 1, meaning that the environmental states become almost
indistinguishable and hence no information about the state
of the central system is stored in the environment—it is too
noisy. Unfortunately the above functions are too complicated
for an analytical analysis for the temperature regime given by
Eq. (39) and we resort here to a numerical analysis.

0.5 1.0 1.5 2.0 2.5 3.0

5

10

15

FIG. 5. Minus logarithm of the fidelity presented in Eq. (26) as a
function of the time for different values of the s parameter.
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FIG. 6. Asymptotic value of the minus logarithm of the decoher-
ence factor presented in Eq. (23) (top) and of the fidelity presented
in Eq. (26) (bottom) as a function of the temperature and the cutoff,
at s = 5.

In Figs. 4 and 5 we plot the minus logarithms of the indicator
functions (the decoherence and the fidelity) for T = �. Their
high values for times larger than the inverse cutoff indicate
that the partially reduced state quite quickly approaches SBS.
We also see that the increase of the Ohmicity s results in
higher asymptotic values so that the higher s the closer the
partially reduced state is to SBS. Moreover, in Fig. 1 we see
that the degree of non-Markovianity also grows with s. Thus,
by looking to the dependence on the Ohmicity parameter, non-
Markovianity favors, rather than hinders, the emergence of
SBS and, as a result, objectivity. One possible insight for that
is that bigger s corresponds to stronger coupling between the
system and environment, as can be seen from Eq. (32).

The degree of non-Markovianity may be changed also by
tuning other parameters, e.g., the cutoff �. Figure 1 shows that
non-Markovianity increases when � → 0. In Fig. 6 we plotted
minus logarithms of the asymptotic values of decoherence
and fidelity, respectively, as a function of the cutoff and the
temperature. We note that decoherence gets weaker as � → 0,
i.e., when the non-Markovianity increases, while the fidelity
shows the opposite behavior and in this case there seems to be
no straightforward connection between the non-Markovianity
and the SBS formation.

The value of the non-Markovianity measure depends also
on temperature T . In Sec. IV we pointed out that in the
high-temperature regime non-Markovianity decreases linearly
with T , provided that s > 3. However, the indicator functions
depend on the temperature in opposite ways: With growing

2 4 6 8

2

4

6

8

10

12

FIG. 7. Minus logarithm of the decoherence factor in Eq. (23)
(blue solid line) and of the fidelity in Eq. (26) (orange dashed line) in
the case when the observed frequencies are in the interval [0,

β

�
].

temperature, decoherence gets stronger, while the states of the
environment become harder to distinguish due to the higher
thermal noise. In this case there is also no clear connection
between the degree of non-Markovianity and the formation of
SBS.

Summarizing the uncut spectral density case, when looking
at the Ohmicity parameter s alone, it seems that the stronger
non-Markovianity enhances the formation of SBS. However,
taking into account the other parameters �,T does not support
this claim. To the contrary, it seems that the non-Markovianity
does not have a direct influence on the process of SBS
formation in the considered model. The most important
parameter is the Ohmicity s that controls coupling strength
between the system and the environment.

B. Case II: Cut spectral density

We consider now the situation in which the whole envi-
ronment is modeled through the spectral density in Eq. (32),
while the observed part f E and the unobserved one (1 − f )E
are represented only by its different fragments. We begin
with a single cut case: The observed and the unobserved
environments are defined in the frequency domain by a single
cut located at some frequency β; see Fig. 2 with α = 0. Unlike
in the previous case of the uncut environment, the analytical
solution is not possible and we have to resort to a numerical
analysis straight from the beginning. In Fig. 7 we plotted the
minus logarithms of the decoherence factor and the fidelity
as a function of time. We note the presence of oscillations
in the time evolution of both functions. These oscillations
indicate a non-Markovian behavior since they constitute
nonmonotonicity areas. They occur even for s = 3, when the
behavior is pure Markovian for the uncut case [29]. This means
that the presence of the cut turns on non-Markovianity effects,
as we have already shown in Fig. 3.

Figure 7 also shows that after a very long time (�t  1)
both decoherence and fidelity approach constant values. In
Fig. 8 we plot these asymptotic values as functions of the
frequency cut β. This plot shows an interesting reciprocal
behavior: While decoherence gets stronger when β decreases,
state distinguishability gets weaker. This is in agreement
with the fact that decoherence is related to the unobserved
environment while distinguishability is related to the observed
one. When β increases, the observed environment enlarges, so
the state distinguishability gets better, while the unobserved
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1 2 3 4 5 6 7

2

4

6

8

10

12

14

FIG. 8. Asymptotic value of the minus logarithm of the deco-
herence factor in Eq. (23) (orange dashed line) and of the fidelity in
Eq. (26) (green dotted line) in the case when the observed frequencies
are in the interval [0,

β

�
]. The blue solid line represents the value of

the non-Markovianity measure in this situation as a function of the
cut frequency.

environment shrinks, which negatively affects the decoherence
process. In Fig. 8 we also plot the value of the non-
Markovianity measure as a function of the frequency cut β.
In the lower part of the frequency domain, the growth of β

corresponds to both an increase of the non-Markovian effects
and an approach to SBS. Past the maximum at approximately
β/� = 4, both the non-Markovianity and the fidelity to SBS
decrease (the latter due to the decreased decoherence). Thus,
in this particular case it is possible to link non-Markovianity
with the approach to objectivity.

Finally, we investigate the two cuts case, i.e., when the
observed part of the environment corresponds to a frequency
window and the unobserved part corresponds to the rest of
the spectrum. The results, presented in Fig. 9, show that
moving the frequency window towards midfrequencies leads
to decrease of decoherence and increase of distinguishability.
When the cuts are placed around α = 3�,β = 5�, the
partially reduced state is a good approximation to SBS. On
the other hand, shifting the frequency window towards the
upper part of the frequency domain results in increase of
decoherence and decrease of distinguishability. The value of
the non-Markovianity measure, also plotted in Fig. 9, is a
complicated function of the frequency window location. Thus,
in this case, there is no straightforward connection between
non-Markovianity and the approach to objectivity.

3 4 5 6 7

2

4

6

8

10

12

FIG. 9. Asymptotic value of the minus logarithm of the deco-
herence factor in Eq. (23) (orange dashed line) and of the fidelity
in Eq. (26) (green dotted line) in the case when the unobserved
fraction of the environment is in the complement of the interval
[ α

�
,

β

�
] ≡ [ β−

�
,

β

�
] (see also Fig. 2). The blue solid line represents

the value of the non-Markovianity measure in this situation as a
function of the cut frequency β, when /� = 2.

VI. CONCLUSIONS

We studied the emergence of a SBS in a paradigmatic model
of an open quantum system: the pure dephasing spin-boson
model. SBS represents the structure of the quantum states
which encode objective property after the interaction with the
environment. We showed that this structure arises in the spin-
boson model as a result of the temporal evolution. In this
case what becomes objective is the state of the central spin,
which, after SBS formation, is perceived by many observers
as a classical bit with values ±1/2. This is an original result of
our paper, which enforces the reliability of SBS to describe in
terms of state the emergence of objectivity of classical theory
starting by the underlying quantum domain.

A large part of the paper has been devoted to the analysis of
if and how the presence of non-Markovian effects influences
the SBS formation. This task has been already investigated in
[31] for a qubit in a spin environment and [26] in the context
of quantum Brownian motion, using quantum Darwinism
rather than a more fundamental SBS approach. We discuss
a particular situation where non-Markovianity favors the
formation of a SBS. This is the case in which we control non-
Markovianity degree by tuning the degree of super-Ohmicity.
Our insight is that, rather than non-Markovianity, there are
other physical properties that are decisive in the process of
emergence of a SBS, for instance strength of the coupling.

We also showed that in the framework of quantum Darwin-
ism, where environment is divided into observed and unob-
served parts, there is a certain amount of non-Markovianity
caused by this “environment cutting.”

The analysis of the emergence of the SBS for the present
model opens also the possibility to study objectivity from
the experimental point of view. In fact, the pure dephasing
spin-boson model admits several practical counterparts. In
[32,33] it has been shown that an experimental realization of
the spin-boson model may be obtained by means of an impurity
in an ultracold gas. In this context the degrees of freedom of
the gas play the role of the oscillators in Eq. (4), while the
two-level system may be constructed putting the impurity in
a double-well trap potential. In [34], instead, a realization
of the pure dephasing spin-boson model with photons has
been presented: The two polarization states correspond to
the two-level open system while the bosonic modes of the
environment are represented by the frequency degree of
freedom of the photon, which is coupled to the system via
an interaction induced by a birefringent material.
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APPENDIX A: CANONICAL FORM OF A TIME-LOCAL
MASTER EQUATION DESCRIBING EVOLUTION

OF THE PARTIALLY REDUCED STATE

In this appendix we show that evolution of the partially
reduced state [Eq. (15) of the main text] can be rewritten in
the canonical form of a time-local master equation [24]:

ρ̇S:f E = −i[H (t),ρS:f E(t)]

+ γ (t)
[
L(t)ρS:f EL†(t) − 1

2 {L†(t)L(t),ρS:f E}],
(A1)

where for the sake of simplicity explicit time dependence of
the partially reduced density matrix ρS:f E was omitted and
time derivation was denoted by ρ̇.

Using Eq. (15) of the main text we can write

ρ̇S:f E =
(

c00
S (t)ρ00

f (t) c01
S (t)ρ01

f (t)

c10
S (t)ρ10

f (t) c11
S (t)ρ11

f (t)

)
, (A2)

where

cnm
S (t) ≡

{
cnn

0S for n = m

�(t)cnm
0S for n �= m

(A3)

(A4)

with, real for initial thermal states, factor

�(t) =
∏

k∈(1−f )E

Tr
[
UEk

(n,t)ρ0kUEk
(m,t)†

]
and (as in the main text)

ρnm
f (t) ≡

f N⊗
k=1

UEk
(n,t)ρ0kUEk

(m,t)†. (A5)

The first step in derivation is calculation of ρ̇S:f E . We find

ρ̇S:f E =
(

c00
S (t)ρ̇00

f (t) c01
S (t)ρ̇01

f (t)

c10
S (t)ρ̇10

f (t) c11
S (t)ρ̇11

f (t)

)

+ γ (t)

(
0 c01

S (t)ρ01
f (t)

c10
S (t)ρ10

f (t) 0

)
, (A6)

where [cf. Eq. (10) of the main text]

ρ̇nm
f (t) = −i

f N⊗
k=1

[
Hn

k (t)ρ0k + ρ0kH
m
k (t)

]
≡ −i

[
Hn

f E(t)ρ0f + ρ0f Hm
f E(t)

]
, (A7)

γ (t) = �̇(t)

�(t)
. (A8)

Finally, defining

HS:f E(t) ≡
∑

n

|n〉〈n| ⊗ Hn
f E(t), (A9)

we can recast Eq. (A6) as

ρ̇S:f E = −i[HS:f E(t),ρS:f E]

+ γ (t)(σz ⊗ If EρS:f Eσz ⊗ If E − ρS:f E). (A10)

After identification L(t) ≡ σz ⊗ If E we arrive at Eq. (A1).
Quantity γ (t) is called the canonical decoherence rate. If
this rate is positive at all times, then the evolution over any
time interval is completely positive [24,28]. On this basis
[24] the following definition of non-Markovian evolution was
introduced.

Definition. A time-local master equation is Markovian, at
some given time, if and only if the canonical decoherence rates
are positive. Correspondingly, the evolution is non-Markovian
if one or more of the canonical decoherence rates is strictly
negative.

According to the definition, the integral [24]

N = −
∫

γ<0
γ (t)dt (A11)

can be used to measure the total amount of non-Markovianity
for the considered evolution.

APPENDIX B: FIDELITY IN THE SPIN-BOSON MODEL

In this appendix we present a detailed derivation of the
expression for the fidelity. The quantity we want to evaluate is

Bnm(t) ≡ B
[
ρ(k)

nn (t),ρ(k)
mm(t)

]
, (B1)

denoting a single-subsystem overlap. Dropping the explicit
dependence on the index k we obtain

Bnm(t) = Tr
√√

ρ0U (m; t)†U (n; t)ρ0U (n; t)†U (m; t)
√

ρ0,

(B2)

where we have pulled the extreme left and right unitaries out
of both the square roots and used the cyclic property of the
trace to cancel them out. The free evolutions e−inEkt cancel out
as both unitary operators under the square root are Hermitian
conjugates of each other. Thus, modulo phase factors

U (m; t)†U (n; t) � D[α(t)(n − m)] ≡ D(ηt ), (B3)

where D(α) represents the displacement operator. Next,
assuming all the initial states ρ0k are thermal with the same
temperature, we use the corresponding P representation for
the middle ρ0 under the square root in Eq. (B2):

ρ0 = ρth(n̄) ≡ 1

n̄

∫
d2γ

π
e− |γ |2

n̄ |γ 〉〈γ |, (B4)

where n̄ = 1/(eβω − 1), β ≡ 1/T . Indicating the Hermitian
operator under the square root in Eq. (B2) by B̃t , we
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obtain

B̃t =
∫

d2γ

πn̄
e− |γ |2

n̄
√

ρ0D(ηt )|γ 〉〈γ |D(ηt )
†√ρ0

=
∫

d2γ

πn̄
e− |γ |2

n̄
√

ρ0|γ + ηt 〉〈γ + ηt |√ρ0. (B5)

The next step is to calculate explicitly the square root in the
equation above. For this aim we expand ρ0 in the Fock basis:

ρ0 =
∑

k

n̄k

(k̄ + 1)n+1
|k〉〈k|. (B6)

Replacing it in Eq. (B5) we have

B̃t =
∫

d2γ

πn̄
e− |γ |2

n̄

∑
i,j

λij (n̄)〈j |γ + ηt 〉〈γ + ηt |i〉|j 〉〈i|

(B7)

with

λij (n̄) ≡
√

n̄i+j

(n̄ + 1)i+j+2
. (B8)

Using the Fock basis representation of coherent states one
may get the explicit scalar product 〈j |γ + ηt 〉. Accordingly
Eq. (B7) becomes

B̃t = 1

n̄ + 1
e− |ηt |2

1+2n̄

∫
d2γ

πn̄
e
− 1+2n̄

n̄(n̄+1) |γ+ n̄
1+2n̄

ηt |2

×
∣∣∣∣∣
√

n̄

n̄ + 1
(γ + ηt )

〉〈√
n̄

n̄ + 1
(γ + ηt )

∣∣∣∣∣. (B9)

We now show that this equation is formally equivalent to
that of a thermal state introduced in Eq. (B4). For this aim,
we underline that we are interested in the square root of
the operator B̃t , rather than in itself. Therefore, there is a
freedom of rotating B̃t by a unitary operator, and in particular
a displacement one:

Tr[
√

DB̃tD†] = Tr[D
√

B̃tD
†] = Tr[

√
B̃t ]. (B10)

In particular we find∣∣∣∣
√

n̄

n̄ + 1
(γ + ηt )

〉
∝ D

(√
n̄

n̄ + 1

1 + n̄

1 + 2n̄

)

×
∣∣∣∣∣
√

n̄

n̄ + 1

(
γ + n̄

1 + 2n̄
ηt

)〉
,

(B11)

where we have omitted the irrelevant phase factor arising from
the action of the displacement. We replace Eq. (B11) with
Eq. (B9). Dropping displacement operators due to Eq. (B10)
and introducing the variable

γ̃ =
√

n̄

n̄ + 1

(
γ + n̄

1 + 2n̄
ηt

)
(B12)

one obtains

Bnm(t) = e− 1
2

|ηt |2
1+2n̄√

1 + 2n̄
Tr

√
ρth

(
n̄2

1 + 2n̄

)
. (B13)

In order to calculate explicitly the square root we recall the
Fock expansion in Eq. (B6). Finally, we get

Bnm(t) = exp

[
− (n − m)2

2
|αk(t)|2 tanh

(
βωk

2

)]
, (B14)

and generalize it to the fidelity over all macrofractions:

BM
nm(t) = exp

[
− (n − m)2

2

∑
k∈M

|αk(t)|2 tanh

(
βωk

2

)]
.

(B15)

The expression in Eq. (26) follows by taking the limit of the
continuum spectrum in the above equation.

APPENDIX C: ANALYTICAL EXPRESSIONS FOR
THE DECOHERENCE FACTOR AND FIDELITY

When both observed and unobserved fragments of environ-
ment can be described in terms of the full spectral density, the
decoherence factor and fidelity of the environmental states are
given by

ln|�(t)| = 2

�s−1

∫ ∞

0
dωωs−2e−ω/�

× [1 − cos(ωt)] coth(ω/2T ), (C1)

lnB(t) = 2

�s−1

∫ ∞

0
dωωs−2e−ω/�

× [1 − cos(ωt)] tanh(ω/2T ). (C2)

In what follows we assume that s is an integer number such
that s > 1 (the case for s = 1 needs to be treated separately).
Integrals in Eqs. (C1) and (C2) can be expressed in terms of
the Hurwitz zeta function [30]:

ζ (z,q) =
∞∑

n=0

1

(q + n)z
, (C3)

which leads to the following expressions for the decoherence
factor:

1

2
ln|�(t)| = ℘(s − 1)

(
T

�

)s−1[
2ζ

(
s − 1,

T

�
+ 1

)

− ζ

(
s − 1,

T

�
+ 1 − iT t

)
− c.c.

]
, (C4)

where ℘(s − 1) is the Euler gamma function and c.c. denotes
the complex conjugate. Similarly we find

1

4
lnB(t) = ℘(s − 1)

(
T

2�

)s−1[
ζ

(
s − 1,1 + T

2�

)

− ζ

(
s − 1,

1

2
+ T

2�

)

+ 1

2
ζ

(
s − 1,

1

2
+ T

2�
+ i

T t

2

)

− 1

2
ζ

(
s − 1,1 + T

2�
+ i

T t

2

)
+ c.c.

]
.
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For integer s � 2, using the following relation between the Hurwitz theta function and polygamma function [30],

�m(z) = (−1)m+1℘(m + 1)ζ (m + 1,z), (C5)

one gets Eqs. (35) and (37) presented in the main text.
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