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Abstract 

 

In the paper possibility of applying neural model to obtaining patterns of proper operation for fluid flow in turbine stage 

for fluid-flow diagnostics is discussed. Main differences between Computational Fluid Dynamics (CFD) solvers and 

neural model is given, also limitations and advantages of both are considered. Time of calculations of both methods was 

given, also possibilities of shortening that time with preserving the accuracy of the calculations are discussed. Gathering 

training data set and neural networks architecture is presented in detail. Range of work of neural model was given. 

Required input data for neural model and reason why it is different than in computational fluid dynamics solvers is 

explained. Results obtained with neural model in 21 tests are discussed. Arithmetic mean and median of relative errors of 

recreating distribution of pressure and temperature are shown. Achieved results are analysed.  

 

Keywords: turbine, diagnostics, neural model, pattern, fluid flow 

 

Introduction 

 

With development of diagnostics of technical objects many operations were automatized (e.g. 

valve handling). Still most of complex operations are handled by operators. These activities include 

detecting irregularities in the systems, learning their causes and then supervising processes or 

procedures to restore the correct operation of the system – often called in literature Abnormal Even 

Management (AEM) [1]. Technical object operator to decide which procedures should be undertaken 

have to take into consideration many conditions. The more complex technical object is the more 

factors there is and operators perception has its limits. Statistics shows [1] that about 70% of accidents 

in industry is caused by human error. Systems supporting operators work significantly facilitate 

decision making process. These systems analyse informational noise to obtain information e.g. in the 

form of single variable, supporting the operator. It also should be remembered that often 

measurements in technical object may be insufficient, incomplete due to multitude of reasons such as 

errors or defects.  

The next stage in the development of diagnostic systems is AEM automation using intelligent 

control systems. The first step to do this is automatization of damage detection and diagnostic forms. 

Over the years, many different methods have been created, such as error trees, graphs based, based on 

analytical methods or neural networks. 
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Venkatasubramanian et al. divided  modelling methodology for damage detection and diagnostics 

into three parts [1], [2], [3] based on quantitative models, qualitative models and process history based 

methods. These publications provide a good overview of the methods used, taking into account the 

specific needs of diagnostics and damage detection. In [4] history and further development 

perspective for diagnostics and detection is presented. 

Kim and Joo [5] presented profits from application of model based on-line diagnostic systems for 

combined cycles in power plants Soeincheon and Sinincheon. Object’s condition was estimated based 

on measurement of heat and power. On the other hand, Głuch and Żołna [6] based steam power plant 

diagnostics on patterns of proper operation and formulation of the pattern based on analysis of data 

from power plant that enabled detection. 

Neural models are already present in technical objects diagnostics. Specific needs of models for 

diagnostics and detection on example of heat exchanger in tyre factory was shown in [7]. 

Mathematical model development based on measurements form the object was presented, based on 

the model simplified algorithm of fault detection was applied. Review of applications of neural 

models for thermal analyse  of heat exchangers is provided by [8] where it was divided into 4 parts: 

modelling of heat exchangers, estimation of heat exchangers parameters, phase change and control of 

heat exchangers. 

In this paper the author presents example of application of neural model for obtaining pattern of 

proper operation of turbine stage for further use in diagnostic system. 

 

Difference between with Computational Fluid Dynamics solvers and Neural Model 

 

To calculate flow in a turbine with Computational Fluid Dynamics solvers like ANSYS Fluent or 

CFX it is needed to solve equation system that consist of continuity equation, energy and momentum 

conservation equations, state and fluid equation. Due to complexity of the equation system it takes a 

lot of time to make the calculations – it is main reason why computional fluid dynamics calculations 

are unusable in diagnostic process especialy in the on-line one. Small change of any parameters 

implies the need to recalculate and again wait hours for calculation to complete. 

This resulted in investigating new methods of calculating fluid flow like artificial neural networks. 

On a contrary to CFD, neural model does not contain equations describing physics of the flow.  It is 

just a “black box” trained to provide distribution of thermodynamic parameter in certain conditions.  

Described neural model will never replace CFD simulations but author believes it can complement it, 

enabling new applications. 

In Fig. 1 basic differences between CFD and neural model were presented. In order to calculate 

flow with CFD we need to prepare geometry file, mesh, define boundary and initial conditions and 

then solve the task. Solving is a matter of hours or days dependent on size of meshed model. For 

turbine stage presented in this article it is about 2h15min. If there is a need to re-calculate on the same 

geometry it will also take about 2h15m.  

It is worth to emphasise that mentioned calculation time concern a case of only one from all 

possible operation points. Each turbine operates in wide range of parameters describing its load 

conditions. Thus number of calculation needed for diagnostic purposes is enormous. Properly trained 

neural model (ANN model) of turbine stage may significantly shorten time of calculation for a fluid-

flow diagnostic procedure for a large range of turbine stage load.  

On the other hand to prepare neural model it is needed to gather training data set and train the 

model – these are time consuming due to mentioned large range of possible load conditions. For 

training purposes sufficient number of operating points should be used. But, once the model is 

prepared the only data needed are inlet pressure and temperature and points coordinates (that part can 
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be managed by graphical tool for selecting volume on visualisation) and then time of calculations 

reduces to 7 minutes. And there are still possibilities of lowering the time for example by decreasing 

point set (eg. selecting every second point) if it will be sufficient for the application. What is 

interesting lowering number of points will not affect accuracy of results in selected points. While if 

doing the same in CFD, it would significantly lower the quality of the results. 
  

 

Fig. 1 Difference between CFD and Neural Model 

Training procedure for turbine stages 
 

In order to train neural model it is essential to gather reliable training data set. The most desired 

situation is large data set of measurements  provided by the technical object. Such a situation is almost 

impossible. First of all, measurements are made in certain points like turbine inlet, outlet or extraction, 

but not inside of turbine blading. The aim of this work is to recreate fluid flow through turbine blading  

to obtain pattern of proper work of the turbine so it could be further applied in diagnostic system. It 

would be possible to compare results from neural model with measurements only in certain points. 

That is why computational fluid dynamics (CFD) simulations were taken into consideration as a 

provider of training data set.  

Over 70 CFD simulations of fluid flow in investigated turbine stage were made. Half of them was 

used to train neural models, the rest was used for tests. Design working parameters of this stage is 

initial pressure 𝑝0 = 7,93 𝑀𝑃𝑎 and initial temperature 𝑇0 = 745 𝐾. Simulations were made in 

pressure range from 7,93 MPa to 6,74 MPa and three temperature levels 745, 725, 705 K.  What is 

essential simulations used for training were excluded from testing. 

Both pressure and temperature networks were trained Bayesian regularization backpropagation 

algorithm. By assumption artificial neural network was meant to be as simple as possible. Both neural 

networks were feed forward networks with two hidden layers. Details (like number of neurons) of 

architecture of each neural network was adjusted individually. 

 

Results 

 

In this article only results for pressure and temperature are presented, but it is possible to train 

artificial neural models for other parameters. In Table 1 results form 21 test are presented. It was listed 

Boundary and 
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for what area or volume the test was preformed, and both arithmetic mean and median of relative 

errors of recreating distribution of pressure and temperature were shown. What seems like 21 tests in 

reality is 4,37 ∙ 106 tests because neural network is trained to preform calculations of 1 point at the 

time and that is number of points that were examined.  
 

Table 1. Results of the tests. 

Test 

no. 

 

p0 t0 No. of 

points 

 

Test area 

 

pressure error temperature error 

[MPa] [K] Mean [-] Median[-] Mean [-] Median [-] 

1 7,89 745 1729 entire flow channel 0,0024 0,0024 0,0543 0,0268 

2 7,81 725 716820 entire flow channel 0,0013 0,0013 0,0537 0,0264 

3 7,81 725 382 volume in stator trailing area 0,0007 0,0007 0,0541 0,0242 

4 7,81 725 8515 volume in rotor trailing area 0,0014 0,0014 0,0528 0,0257 

5 7,65 725 716820 entire flow channel 0,0014 0,0014 0,0535 0,0262 

6 7,65 725 382 volume in stator trailing area 0,0014 0,0014 0,0538 0,0243 

7 7,65 725 8515 volume in rotor trailing area 0,0016 0,0016 0,0525 0,0255 

8 7,18 725 716820 entire flow channel 0,0014 0,0014 0,0537 0,0262 

9 7,18 725 382 volume in stator trailing area 0,0006 0,0006 0,0540 0,0248 

10 7,18 725 8515 volume in rotor trailing area 0,0014 0,0014 0,0527 0,0255 

11 7,51 705 716820 entire flow channel 0,0013 0,0013 0,1080 0,0535 

12 7,51 705 382 volume in stator trailing area 0,0012 0,0012 0,1084 0,0535 

13 7,51 705 8515 volume in rotor trailing area 0,0015 0,0015 0,1079 0,0538 

14 6,86 705 716820 entire flow channel 0,0014 0,0014 0,1080 0,0532 

15 6,86 705 382 volume in stator trailing area 0,0013 0,0013 0,1084 0,0532 

16 6,86 705 8515 volume in rotor trailing area 0,0015 0,0015 0,1080 0,0535 

17 6,95 730 716820 entire flow channel 0,0013 0,0013 0,0031 0,0016 

18 6,95 730 382 volume in stator trailing area 0,0007 0,0007 0,0026 0,0026 

19 6,95 730 8515 volume in rotor trailing area 0,0015 0,0015 0,0039 0,0022 

20 
6,95 730 16175 

plane through entire flow 

channel 
0,0010 0,0010 0,0031 0,0016 

21 6,95 730 1873 entire flow channel 0,0010 0,0010 0,0027 0,0017 

  

 

Arithmetic mean of relative error is more than satisfactory because it is below 0,25% in all the 

tests. Distribution of pressure generated with neural model is presented in left side of Fig. 2 while on 

the right side the distribution of relative error is given. 

When it comes to temperature results are slightly worse but in some cases acceptable. In training 

data there were simulations only on 745, 725, 705 K and nothing between, most probably adding 

more training data with different temperatures will improve the situation. It will be the subject of 

further investigation. Distribution of temperature generated with neural model is presented in left side 

of Fig. 3 while on the right side the distribution of relative error is given. On the temperature error 

distribution there is a visible triangle area of higher error level that also will be a matter of future 

work. 
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Fig. 2. Left: Distribution of pressure generated with neural model, Right: Relative error of the results 

 
Fig. 3. Left: Distribution of temperature generated with neural model, Right: Relative error of the results 
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Fig. 4. Visualisation of selection feature that can be used by neural model 

 

Summary 

 

Neural model provides the possibility of calculating thermodynamical properties, it was trained 

for, in any point of flow channel without calculating all of the flow in the channel. That is why it is 

possible to select only problematic in diagnostic process area or volume in flow channel and 

calculating it within significantly shorter time. For example obtaining results for 382 points (marked 

in Fig. 4) in stator area (marked in Fig. 4)  took 0,14 second, and in area of rotor for 8515 points it 

took 1,68 seconds. That kind of time span is acceptable for diagnostics purposes.  
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