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Abstract: Development of present-day antenna systems is an intricate and multi-step process requir-
ing, among others, meticulous tuning of designable (mainly geometry) parameters. Concerning the
latter, the most reliable approach is rigorous numerical optimization, which tends to be resource-
intensive in terms of computing due to involving full-wave electromagnetic (EM) simulations. The
cost-related issues are particularly pronounced whenever global optimization is necessary, typically
carried out using nature-inspired algorithms. Although capable of escaping from local optima,
population-based algorithms exhibit poor computational efficiency, to the extent of being hardly
feasible when directly handling EM simulation models. A popular mitigation approach involves
surrogate modeling techniques, facilitating the search process by replacing costly EM analyses with a
fast metamodel. Yet, surrogate-assisted procedures feature complex implementations, and their range
of applicability is limited in terms of design space dimensionality that can be efficiently handled.
Rendering reliable surrogates is additionally encumbered by highly nonlinear antenna characteristics.
This paper investigates potential benefits of employing problem-relevant knowledge in the form of
response features into nature-inspired antenna optimization. As demonstrated in the recent literature,
re-formulating the design task with the use of appropriately selected characteristic locations of the
antenna responses permits flattening the functional landscape of the objective function, leading
to faster convergence of optimization procedures. Here, we apply this concept to nature-inspired
global optimization of multi-band antenna structures, and demonstrate its relevance, both in terms of
accelerating the search process but also improving its reliability. The advantages of feature-based
nature-inspired optimization are corroborated through comprehensive (based on three antenna struc-
tures) comparisons with a population-based search involving conventional (e.g., minimax) design
problem formulation.

Keywords: antenna design; EM-driven optimization; global optimization; nature-inspired optimization;
response features

1. Introduction

Modern antenna systems have to satisfy stringent performance specifications and
multi-functionality demands [1], implied by the requirements stemming from newly-
developed areas such as the Internet of Things (IoT) [2], wireless communications [3] includ-
ing 5G [4,5], body area networks [6], microwave imaging [7], satellite communications [8],
radar [9], or remote sensing [10]. Specific functionalities required for these and other appli-
cations include broadband [11] and multi-band functioning [12], multiple-input–multiple-
output (MIMO) operation [13], circular polarization [14], beam scanning [15], reconfig-
urability [16,17], high directivity [18], polarization/pattern diversity [19], etc. Apart from
boosting electrical and field parameters, miniaturization demands also become common-
place, being especially important for mobile communications [20], implantable/wearable
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devices [21], and IoT [22]. This leads to additional design challenges, as reduction of
antenna size is detrimental to electrical performance [23,24]. The latter enforces seeking
trade-off solutions that satisfy constraints imposed on physical dimensions while ensuring
sufficient functionality. Design of high-performance and multi-functional antennas is as-
sociated with the development of structures containing defected ground structures [25],
stubs [26], slots [27], shorting pins [28], substrate-integrated waveguide (SIW) [29], or
metamaterial components [30,31], often implemented as multi-layer geometries [32,33].
Accurate characterization of topologically complex devices requires full-wave electromag-
netic (EM) analysis, which has been commonly involved at virtually all design stages, such
as topology evolution [34], parametric studies [35], and design closure [36,37].

Given the antenna geometry, careful adjustment of geometry parameters is the single
most important step towards improving electrical performance of the device. Traditionally,
this has been commonly realized through parameter sweeping guided by engineering
know-how; however, this approach is no longer adequate given the complexity of contem-
porary antennas, a typically large number of variables, as well as several objectives and
constraints that have to be simultaneously handled. Instead, rigorous numerical optimiza-
tion is preferred [38,39]. Although a large number of optimization techniques are available,
a common issue is high computational cost of EM-driven design, which may prove prob-
lematic even when carrying out local search using gradient-based [40] or derivative-free
methods [41]. On the other hand, the need for global optimization has been growing as
well [42]. It is necessary for multimodal tasks (i.e., whenever the presence of multiple local
optima is expected), such as synthesis of antenna array patterns [43], design of metamateri-
als (e.g., broadband frequency selective surfaces or coding metasurfaces [44]), re-design of
antennas over wide ranges of operating frequencies (especially in the case of multi-band
structures), but also whenever an initial design of a decent quality is not easily obtainable.
The latter situation is especially pertinent to miniaturized structures [45], or antennas im-
plementing additional functionalities [46,47]. Understandably, global optimization incurs
significantly higher CPU expenses as compared to local search.

Population-based nature-inspired algorithms are currently the most popular ap-
proaches to global optimization [48–50]. Although they have a relatively long history, dating
back to late 1960s (evolutionary strategies [51]), their broader utilization started in 1980s
with the development of genetic algorithms [52], followed by evolutionary methods [53],
genetic programming [54], and ant systems [55]. Particle swarm optimizers (PSO) [56]
and differential evolution (DE) [57] were the next significant milestones, especially in
terms of continuous optimization. From the early 2000s, nature-inspired methods vir-
tually dominated global searches, and new algorithms have been emerging ever since
(e.g., harmony search [58], firefly algorithm [59], grey wolf optimization [60], invasive
weed optimization [61], and others [62–64]). Despite this variety, the actual differences
between the algorithms, especially the recent ones, are rather minor. Nature-inspired
procedures process the sets (population [53], pack [60], swarm [56], etc.) of prospective
solutions (individuals, agents, particles, etc.) to a problem at hand. The candidate solutions
exchange information and generate new ones by means of exploratory [65] and exploitative
operators [66], which allows for finding the most promising parameter space regions but
also escaping from local optima. The latter arguably results in global search capability [67].
Also, the algorithms of this class are easy to deploy. Still, population-based operation
results in inferior computational efficiency, as a typical merit function call required by a
single algorithm run may be as high as many hundreds or even thousands. Clearly, such
costs may be prohibitive from the perspective of EM-driven design.

Poor computational efficiency hinders utilization of population-based methods for
antenna design. In practice, their straightforward application is only possible when using
low-cost representations (e.g., pattern optimization with analytical array factor models [68],
dedicated solvers with evaluation times at the level of seconds), or parallelization, the latter
requiring sufficient computational resources and licensing. An alternative is utilization
of surrogate modeling techniques [69], more often than not data-driven (kriging [70],
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Gaussian process regression [71], neural networks [72]), often combined with sequential
sampling methods [73]. In the latter, an iterative refinement of the surrogate is carried
out using EM-generated data amassed during the optimization process [74]. Within these
methodologies, fast metamodels are employed instead of expensive EM simulations to
make predictions about potentially better designs [75]. The incorporation of surrogate
models constitutes at present the most popular approach to nature-inspired optimization of
heavy-cost simulation models. Its limitation, especially when antenna design is considered,
is the curse of dimensionality and nonlinearity of antenna characteristics, both impeding
a rendition of reliable surrogates at reasonable costs. In practice, conventional modeling
methods may handle structures featuring a few variables [76,77]. This difficulty can be
somewhat alleviated by means of domain-confined surrogates [78], or utilization of variable-
resolution EM models [79]. Recently, new surrogate-assisted techniques allowing for global
design optimization of antenna [80] and microwave structures [81] have been proposed,
where the challenges stemming from the curse of dimensionality have been handled by the
employment of a self-adaptive Gaussian process as the underlying surrogate model.

This work investigates the possibility of mitigating the challenges of EM-driven nature-
inspired antenna optimization by making use of the problem-specific knowledge expressed
as response features [82]. The response feature approach has been developed to speed up
local optimization procedures by reformulating the original design task in terms of suitably
defined specific locations (response features) of the antenna outputs (e.g., frequencies and
levels of antenna resonances, or the frequencies associated with specific levels, e.g., −10 dB,
of antenna characteristics [83]). A close-to-linear nonlinear relationship between the feature
point coordinates and antenna dimensions facilitates convergence of the optimization
process [84], and—in some cases—enables quasi-global search capabilities even when
employing local search routines [85]. Here, the response feature technology is incorporated
into EM-driven nature-inspired optimization to improve the convergence and reliability of
the optimization procedure when compared to the standard formulation, which is typically
based on minimax-type objective functions [86]. Using PSO as a representative population-
based routine, extensive numerical experiments are conducted using three multi-band
microstrip antennas to identify potential benefits of feature-based formulation versus the
traditional one (here, minimax). The findings corroborate that problem reformulation
facilitates identification of the optimum design. In particular, it leads to improving the
average performance of the search process as well as repeatability of results. These benefits
are obtained owing to the involvement of the problem-relevant knowledge present in
the system responses. Finally, utilization of response features allows for decreasing the
computational costs of the search process (by over thirty percent on average) to reach the
same design quality as that obtained with standard formulation.

2. Simulation-Driven Design of Antenna Structures: Minimax and Feature-Based
Problem Formulations

This section discusses simulation-driven antenna design optimization. We recall the
conventional definition of the design task, which is typically expressed as a minimax
problem. We also consider an alternative formulation involving response features, and
present its potential benefits in the context of global search. Section 3 will present the
numerical verification of these advantages. The focus of this work is multi-band antennas.
These are representative examples of multi-modal problems, as the optimization process
starting from antenna resonances allocated away from the assumed targets normally leads
to the optimum being unreachable through local (e.g., gradient-based) optimization.

2.1. Simulation-Driven Antenna Optimization: Minimax Formulation

The popularity and significance of rigorous numerical optimization has been gradu-
ally increasing in the design of antenna systems. This is related to stringent performance
specifications imposed on contemporary antennas, leading to topological complexity (in
particular, implying a larger number of geometry parameters that necessitate tuning), as
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well as several objectives and constraints that need to be handled. Traditional methods,
largely based on supervised parameter sweeping, are still widely applied, but their rele-
vance has been greatly diminished. In this work, multi-objective optimization [87] is not
considered, so, when few objectives are present, they are being aggregated [88], or handled
as constraints. Several specific examples will be considered later in this section (cf. Table 1).

Table 1. Typical antenna design scenarios.

Design Requirements Objective Function (1)
and Design Constraints

Objective Function (3)
and Penalty Functions

• Improve in-band matching within the
frequency range F $ U(x) = S(x) = max{f∈F: |S11(x,f )|} UP(x) = U(x)

• Maximize average in-band gain in the
frequency range F $

• Ensure that in-band matching does not
exceed −10 dB in F $

U(x) = Ḡ(x) = 1
F
∫

F G(x, f )d f
Constraint:

UP(x) = G(x) + β1c1(x)
2

where

|S11(x, f )|≤ −10 dB for f ∈ F c1(x) =
[

max(S11(x)+10.0)
10

]2

• Minimize in-band axial ratio in the
frequency range F

• Ensure that in-band matching does not
exceed −10 dB in F $

U(x) = AR(x) = max{ f ∈ F: AR(x, f )}
Constraint:

|S11(x, f )|≤ −10 dB for f ∈ F

UP(x) = AR(x) + β1c1(x)2

where
c1(x) =

[
max(S11(x)+10.0)

10

]2

• Reduce size of a circularly polarized
antenna

• Ensure that in-band matching does not
exceed −10 dB in the frequency range F $

• Ensure that axial ratio does not exceed 3
dB in F $

U(x) = A(x)
Constraints:

AR(x, f ) ≤ 3 dB for f ∈ F
and

|S11(x, f )|≤ −10 dB for f ∈ F

UP(x) = A(x) + β1c1(x)2 + β2c2(x)2

where

c1(x) =
[

max(S11(x)+10.0)
10

]2

and
c2(x) =

[
max(AR(x)−3.0)

3

]2

$ In general, the frequency range of interest F may be defined as a continuous range of frequencies, i.e., F ∈ (f 1,
f 2), in the form of a discrete set of operating frequencies f 0k, k = 1, . . ., N, or as a single operating frequency f 0,
according to the designer’s needs.

In the following, we will utilize x = [x1 . . . xn]T to represent a vector of designable
parameters of the device at hand (typically, antenna dimensions). The problem to be solved
is formulated as a minimization task:

x∗ = argmin
x

U(x, f ) (1)

where x* stands for (a possibly global) optimum design, and f represents frequency be-
longing to the frequency range of interest F. U is a scalar function used as a metric of the
design quality, which should be formulated so that a better design x is associated with
lower values of U(x). “Better design” is a subjective term representing the designers’ under-
standing of the design quality. Given the nature of the majority of antenna design problems,
quantification of design quality is typically expressed in a minimax form, e.g., to minimize
the maximum of certain quantities (reflection coefficient, axial ratio) over specific frequency
ranges of interest [89]. Rigorous formulations will be discussed later in this section.

The design task (1) is often subject to constraints, belonging to either inequality,
gk(x) ≤ 0, k = 1, . . ., ng, or equality type, hk(x) = 0, k = 1, . . ., nh. Apart from strictly
geometrical conditions, the constraints are typically expensive to evaluate (require EM
analysis), and their explicit handling is problematic. A workaround is a penalty function
approach [90], where the constraints are incorporated into the objective function. The
design task takes the form of:
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x∗ = argmin
x

UP(x) (2)

where:

UP(x) = U(x) +
ng+nh

∑
k=1

βkck(x) (3)

The penalty functions ck(x) quantify constraint violations, whereas the contributions
of individual constraints to UP are controlled by the proportionality factors βk. A few
examples of commonly considered design objectives can be found in Table 1. The notation
employed therein is the following: f —frequency, |S11(x,f )|—reflection coefficient at design
x and frequency f, G(x,f )—gain, AR(x,f )—axial ratio, A(x)—antenna size (calculated as
footprint area covered by the antenna substrate). The definitions of the above figures
of interest can be found in any antenna engineering textbook (e.g., [91,92]). The penalty
functions included in Table 1 measure relative constraint violations. The power factor [ ]2

is used to ensure smoothness of objective function with regard to constraint violation at
the boundary of the feasible region. This is vital, as many constraints are active at the
optimum solution.

In this work, we are interested in multi-band antennas, parameter tuning of which
is a representative multimodal problem that may require global optimization. This is
because starting a local search from the design corresponding to allocation of operational
frequencies being away from the targets usually leads to a failure. Let f 0k, k = 1, . . ., N,
be the intended operating frequencies of the N-band antenna, and Bk represent the target
fractional bandwidth across which the reflection coefficient |S11| should be minimized.
Normally, a worst-case scenario is considered, i.e., we target minimizing the maximum
|S11| within all operating bands, with the level of −10 dB typically considered sufficient
for most practical applications. Thus, the minimax objective function can be defined as:

U(x) = max
{

f ∈
⋃N

k=1
[(1− Bk/2) f0k, (1 + Bk/2) f0k] :

∣∣∣S11(x, f )
∣∣∣}, (4)

Note that Equation (4) coincides with the objective function presented in the first row
of Table 1 for F = [(1 − 0.5B1)f 0.1, (1 + 0.5B1)f 0.1] ∪ . . . ∪ [(1 − 0.5BN)f 0.N, (1 + 0.5BN)f 0.N].
In some cases, the fractional bandwidths may be identical, i.e., B1 = . . . = BN = B, or we
may have Bk = 0 for k = 1, . . ., N, meaning that we aim at minimization of the maximum
reflection exactly at all operational frequencies f 0.k.

2.2. Knowledge-Based Plateau Elimination Using Response Features

Objective functions defined using conventional formulations (including minimax,
as outlined in Section 2.1) are often highly nonlinear, which makes them challenging to
handle by optimization algorithms. In the case of nature-inspired or other types of global
procedures, this translates into difficulties in finding the conducive regions of the parameter
space. Figure 1a shows a representative example of a dual-band antenna designed to
allocate its operating frequencies at 3.0 GHz (lower band) and 5.3 GHz (upper band), and
to minimize the reflection coefficient therein. The objective function is expressed as in
Equation (4), with f 0.1 = 3.0 GHz, f 0.2 = 5.3 GHz, and B1 = B2 = 0. The antenna is described
by six geometry parameters x = [l1 l2 l3 w1 w2 w3]T. Figure 1b shows the objective function
profile for 24 ≤ l1 ≤ 46 and 15 ≤ l3 ≤ 24 with other parameters fixed. It can be noticed
that the majority of the graph is a plateau, with only a small region in the vicinity of
the optimum associated with large changes of the merit function value. The rationale is
that shifting the operating frequencies from the targets results in the maximum reflection
being close to zero dB, the latter determining the value of U(x). From the point of view of
any optimization algorithm, the plateau regions are difficult to handle due to vanishing
gradients (for local methods) or problems in discriminating between the regions of different
qualities (for global techniques). It should also be emphasized that the three-dimensional
illustration of Figure 1b does not represent the actual level of difficulty: the relative amount
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of ‘flat’ objective function regions in the multi-dimensional design space is considerably
larger than shown in the picture.
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Figure 1. Conventional design optimization task formulation in the context of global search: (a) ex-
emplary dual-band dipole antenna described by six geometry parameters, optimized for minimum
reflection at the operating frequencies 3.0 GHz and 5.3 GHz; (b) objective function landscape with
respect to geometry parameters l1 and l3 (remaining parameters fixed); note large plateaus, which
make the optimization process challenging.

A workaround to these issues, as proposed in this work, is the exploitation of response
feature technology. Response features were originally introduced to facilitate local (gradient-
based) optimization procedures of antenna structures [82]. The main idea is to express
the design task in terms of appropriately defined specific (or feature) points of the system
outputs. A particular choice of the feature points, e.g., frequency/level coordinates of
antenna resonances, frequencies of specific levels (typically, −10 dB) of antenna reflection,
etc., depends on the design specifications [84], cf. Figure 2. As the functional dependence
of the characteristic points on antenna dimensions is normally less nonlinear than a similar
dependence for the complete outputs, feature-based formulations—-due to exploiting the
problem-specific knowledge—-lead to a faster convergence of optimization procedures [85],
or allow for reducing the training data set sizes when constructing data-driven surrogate
models [93].
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Figure 2. Response features for a dual-band antenna: reflection response (—), characteristic locations
associated with antenna resonances (o), characteristic locations of −10 dB level of |S11| (�). The
dashed line represents the acceptance limit for antenna reflection.

In this work, the purpose of incorporating response features is to eliminate the ob-
jective function plateaus as discussed above. Let P(x) = [p1(x) . . . pK(x)] represent a vec-
tor whose entries are K response features selected for a given antenna structure, where
pk(x) = [fk(x) lk(x)]; f k and lk are the frequency and level coordinates of the kth feature point.
If multi-band antenna is optimized in the sense of Equation (4) with Bk = 0 for k = 1, . . .,
N (i.e., minimization of antenna reflection at all operating frequencies), the appropriate
selection of the feature points would be the points corresponding to antenna resonances.
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Then we have K = N with fk being the kth resonant frequency and lk being the value of
|S11| at fk. The feature-based merit function UF may be then formulated as:

UF(P(x)) = max{1 ≤ k ≤ N: lk(x)}+ β

∥∥∥∥∥∥∥
 f0.1

...
f0.N

−
 f1(x)

...
fN(x)


∥∥∥∥∥∥∥

2

(5)

where β is the proportionality coefficient. Note that the first term of Equation (5) represents
the maximum reflection over all resonant frequencies, whereas the second one can be
considered a penalty term that enforces relocation of the resonances to the target values
f 0.k, k = 1, . . ., N. Furthermore, the minimum of U(x) and UF(x) coincide assuming that the
target operating frequencies are attainable, and the coefficient β is sufficiently large.

The formulation (5) can be generalized to non-zero Bk by including additional feature
points corresponding to the frequencies (1 − Bk/2)fk and (1 + Bk/2)fk. Moreover, feature-
based formulation allows for convenient handling of bandwidth enhancement tasks by
using characteristic points representing −10 dB levels of antenna reflection (cf. Figure 2).

Figure 3 shows the functional landscape of the objective function UF of (5) for the
dual-band antenna shown in Figure 1a. The graph is constructed under the same conditions
as in Figure 1b, i.e., with respect to parameters l1 and l3 over the same ranges thereof, and
the remaining parameters fixed at the same values as in Figure 1b. Observe that the plateau
regions are not present, and the objective function minimum is easily reachable from any
combination of l1 and l3, at least in the considered parameter range. In particular, it is
expected that reformulating the design task through response features will also facilitate
and expedite nature-inspired optimization. This is because steady trend (monotonicity) of
the objective function UF fosters relocation of individuals in the population towards the
global minimum, whereas standard formulation does not exhibit this behavior when away
from the optimum.
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Figure 3. The landscape of the feature-based merit function (5) for the dual-band dipole antenna
shown in Figure 1a. The function is assessed over the same ranges of antenna dimensions l1 and l3 as
in Figure 1b. As the feature-based formulation takes into account the misalignment of the antenna
operating frequencies from the target, the plateaus visible in Figure 1b are essentially removed.

Figure 4 shows an example of a triple-band antenna along with the landscapes charac-
teristic to the minimax and feature-based objective functions plotted over two-dimensional
subspace spanned by parameters Ls and ls2r. It can be observed that the qualitative differ-
ence between the minimax and feature-based merit function is similar to that of dual-band
antenna of Figure 1. In particular, the minimax objective function landscape is flat with
a sharp minimum corresponding to the design with good alignment of the antenna oper-
ational frequencies to the target, whereas the feature-based function shows clear trends
in the entire region, which facilitates the optimization process. Also, for this example,
the issues pertinent to the minimax objective are more pronounced due to the increased
number of operating bands (three versus two for the antenna of Figure 1a).
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merit function (4); (c) landscape of the feature-based objective function (5).

2.3. Particle Swarm Optimization with Response Features

In this work, particle swarm optimizer (PSO) [94,95] is utilized as the underlying
optimization engine. PSO was chosen as one of the most widely employed nature-inspired
population-based algorithms with applications in various fields of engineering, including
electrical engineering (e.g., [96–99]). PSO handles a population (swarm) comprising N
parameter vectors (particles), and each particle is characterized by its position vector xi
as well as velocity vector vi. The updating of velocity and position occurs through the
following process:

vi ← χ[vi + c1r1•(x∗i − xi) + c2r2•(g− xi)] (6)

xi ← xi + vi (7)

where r1 and r2 refer to the vectors comprising uniformly distributed random numbers
from the range 0–1, and the symbol • denotes component-wise multiplication; xi

* denotes
the personal best, i.e., the best design identified for the ith particle in the course of the opti-
mization run until the current iteration. It should be noted that in numerical experiments, a
standard setup of PSO algorithm parameters is employed. This is to avoid unnecessary
over-tuning of the optimization routine with regard to a specific optimization task that
is being solved, and to demonstrate that standard parameter setting is sufficient. The
following setup is utilized: swarm size N = 10, maximum number of iterations kmax = 100,
and the remaining parameters χ = 0.73, c1 = c2 = 2.05, cf. [100].

The first step of modifying of the positions xi of the particles consists of the partially
stochastic adjustment of the velocity vector (see Equation (6)). Three factors affect the
aforementioned process: the first involves current velocity, the second facilitates particle
shift towards its (local) best position xi

*, and the third propels the particle towards global
best position g discovered by the swarm thus far.

In the context of nature-inspired optimization, the replacement of the conventional
formulation of an antenna design task by its feature-based version (cf. Section 2.2) leaves the
optimization algorithm intact; it is only the objective function that is altered in accordance
with the assumed selection of the characteristic points. In this work, we use particle
swarm optimizer (PSO) [101] as a widely-used nature-inspired algorithm to illustrate the
potential benefits of problem reformulation. Section 3 provides comprehensive verification
and benchmarking that involve three multi-band antenna structures. We illustrate the
advantages of a feature-based approach using the simplified case of a dual-band antenna
of Figure 1, reduced to a two-dimensional case (variables l1 and l3), which allows for a
convenient visualization of the optimization process, including relocation of the swarm.
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Figure 5 presents a comparison of the PSO algorithm optimizing the minimax objective
function U, and the feature-based function UF. It should be noted that even for this
simplistic setup, the advantages of feature-based formulation are clearly pronounced. On
the one hand, optimization of UF leads to a faster convergence, which is indicated by a
tighter arrangement of the swarm throughout the iterations (Figure 5a,b). On the other
hand, the feature-based formulation reaches a better-quality solution earlier. This means
that faster convergence is not a premature one; in other words, it is not detrimental to the
efficacy of the optimization process. The explanation is that optimization of UF capitalizes
on strong trends (monotonicity) of this objective function over large portions of the objective
space, as opposed to the presence of the flat regions pertinent to the minimax objective
function U (cf. Figure 1b or Figure 4b).
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Figure 5. Nature-inspired optimization of dual-band antenna restricted to a two-dimensional sub-
space spanned by parameters l1 and l3 (cf. Figure 1a). Optimization carried out with the use of the
standard PSO algorithm with swarm size equal ten. Shown is the allocation of the swarm (o) as
well as the center of gravity of the swarm (*) at selected iterations: (a) minimax objective function U;
(b) feature-based objective function UF; (c) convergence plots for the algorithm with minimax (o) and
feature-based objective function (×). Note that utilization of the feature-based merit function leads
to a faster convergence of the algorithm, which is not detrimental to the design quality because of
monotonicity of UF (cf. Figure 3 vs. Figure 1b, see also Figure 4).
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3. Verification Studies

This section comprehensively verifies potential advantages of feature-based formula-
tion for population-based optimization of antenna structures. We consider three multi-band
antennas, including a dual-band uniplanar antenna, as well as two triple-band antennas.
The particle swarm optimization (PSO) algorithm is utilized as an optimization engine,
being a representative and widely used nature-inspired procedure. The primary question
is whether a feature-based approach yields computational benefits, either with regard to
improving the design quality (for a given computational cost of the design procedure) or
accelerating convergence over the standard (here, minimax) formulation of the design task.
Numerical experiments conducted in this section purposely assume limited computational
budget so that the cost of nature-inspired optimization can be made practically acceptable.
All considered optimization procedures, i.e., the proposed one using the feature-based
formulation of the optimization task, as well as the benchmark routines, including PSO and
gradient-based algorithm [102] (both employing standard (minimax) formulation of the
optimization task) were executed ten times, and the statistical results are presented. Specif-
ically, we are interested in the average objective function value, along with its standard
deviation (to quantify the solutions’ repeatability).

3.1. Verification Antennas

Numerical verification of the relevance of feature-based re-formulation described
in Section 2 is executed using the following microstrip antenna structures: (i) Antenna
I: a dual-band uniplanar dipole antenna [103] presented in Figure 6a, (ii) Antenna II: a
triple-band uniplanar dipole antenna [93] shown in Figure 6b, along with (iii) Antenna
III: a triple band U-slotted patch featuring L-slot defected ground structure (DGS) [104]
presented in Figure 6c. Note that Antennas I and III have been already considered as
illustration examples in Section 2; however, they are shown again in Figure 6 to make
this section self-contained. Futhermore, Figure 7 illustrates computational mesh and 3D
radiation patterns at the target operating frequencies of selected designs for all antenna
verification structures.
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The important data concerning these antennas can be found in Table 2. These data
include substrate parameters (height, relative dielectric permittivity), vectors of designable
parameters, target operating frequencies, as well as the search spaces, delimited by the
lower bound l and the upper bounds u on the geometry parameters. Observe that the
parameter ranges are broad: the average ratio of the upper and lower bounds is 2.5, 5.0,
and 1.5 for Antennas I through III, respectively. In fact, the antenna structures employed
in this work for verifying the proposed framework are challenging when compared to
the verification case structures utilized for validating global simulation-driven design
optimization algorithms reported in the literature [94,105–111]. This pertains to both the
number of the designable variables (six, ten, and eleven geometry parameters for Antenna
I through III), as well as their ranges. The juxtaposition of the optimization frameworks
and the case studies used therein is provided in Table 3.

Table 2. Verification case studies.

Case Study

Antenna I Antenna II Antenna III

Substrate
εr = 3.5, h = 0.76 mm

metallization thickness
t = 17.5 µm

εr = 3.5, h = 0.76 mm
t = 17.5 µm

εr = 3.2, h = 3.1 mm
t = 17.5 µm

Designable parameters x = [l1 l2 l3 w1 w2 w3]T x = [l1 l2 l3 l4 l5
w1 w2 w3 w4 w5]T

x = [L1 Ls Lu W W1 dL
dW g ls1 ls2 wu]T

Other parameters l0 = 30, w0 = 3,
s0 = 0.15, o = 5

l0 = 30, w0 = 3,
s0 = 0.15, o = 5

b = 1, wf = 7.4, s = 0.5,
w = 0.5, dL2 = L1,

L = Ls + g + L1 + dL2

Target operating frequencies 3.0 GHz and 5.5 GHz 2.45 GHz, 3.6 GHz,
and 5.3 GHz

3.5 GHz, 5.8 GHz,
and 7.5 GHz

Parameter space l = [25 5 0.5 0.5 1.8 0.5]T

u = [50 10 1.0 1.5 3.0 2.0]T

l = [20 5 15 5 12 0.2 1.0 0.2
1.0 0.1]T

u = [50 15 35 16 25 1.5 3.0
1.5 3.0 1.5]T

l = [10 17 5 45 8 15 9 0.2 4
20 2]T

u = [16 25 8 55 12 20 12 0.4
6 24 3]T

Table 3. Juxtaposition of the verification examples used by the state-of-the art works concerning
global simulation-driven design optimization of antennas.

Technique Optimization
Algorithm Test Case Number of

Design Variables

Average
Upper-to-Lower

Bound
Ratios

[105] Bayesian
optimization

Dual-band
antenna 3 1.7

[106]
Global

trust-region
parallel Bayesian

Monopole antenna 8 3.3
Wideband antenna 9 6.1

Circular patch
antenna 4 1.3

U-slot antenna
array 12 2.0

[107] Hybrid bacterial
foraging-PSO Fractal antenna 3 4.5

[108]
Chameleon

swarm
algorithm

U-slot quad-band
antenna 12 1.5

[109] Binary PSO

Single-band
MIMO antenna 4 3.0

Dual-band MIMO
antenna 3 3.3
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Table 3. Cont.

Technique Optimization
Algorithm Test Case Number of

Design Variables

Average
Upper-to-Lower

Bound
Ratios

[110] Brain storm
optimization Yagi-Uda antenna 11 1.9

This
work

PSO with
response
features

Dual-band
antenna 6 2.5

Triple-band
antenna 10 5.0

Triple band
U-slotted patch

antenna
11 1.5

It should be emphasized that the developed methodology is not aimed at solving
design tasks for any specific application area. In particular, it may be successfully applied
to globally optimize antennas that are intended to be integrated with smart technologies
and implemented in IoT devices. The presented test cases incorporate multi-band antenna
structures, which are widely employed in a broad range of wireless communication ap-
plications. Optimization of input characteristics, as considered here, constitutes the most
common type of antenna optimization tasks.

The simulation models of all antennas are calculated using transient solver of CST
Microwave Studio, which utilizes the Finite Integration Technique (FIT) [111] for antenna
evaluations. The goal has been formulated as a reflection minimization at the target
operating frequencies. The minimax objective functions are defined as in Equation (4), with
Bk = 0, whereas the feature-based merit functions follow Equation (5), cf. Section 2.2.
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Figure 7. Illustration of the computational mesh (time-domain solver of CST Microwave Studio) and
3D radiation patterns at the target operating frequencies (cf. Table 2) of selected designs optimized for
these frequencies: (a) Antenna I, (b) Antenna II, (c) Antenna III. For all structures, hexahedral mesh is
employed, and the underlying simulation procedure is the Finite Integration Technique (FIT) [111].

3.2. Results

The numerical results have been gathered in Tables 4–6 for Antennas I, II, and III,
respectively. Figure 8 shows the evolution of the objective function, averaged over all
performed runs of the respective algorithms. Furthermore, Figures 9–11 show antenna
characteristics at the final designs rendered in the chosen runs of the PSO optimizer using
the feature-based problem formulation. The final optimal geometry parameter vectors
for the designs shown in Figures 9–11 are gathered in Table 7. The figures of interest are
the average merit function values and their standard deviations. The latter is used as a
measure of solution repeatability.

Table 4. Antenna I: Optimization results.

Algorithm Number of
Iterations

Problem
Formulation

Average Objective
Function Value

[dB]
CI $ [dB]

Standard
Deviation of

Objective
Function [dB]

Cost

PSO

20

Standard
(minimax)

−19.0
[−23.1, −14.9] 2.5

200Feature-
based

(this work)

−20.6
[−25.0, −16.2] 2.7

50

Standard
(minimax)

−26.8
[−33.0, −20.6] 3.8

500Feature-
based

(this work)

−26.5
[−32.6, −20.4] 3.7

Gradient-
based – Standard

(minimax)
−13.5

[−21.4, −5.6] 4.8 84.2

$ CI—90 percent confidence interval.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Electronics 2024, 13, 383 14 of 22

Table 5. Antenna II: Optimization results.

Algorithm Number of
Iterations

Problem
Formulation

Average Objective
Function Value

[dB]
CI $ [dB]

Standard
Deviation of

Objective
Function [dB]

Cost

PSO

20

Standard
(minimax)

−10.9
[−17.3, −4.5] 3.9

200Feature-
based

(this work)

−12.8
[−19.3, −6.2] 4.0

50

Standard
(minimax)

−14.1
[−22.3, −5.9] 5.0

500Feature-
based

(this work)

−17.2
[−22.4, −12.0] 3.2

Gradient-
based – Standard

(minimax)
−7.8

[−16.3, −0.7] 5.2 105.8

$ CI—90 percent confidence interval.

Table 6. Antenna III: Optimization results.

Algorithm Number of
Iterations

Problem
Formulation

Average Objective
Function Value

[dB]
CI $ [dB]

Standard
Deviation of

Objective
Function [dB]

Cost

PSO

20

Standard
(minimax)

−14.4
[−21.6, −7.2] 4.4

200Feature-
based

(this work)

−16.4
[−20.5, −12.3] 2.5

50

Standard
(minimax)

−19.4
[−30.9, −7.9] 7.0

500Feature-
based

(this work)

−20.7
[−25.8, −15.6] 3.1

Gradient-
based – Standard

(minimax)
−12.1

[−20.3, −3.9] 5.0 125.4

$ CI—90 percent confidence interval.

Table 7. Final optimal parameter vectors of Antennas I through III (shown in Figures 9–11).

Antenna I II III

Design Design Design

Parameter 1 2 3 Parameter 1 2 3 Parameter 1 2 3

l1 28.5369 28.2285 29.0147 l1 37.9823 36.1606 35.6987 L1 12.2576 11.3321 11.1938
l2 5.0000 8.0000 5.6175 l2 15.0000 11.8375 10.7800 Ls 17.0000 17.0000 19.4227
l3 0.5262 0.6189 0.5314 l3 29.4173 20.0000 26.6328 Lu 7.5690 7.4518 8.0000
w1 1.5000 0.5000 1.4373 l4 16.0000 9.9495 12.8472 W 50.6422 52.6515 55.0000
w2 1.8000 2.7000 2.0245 l5 23.6288 25.0000 21.1045 W1 10.2412 11.0431 12.0000
w3 1.3030 1.0133 1.0733 w1 0.5000 0.9097 0.9973 dL 20.0000 17.0565 20.0000

w2 1.4692 2.0000 1.0905 dW 11.0485 10.4042 11.2354
w3 1.0000 1.0000 0.5059 g 0.2424 0.4000 0.2000
w4 1.0000 1.0000 1.8633 ls1 5.8355 5.0185 4.9634
w5 1.0000 0.5000 0.5000 ls2 20.7977 23.1403 22.8999

wu 2.9078 2.0000 2.0000
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(a) Antenna I; (b) Antenna II; (c) Antenna III. The merit function is averaged across the ten algorithm
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3.3. Discussion

The results shown in Tables 4–6 prove the advantages of feature-based formulation of
the design task when applied to a global optimization of multi-band antenna structures.
It can be noted that the average objective function is noticeably better for the feature-
based approach after 20 iterations of the PSO algorithm. This is the case for all antenna
structures considered in this study. After 50 iterations, the feature-based formulation
yields better results for Antennas II and III, which are more challenging cases, both with
regard to the design space dimensionality as well as the number of operating bands of
the device. For Antenna I, both approaches render similar design qualities. At the same
time, it can be noticed that the results’ repeatability (measured by the standard deviation of
the results) is considerably better for feature-based formulations for Antennas II and III,
which also indicates the advantages of the considered approach from the standpoint of
design reliability.

Finally, utilization of response features allows for achieving noticeable computational
speedup. For example, the number of iterations necessary to obtain the same average
objective function levels as those produced by the feature-based formulation in 20 iterations,
is about 30. The corresponding average speedup is therefore over 30 percent.

Let us also emphasize that—as mentioned before—the PSO algorithm was intention-
ally set up with a limited computational budget, which is to make the optimization costs
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reasonably low from the practical perspective. Although extending the optimization run
beyond 50 iterations would likely lead to reducing the quality differences between the
minimax and feature-based formulations, the primary objective of this work is to show that
the latter brings in definite benefits under a tight CPU budget.

The presented results also demonstrate superiority of the performance of the proposed
optimization procedure utilizing feature-based formulation of the design task over a local
trust-region (TR) gradient-based algorithm. For each considered antenna structure, the
average objective function value is significantly worse in the case of the TR routine than
for the PSO algorithm (both using standard and feature-based formulation of the objective
function). This is because the success rate of a TR algorithm is poor for all antennas:
it equals 6/10 for Antenna I (meaning that the design specifications have been met in
only six out of ten algorithm runs), and it is 4/10 for Antennas II and III. This clearly
worsens solution repeatability for the local routine, which equals 5.0 (on average across all
benchmark antenna sets), as compared to 3.3 (on average) for our algorithm with a higher
computational budget.

The limitations of the proposed approach are twofold. Firstly, our algorithm solves the
antenna design optimization task directly, i.e., no surrogate model is involved whatsoever.
The employment of the feature-based formulation of the design task allows for slightly
accelerating the process. Nevertheless, in the cases where the antenna simulation model is
costly, the overall optimization expenses may be impractically high. Thus, the designer may
need to default to the usage of machine-learning-based procedures. The second type of
limitation stems from the fact the developed framework utilizes feature-based formulation
of the design task. Thus, its employment is limited to the cases where easily identifi-
able characteristic points may be distinguished in the antenna frequency characteristics
which enable encoding design specifications. Overall, the developed algorithm might
not be as flexible as other frameworks that do not place any restrictions on the antenna
response structure.

4. Conclusions

In this paper, we investigated potential benefits of incorporating feature-based formu-
lation of design tasks when applied to nature-inspired optimization of antenna structures.
The studies were focused on input characteristics of multi-band antennas, handling of
which is representative in terms of the level of difficulty, and a multimodal nature of the
problem. On the conceptual level, it has been demonstrated that problem reformulation,
from the conventional (minimax) setup to that employing response features, significantly
alters the functional landscape that needs to be tackled in the optimization process. These
changes suggested that improved performance of the nature-inspired search processes
may be expected. This was corroborated to the fullest extent through comprehensive
numerical experiments conducted for three microstrip antennas, using a particle swarm
optimizer as the algorithm of choice. In order to maintain the optimization expenses at
practically acceptable levels, the computational budget was significantly restricted to only
500 objective function evaluations, with the intermediate results verified after 200 evalu-
ations. The major findings are that exploiting problem-relevant knowledge in the form
of response features to solve the considered antenna design optimization tasks noticeably
improves both the quality of designs rendered by the algorithm and the overall reliability
of the search process, as indicated by the lower values of standard deviation estimated
from multiple independent algorithm runs. Future work will focus on the development of
computationally-efficient, nature-inspired antenna optimization procedures involving both
the response feature approach and other acceleration mechanisms, e.g., variable-resolution
simulation models.
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