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Abstract: In this paper, concepts of fractional-order (FO) derivatives are reviewed and discussed with
regard to element models applied in the circuit theory. The properties of FO derivatives required
for the circuit-level modeling are formulated. Potential problems related to the generalization of
transmission-line equations with the use of FO derivatives are presented. It is demonstrated that
some formulations of FO derivatives have limited applicability in the circuit theory. Out of the most
popular approaches considered in this paper, only the Grünwald–Letnikov and Marchaud definitions
(which are actually equivalent) satisfy the semigroup property and are naturally representable in the
phasor domain. The generalization of this concept, i.e., the two-sided fractional Ortigueira–Machado
derivative, satisfies the semigroup property, but its phasor representation is less natural. Other ideas
(including the Riemann–Liouville and Caputo derivatives—with a finite or an infinite base point)
seem to have limited applicability.

Keywords: circuit theory; circuit simulation; transmission lines; fractional calculus

1. Introduction

The fractional-order (FO) calculus is a branch of mathematics investigating formulations of
the derivative operator Dα, with the order α being a real or a complex number. In this paper,
our considerations are limited to the case when α ∈ R. Hence, the FO derivative operator Dα is
a generalization of the standard integer-order (IO) concept of the n-fold differentiation Dn where n is
an integer number (n ∈ Z). The FO calculus has been applied in the circuit theory for many years [1–3].
Reviews of numerous formulations of FO derivatives can be found in classical monographs [4–6].

The main reason for applying FO derivatives to the modeling of electrical-circuit elements stems
from its nonlocal properties when compared to the classical IO definition. Unlike IO derivatives,
FO derivatives include a memory of all previous states of the considered circuit element
(i.e., time-domain history) in calculations. Furthermore, with regard to the design process, an additional
parameter, namely the order of an FO derivative appears, which allows for design flexibility and
optimization freedom [7,8]. In this paper, we focus on the circuit-level modeling of transmission
lines based on FO derivatives. In FO models of transmission lines, the FO inductance can be useful
for modeling of the skin effect whilst the FO capacitance is able to model various non-idealities
of characteristics of dielectric media (e.g., accumulation of electric charge along the line and
memory effects in dielectric polarization). As demonstrated in many experimental works [9–14],
the FO transmission-line model allows for more compact and accurate analytical modeling over
a wide-frequency band when compared to the traditional IO modeling.
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Some definitions of FO derivatives are well established and have already been applied in the
circuit theory, whilst some definitions have only been introduced recently. The ambiguity of definitions
of FO derivatives, whose properties sometimes exclude them from applications in the circuit theory,
is the motivation for our research. In Ref. [15] published in 2014, a review of 20 and 10 definitions of
FO derivatives and integrals is presented, respectively. In Ref. [16] published in 2019, the number
of considered FO derivatives approaches 42 (without counting left- and right-sided versions as
separate definitions). In general, it demonstrates the chaos stemming from the ambiguity of definitions
of FO derivatives in mathematical modeling, as well as in the circuit theory. Furthermore, opinions
which question the applicability of FO derivatives and related models in electrical sciences and
engineering have recently appeared [17–19]. Such a discussion in literature suggests that the proposed
analysis of the properties of FO derivatives is necessary. Furthermore, investigations demonstrate that
the results of circuit analysis may depend upon the choice of a definition [20].

Below, we analyze basic properties of fractional derivatives. It helps us to indicate FO derivatives
which may reasonably be used in the circuit-level modeling. That is, the trigonometric functions invariance
is a necessary property for the phasor analysis to be applied and the semigroup property guarantees
that the frequency-domain and the time-domain solutions correspond to each other. We discuss the
applicability of some definitions of fractional derivatives. First, the classical derivative definitions,
i.e., Riemann–Liouville, Caputo, Liouville–Caputo, Liouville, Marchaud, and Grünwald–Letnikov
are considered in relation to the circuit theory. Afterwards, some other nonclassical definitions
(i.e., Caputo–Fabrizio, Atangana–Baleanu, Atangana–Koca–Caputo, the conformable derivative and the
two-sided fractional derivative recently introduced by Ortigueira and Machado), which are mentioned
in the context of the circuit-theory applications, are considered as well. From the entire list, only the
Marchaud and Grünwald–Letnikov definitions (which are actually equivalent), and their extension,
recently suggested by Ortigueira and Machado satisfy the two conditions mentioned above. Naturally,
this discussion of mathematical properties required to solve various problems of the circuit theory does
not change the fundamental principle, namely that mathematical models employing FO derivatives
must describe physical phenomena correctly. Therefore, the application of FO derivatives should
describe memory effects and hereditary properties of the elements used in the circuit-level modeling.

This work is an extension of the conference paper [21]. This extension covers a much broader
review of the literature on the subject, in terms of identification of fractional-derivative definitions
appearing in the context of the circuit theory. Moreover, the detailed arguments supporting our
conclusions are added.

2. FO Transmission Lines

The IO model is able to describe characteristics of the transmission line in a limited
frequency range. It stems from the fact that, for THz frequencies, a conductor exhibits both frequency
and spatial dispersion [9,10]. Hence, the loss term in the traditional RLGC model with IO elements
(see Figure 1) becomes insufficient if we want to describe the dispersion and non-quasi-static effects.
It may further result in causality problems in the time-domain analysis. However, the FO RLGC model
of the transmission line (see Figure 2) [9,10,22,23] can describe these effects in the THz frequency range.

Figure 1. Unit cell of IO model of transmission line.
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Figure 2. Unit cell of FO model of transmission line.

In [9,10], a causal and compact FO transmission-line model for THz frequencies is developed for
CMOS on-chip conductor. Due to the inclusion of frequency-dependent losses and non-quasi-static effects,
a good agreement of characteristic impedance is observed between the FO model and the measurements
up to 110 GHz. On the other hand, the traditional IO RLGC model provides an agreement between the
model and the measurements only up to 10 GHz. These results clearly demonstrate the advantages of
the FO transmission-line modeling. In Refs. [9,10], an FO derivative is applied, which guarantees the
appropriate behavior in the frequency domain. That is, the authors apply the Riemann–Liouville definition
with a base point at−∞, but its Fourier-domain properties actually imply that the Grünwald–Letnikov
definition is applied. However, as shown below, the circuit-level modeling of FO transmission lines may
be problematic, due to the multitude of definitions of FO derivative operators. Hence, not every FO
derivative may be applied, in a reasonable way, to the circuit-level modeling.

Let us consider the transmission line in Figure 2. Then, the voltage v = v(x, t) and the current
i = i(x, t) along the line in the x direction are solutions to the following set of equations:

∂v
∂x

= −Ri− LγDγ
t i (1)

∂i
∂x

= −Gv− CβDβ
t v (2)

where γ, β ∈ (0, 1] are fixed parameters. Differentiating both equations with respect to x and
substituting (1) in (2) and vice versa (with the use of DxDα

t = Dα
t Dx property), the FO telegraph

equations [23] are obtained as follows:

∂2v
∂x2 = RGv + RCβDβ

t v + LγGDγ
t v + LγCβDγ

t Dβ
t v (3)

∂2i
∂x2 = RGi + RCβDβ

t i + LγGDγ
t i + LγCβDβ

t Dγ
t i. (4)

Let us consider the phasor representation of the voltage and the current along the line

v = <(Vejωt) (5)

i = <(Iejωt) (6)

where V = V(x) and I = I(x) are, respectively, voltage and current phasors which are functions of the
spatial variable x only and ω denotes the angular frequency. From (1) and the phasor representation
(5) and (6), one obtains

∂V(x)
∂x

ejωt + RI(x)ejωt = −Lγ I(x)Dγ
t ejωt (7)

and
∂V(x)

∂x
+ RI(x) = −e−jωtLγ I(x)Dγ

t ejωt. (8)
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For the left-hand side of (8), not depending on t, in order to apply the phasor representation
to (1) and (2), one has to assume that the fractional-derivative operator Dα

t satisfies a certain property
assuring that the right-hand side of the above equation does not depend on t either. This issue is
addressed in the next section.

3. FO Derivative Properties Necessary for Applications in Circuit Theory

Several attempts have already been made to specify the conditions constituting the FO
derivative [15,16,24]. Furthermore, these conditions have also been discussed with regard to possible
applications in electromagnetism [17,25]. In this section, we would like to formulate a set of properties
which would allow for applying the FO derivative concept in the circuit theory.

It is assumed that the considered functions are sufficiently regular (i.e., smooth enough) for the
FO derivative operator Dα (α > 0) to be applied. Moreover, we assume that the functions are smooth
enough for the sequence of derivatives Dx and Dα

t to be changed, i.e., DxDα
t = Dα

t Dx (in practice,
we may require that v(x, t) and i(x, t) are functions of the class C2). Let us consider the function f (t)
defined in the entire real line for which the bilateral Laplace transformation can be defined

f̂ = L{ f (t)} =
∫ +∞

−∞
f (t)e−stdt. (9)

It is identical to the unilateral Laplace transformation given by

f̂ = L{ f (t)} =
∫ +∞

0
f (t)e−stdt (10)

for causal functions (i.e., f (t) = 0 for t < 0).
In our opinion, FO derivatives employed in the circuit theory should satisfy the following properties:

1. Identity
D0 f (t) = f (t). (11)

2. Compatibility with IO derivative

Dα f (t) =
dα

dtα
f (t), α ∈ N. (12)

3. Compatibility with IO integral

D−α f (t) =
∫
· · ·

∫
f (t)dαt, α ∈ N. (13)

4. Linearity
Dα(a f (t) + bg(t)) = aDα f (t) + bDαg(t). (14)

5. Semigroup property (also called the index law)

DαDβ f (t) = DβDα f (t) = Dα+β f (t), α, β ∈ R. (15)

This property is sometimes validated under additional assumptions, namely that, for example,
either α, β < 0 or 0 < α, β, α + β < 1. As it is noticed in [18], the condition (15) may not be
satisfied for widely applied definitions of FO derivatives.

6. Trigonometric functions invariance
Dαejωt = (jω)αejωt (16)

where j =
√
−1. The domain of the complex power function s 7→ sα is chosen so that it contains

the complex right half-plane <s > 0. Hence,
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(jω)α = |ω|αejαsgn(ω) π
2 . (17)

It may be concluded from (7) and (8) that the phasor analysis can generally be applied when

Dαejωt = c(ω, α)ejωt (18)

where c(ω, α) is a certain constant depending on ω and α. However, the specific condition (16)
seems to be a much more natural one to be postulated. One should note that it is required for the
analysis of circuits with zero initial conditions for which the substitution s = jω in the Laplace
domain provides the solution in the phasor domain.

7. Constant function derivative
Dαc = 0 (19)

where c = const and α > 0. This property results from the trigonometric functions invariance
because one obtains (19) from (16) when ω = 0.

As it has been mentioned at the end of the previous section, the phasor representation of the
transmission-line Equations (1) and (2) leads to the Formula (8) and the conclusion that (18) must
be satisfied. Assuming the condition (16), one obtains from (1) and (2) the following equations
describing the FO transmission line in the frequency domain:

∂V
∂x

= −[R + (jω)γLγ]I (20)

∂I
∂x

= −[G + (jω)βCβ]V. (21)

Substituting (20) in (21) and vice versa, telegraph equations are obtained in the frequency domain
as follows:

∂2V
∂2x

= [R + (jω)γLγ][G + (jω)βCβ]V (22)

∂2 I
∂2x

= [R + (jω)γLγ][G + (jω)βCβ]I. (23)

It shows that the voltage and current phasors satisfy the same equation in the frequency domain.
Hence, the time-domain functions representing the voltage or the current are taken from the same
linear space of inverse Fourier transforms of solutions to (22) or (23), respectively.

A simple but important calculation shows that the fractional derivative satisfying the linearity (14)
and the trigonometric functions invariance property (16) commutes on the linear space spanned by all
trigonometric functions

sin ωt =
ejωt − e−jωt

2j
(24)

cos ωt =
ejωt + e−jωt

2
. (25)

Moreover, the condition (16) implies that, for all linear combinations of trigonometric functions,
not only Dα

t and Dβ
t commute, but also the semigroup property (15) holds true. Naturally, one cannot

conclude from this that the FO derivatives Dα
t and Dβ

t commute in their entire domain. However,
if one may identify such a function space C where the derivatives Dα

t are continuous in C, and the
space of all trigonometric functions is dense in C, then surely

Dα
t Dβ

t f = Dβ
t Dα

t f = Dα+β
t f , for f ∈ C. (26)
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As shown, the voltage and current phasors satisfy the same Equations (22) and (23) in the
frequency domain. On the other hand, the situation is different in the time domain, see (3) and (4).
One can notice that the voltage and the current satisfy the same telegraph equation if and only if β = γ

or the FO operators commute (i.e., Dγ
t Dβ

t = Dβ
t Dγ

t ). For β = γ = 1, and assuming the property (12),
one obtains the telegraph equation [26] for the traditional RLGC model of the transmission line with
IO elements. However, having different equations for the voltage and the current, one may expect that
their solution spaces can also be different, which would contradict the phasor domain observations.
Hence, the symmetry of equations for the voltage and the current is a strong argument supporting the
requirement of the semigroup property (15). Quite recently, Atangana and Gómez-Aguilar discussed
the role of the definitions which do not satisfy the semigroup property [27,28], but their arguments do
not seem to be applicable in the discussed context.

Hence, for the definitions of FO derivatives, which do not satisfy (16), one cannot apply the phasor
analysis to the transmission lines. On the other hand, for the definitions of FO derivatives, which satisfy
both (15) and (16), we may be sure that the time-domain FO telegraph Equations (3) and (4) are
consistent with the frequency-domain formulation (22) and (23). In the next section, we review popular
definitions of fractional derivatives from this perspective.

4. FO Derivatives

Let us assume that the considered function f : R→ R is defined on the real line. The presented
definitions of FO derivatives have left- and right-sided versions. In our investigations, only the left-sided
version is considered. These approaches are symmetrical and the left-sided version operates on
past times; hence, it is closer to the concept of causality. It is worth noticing that both Riemann–Liouville
and Caputo derivatives are defined with the use of a base point. The classical approach assumes that
the base point a ∈ R is a finite number, but the definitions may also be extended to a = −∞. Usually,
due to the causality assumption, a = 0 is selected, and the domain of the function f can be restricted to
the interval [0,+∞).

There are numerous literature sources presenting applications of FO models in the circuit modeling
and simulations. They refer to different definitions of FO derivatives; sometimes, a single paper refers
to several FO models, built by means of various definitions. In the list below, we try to collect
the papers referring to different definitions of fractional derivatives applied in the circuit theory.
We must be very careful though because it sometimes happens that the same mathematical concept
appears under different names, or the same name refers to different concepts. The list presented
below refers to the definitions considered in this paper, with the names of derivatives not necessarily
compatible with those given in the original source. For instance, we are not able to find the name
of the Liouville derivative in the papers referring to the circuit theory, but there are several references
to the Riemann–Liouville derivative with the base point a = −∞ (which refers to the same concept).
The Caputo derivative sometimes appears as the Liouville–Caputo derivative, while the Liouville–Caputo
derivative is sometimes called the Caputo derivative with the base point a = −∞. The Caputo–Fabrizio
may appear as Caputo–Fabrizio–Caputo derivative, while Atangana–Baleanu derivative may also be called
Atangana–Baleanu–Caputo derivative.

References to various definitions of FO derivatives applied in the circuit theory are listed below:

• Riemann–Liouville [20,29–39]
• Caputo [3,22,29–32,34,36–59]
• Liouville–Caputo [33,60–63]
• Liouville [63,64]
• Marchaud [65,66]
• Grünwald–Letnikov [29,31,33,34,63,64,67]
• Caputo–Fabrizio [32,33,42,49,50,58,68–73]
• Atangana–Baleanu [42,49,50,58,70,74,75]
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• Atangana–Koca–Caputo [58]
• Conformable derivative [42,58,76].

4.1. Riemann–Liouville

The Riemann–Liouville integral is defined as

Jα f (t) =
1

Γ(α)

∫ t

a
f (τ)(t− τ)α−1dτ (27)

where α > 0 is the order of integration, Γ is the Gamma function, and a is the fixed base point. Hence,
the Riemann–Liouville derivative of the order α ∈ (n− 1, n) is defined as

Dα f (t) = Dn Jn−α f (t). (28)

The Riemann–Liouville derivative does not satisfy neither (15) nor (16) in general. That is,
the semigroup property is valid in a limited sense only, i.e., for α, β, α + β ∈ (0, 1). The semigroup
property for the Riemann–Liouville integral is discussed in [24] [Section 3.2]. Some counterexamples
(actually related to fractional differential equations) are presented in [77] (see Example 6.2 and
Remark 5). For instance, the base point a = 0 leads to the derivatives of the sine and cosine functions
which are non-elementary functions (refer to e.g., [78] [Propositions 11, 12] )

Dα sin(ωt) =
t−α

2
(E1,1−α(jωt) + E1,1−α(−jωt)) (29)

Dα cos(ωt) =
t−α

2
(E1,1−α(jωt)− E1,1−α(−jωt)) (30)

where Eα,β(z) is the generalized Mittag–Leffler function.
The Laplace transform of the FO derivative of the order α (α ∈ [n− 1, n) where n ∈ N) for the

function f : [0,+∞)→ R can be calculated as [6] [Formula (1.85)]

L{Dα f (t)} = sαL{ f (t)} −
n−1

∑
k=0

sk[Dα−k−1 f (t)]t=0. (31)

4.2. Caputo

The Caputo derivative is defined similarly to the Riemann–Liouville derivative (28), but with the
reversed order of the FO integration and the IO derivative operators

Dα f (t) = Jn−αDn f (t) (32)

where α ∈ (n− 1, n). It is also possible to define it based on the Riemann–Liouville integral (see [6]
[Formula (1.12)] or [5] [Formula (2.4.1)]) as

CDα f (t) = RLDα

[
f (t)−

n−1

∑
k=0

tk

k!
f (k)(0)

]
(33)

where CDα is the Caputo derivative and RLDα is the Riemann–Liouville derivative with the same base
point a = 0. Both definitions (32) and (33) are equivalent for a function f of the class Cn, although the
definition (33) formally requires only the existence of (n− 1)-th derivative in the neighborhood of the
base point a = 0. The Formula (33) applied to the function f (t) = sin t for α ∈ (0, 1) shows that (29)
is also valid for the Caputo derivative with the base point a = 0. Therefore, the Caputo derivative
does not satisfy (16)—for exact formulas, see [78] (Propositions 11 and 12). Moreover, the semigroup
property (15) is not generally valid for this definition, refer to [77]—particularly to Example 6.1 therein.
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The Laplace transform of the FO Caputo derivative of the order α ∈ (n− 1, n] (where n ∈ N) of
the function f : [0,+∞)→ R can be calculated as [6] [Formula (1.88)]

L{Dα f (t)} = sαL{ f (t)} −
n−1

∑
k=0

sα−k−1 f (k)(0). (34)

4.3. Liouville–Caputo

The Liouville–Caputo derivative is defined as the Caputo derivative with the base point a = −∞
(see Formula (49) in [79])

Dα f (t) = Jn−αDn f (t) =
1

Γ(n− α)

∫ t

−∞
(t− τ)n−α−1Dn f (τ)dτ (35)

where α > 0 is the order of integration, α ∈ (n− 1, n) for a certain n ∈ N.
The trigonometric functions invariance property (16) holds true, which can be directly verified by

the Formula (5) in Table 9.2 in [4]. The formulas

Jβ(sin ωt) = ω−β sin(ωt− β
π

2
) (36)

Jβ(cos ωt) = ω−β cos(ωt− β
π

2
) (37)

are satisfied for ω > 0 and β ∈ (0, 1). Before we continue, let us note that, for n ∈ N, one obtains

Dn sin(ωt + φ) = ωn sin(ωt + φ + n
π

2
) (38)

Dn cos(ωt + φ) = ωn cos(ωt + φ + n
π

2
). (39)

For α > 0 and ω > 0, one obtains

Dα(cos ωt + j sin ωt) = Jn−αDn(cos ωt + j sin ωt) = (40)

ωn Jn−α(cos(ωt + n
π

2
) + j sin(ωt + n

π

2
)) =

ωα(cos(ωt− α
π

2
) + j sin(ωt− α

π

2
)) = (jω)αejωt.

Similar derivations can be obtained for ω < 0. One should note that, in the case of the
Liouville–Caputo derivative, the trigonometric functions invariance property (16) holds true for
ω = 0 as well.

In general, the semigroup property (15) does not hold true for the Liouville–Caputo derivative.
Let us note that, for the function f : R→ R, where f (t) = 0 for t ≤ 0, the Liouville–Caputo derivative
coincides with the Caputo derivative (defined in Section 4.2), with the base point a = 0. This is why,
for any example mentioned in Section 4.2, and where

Dα
0 Dβ

0 f (t) 6= Dα+β
0 f (t), (41)

one obtains
DαDβ f (t) 6= Dα+β f (t). (42)

In (41), Dα
0 denotes the Caputo derivative with the base point a = 0. Thus, in general,

the semigroup property (15) does not hold true for the Liouville–Caputo derivative.
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4.4. Liouville

In the literature (see [4], [Formulas (5.6) and (5.7)] and also [15,78]) the Riemann–Liouville derivative
with the base point a = −∞ is referred to as the Liouville derivative. Let us consider this definition

Dα f (t) = Dn 1
Γ(n− α)

∫ t

−∞
f (τ)(t− τ)n−α−1dτ (43)

where α > 0 is the order of integration and α ∈ (n− 1, n) for a certain n ∈ N. The definition requires
that the integral on the right side of (43) exists. One may assume that the function f vanishes at −∞
quickly enough (e.g., for α ∈ (0, 1), f ∈ Lp(R1), where 1 ≤ p < 1/(n− α)—refer to the discussion
at the beginning of Chapter 2 in [4]), which guarantees that the integral exists in the Lebesgue
sense. One may also focus on periodic functions (with an integral equal to 0 over the period)—then,
the integral exists in the sense of Riemann for any α > 0 (and the integral is conditionally convergent).
The case of periodic functions corresponds to the concept of the so-called Weyl derivative (see, e.g., [4]
(Section 19)).

It occurs that, for α ∈ (0, 1) and the functions which are good enough (e.g., continuously
differentiable and vanishing at −∞ quickly enough), this definition is equivalent to the definition of
the Marchaud derivative (for an exact definition see Section 4.5 below). At the same time, the Marchaud
derivative is much more general as it allows for a larger domain not requiring that the function
vanishes at −∞ (including the constant function). This topic is covered in detail in Section 5.4. of [4].

The trigonometric functions invariance property (16) can be checked in a similar way as in
Section 4.3 above, i.e., Equations (36) and (37) with β = n − α should be n-times differentiated to
obtain the fractional Liouville derivative of the order α

Dα(cos ωt + j sin ωt) = (44)

Dnωα−n(cos(ωt− (n− α)
π

2
) + j sin(ωt− (n− α)

π

2
) =

ωα(cos(ωt− α
π

2
) + j sin(ωt− α

π

2
) =

ωαejωtejα π
2 = (jω)αejωt

for any α > 0. The case of ω < 0 may be considered in a similar way. One should also note that,
for ω = 0 (corresponding to the constant function), the trigonometric functions invariance property (16)
does not hold true because the integral

∫ t
−∞(t− τ)n−α−1dτ does not exist.

Let us notice that, for the function f : R→ R, where f (t) = 0 for t ≤ 0, the Liouville derivative
coincides with the Riemann–Liouville derivative (defined in Section 4.1) with the base point a = 0.
This is why, for any example mentioned in Section 4.1, and where

Dα
0 Dβ

0 f (t) 6= Dα+β
0 f (t), (45)

one obtains
DαDβ f (t) 6= Dα+β f (t). (46)

Here, Dα
0 denotes the Riemann–Liouville derivative with the base point a = 0. Thus, the

semigroup property (15) does not, in general, hold true for the Liouville derivative.

4.5. Marchaud

For the order of differentiation α ∈ (0, 1), the Marchaud derivative is given by

Dα f (t) =
α

Γ(1− α)

∫ +∞

0

f (t)− f (t− τ)

τ1+α
dτ. (47)
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This definition is equivalent (for α ∈ (0, 1)) to the Liouville derivative for a broad class of functions,
i.e., for a class of sufficiently regular functions with an appropriate behaviour at −∞, as discussed
in [4] (Section 5.4). There are also very important differences between both definitions. The first one
is that the Marchaud derivative can be calculated for a broader class of functions than the Liouville
derivative, including constant functions. The other is that the natural extension of the Marchaud
definition differs from the Liouville definition for α > 1. The extension of the Marchaud definition
for α > 1 can be formulated in two directions (refer to [4] (Section 5.5), [6] (Section 1.3.1), and [80] for
a historical perspective). First of all, when α ∈ (n− 1, n) and n ∈ N, then

Dα f (t) = Dα−(n−1)Dn−1 f (t) =
{α}

Γ(1− {α})

∫ +∞

0

f (n−1)(t)− f (n−1)(t− τ)

τ1+{α} dτ (48)

where {α} = α− (n− 1), and f is assumed to be sufficiently smooth, e.g., f ∈ Cn−1(R) with f (n−1)

bounded. Another approach is to replace the first-order difference in the numerator in (47) with the
n-th order difference ∆n

τ f (t)

Dα f (t) = c
∫ +∞

0

∆n
τ f (t)
τ1+α

dτ (49)

with an appropriate constant c > 0. This attitude does not require any differentiability assumptions
on f . Moreover, the definition of the Marchaud derivative (49) is naturally equivalent to the
Grünwald–Letnikov definition discussed in Section 4.7 below (for a broad class of functions, covering
periodic functions and Lp(R) functions for p ∈ [1,+∞)—refer to Theorems 20.2 and 20.4 in [4]).
Because of the equivalence, the discussion of properties of the Marchaud derivative is given
in Section 4.7, devoted to the Grünwald–Letnikov derivative. We should also mention that the
recent survey paper [81] discusses both approaches in detail.

4.6. Two-Sided Fractional Ortigueira–Machado Derivative

In the recently published papers [82,83], the concept of unified derivatives is introduced, which covers
among others (as special cases) the Grünwald–Letnikov, Liouville and Liouville–Caputo concepts.
The definition which employs two parameters, i.e., α (derivative order) and θ (asymmetry parameter),
is introduced and formulated by means of an appropriate behaviour of the Fourier transform. Formula (28)
in [83] (see also Definition 2 in [82]) defines the derivative Dα

θ f (t) of the function f : R→ R as

F (Dα
θ f )(ω) = |ω|αej π

2 θsgn(ω)F ( f )(ω). (50)

Due to the multitude of attitudes to the Fourier transformation definition, we must be very precise.
The definition we use follows the one given in [83]

F ( f )(ω) =
∫ +∞

−∞
f (t)e−jωtdt (51)

and
F−1(F)(t) =

1
2π

∫ +∞

−∞
F(ω)ejωtdt. (52)

In view of the definition (50), the semigroup property (15) is naturally satisfied (see Property 3
following Definition 3.1 in [83]), but it must be understood in an appropriate way as

Dα
θ Dβ

η f (t) = Dα+β
θ+η f (t). (53)

Formally, the derivative depends on two independent parameters α and θ. However, when one
considers the definition from the perspective of the FO model of the transmission line (1) and (2),
it is difficult to find physical interpretation of the asymmetry parameter θ. Hence, it is reasonable
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to assume that the asymmetry parameter θ depends on the order of the derivative, i.e., θ = θ(α).
Then, the Formula (53) implies that

Dβ

θ(β)
Dα

θ(α) f (t) = Dβ+α

θ(β)+θ(α)
f (t). (54)

On the other hand, the semigroup property (15) requires that

Dβ

θ(β)
Dα

θ(α) f (t) = Dβ+α

θ(β+α)
f (t) (55)

and, consequently, one has to assume that θ(α + β) = θ(α) + θ(β). Hence, it is reasonable to assume
that θ(β) is the linear map θ : R→ R and

θ(α) = Θ · α (56)

for a fixed Θ ∈ R. From now on, we are going to use the following–and hopefully not
confusing–notation

Dα
Θ f (t) = Dα

Θα f (t) (57)

for θ(α) given by (56).
Let us now consider the trigonometric functions invariance property (16). As it can be seen,

one obtains, by way of easy calculations (see also Property 1 following Definition 3.1 and Formula (29)
in [83])

Dα
Θejωt = |ω|αej π

2 Θαsgn(ω)ejωt = ej π
2 (Θ−1)αsgn(ω)(jω)αejωt. (58)

Thus, the trigonometric functions invariance property (16) is valid only when Θ = 1. On the
other hand, one may notice that the more general condition (18) holds true for any Θ with c(ω, α) =

ej π
2 (Θ−1)αsgn(ω)(jω)α.

4.7. Grünwald–Letnikov

The Grünwald–Letnikov derivative of the order α > 0 is given by the discrete formula (refer to [4]
(Formula (20.7)))

Dα f (x) = lim
h→0+

1
hα

∞

∑
m=0

(−1)m
(

α

m

)
f (x−mh) (59)

where (α
m) = α(α−1)...(α−m+1)

m! . This definition satisfies both (15) (refer to [84] (Section 2.6.1))
and (16) (refer to [84] (Formula (2.65))). One should notice that the Grünwald–Letnikov derivative is
a special case (for Θ = 1, i.e., θ(α) = α) of the Ortigueira–Machado derivative (see row 1 in Table 1
in [82]).

The bilateral Laplace transform of the derivative of the order α ∈ (n− 1, n) (where n ∈ N) of the
function f : R→ R can be calculated as [84] (Sections 2.7.3 and 2.8)

L{Dα f (t)} = sαL{ f (t)}, <s > 0. (60)

As it has been mentioned, the Grünwald–Letnikov definition is equivalent to the Marchaud
definition for a broad class of functions. To be more specific, the Marchaud definition in the sense
of (49) is equivalent to the Grünwald–Letnikov derivative. Therefore, it satisfies both (15) and (16).
Then, it easily leads to the observation that the definition (48) (which is given by the semigroup formula
Dα f (t) = Dα−(n−1)Dn−1 f (t)) is equivalent to the definition (49) (naturally, for sufficiently smooth
functions). Hence, one may conclude that the Marchaud definition, in any of the two versions given
above, satisfies both (15) and (16).
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5. Nonclassical Derivatives

There are not many references in the literature to ideas of FO derivatives applied in the FO
circuit theory other than those listed above. Still, quite recently, some papers have appeared which
refer to certain derivatives from the class of derivatives with nonsingular kernels (Caputo–Fabrizio,
Atangana–Baleanu and Atangana–Koca–Caputo) and to a certain local fractional derivative (the so-called
conformable derivative).

The definitions of these derivatives are presented below; for details and further references,
we refer to [58] (where the first two derivatives appear under slightly different names,
i.e., as Caputo–Fabrizio–Caputo and Atangana–Baleanu–Caputo, respectively) and the references therein.
We further assume that α > 0 and α ∈ (n− 1, n) for a certain n ∈ N in the following definitions:

• Caputo–Fabrizio (with the base point set at 0)

Dα f (t) =
M(α)

n− α

∫ t

0
e−

α(t−τ)
n−α Dn f (τ)dτ (61)

where M(α) is a certain normalizing factor.
• Atangana–Baleanu (with the base point set at 0)

Dα f (t) =
B(α)
n− α

∫ t

0
Eα(−α

(t− τ)α

n− α
)Dn f (τ)dτ (62)

where Eα denotes the (one-parameter) Mittag–Leffler function and B(α) is a certain normalizing factor.
• Atangana–Koca–Caputo for α ∈ (0, 1) (with the base point set at 0)

Dα f (t) =
1

g(α)

∫ t

0
Eα

α,α(−g(α)(t− τ)α)D f (τ)dτ (63)

where Eα,α denotes the two-parameter Mittag–Leffler function and g(α) is a certain normalizing factor.
• Conformable derivative

Dα f (t) = lim
ε→0

f (t + εt1−α)− f (t)
ε

. (64)

These definitions appear to be very attractive due to certain advantages over classical definitions
of FO derivatives. That is, the nonsingular kernel suggests access to faster and more accurate numerical
methods (numerical methods usually lose their accuracy in the case of singularities), while the local
definitions may be used to build models without memory effects (also making numerical solutions
much easier to implement, as they do not require many resources to allow for looking into the past).
It should be noted, though, that recently several papers have questioned whether such operators
should be considered as belonging to the family of FO derivatives. For instance, Tarasov introduces,
in [85], the principle of nonlocality for fractional derivatives. The principle states that, if a certain FO
differential equation may be expressed by means of some other differential equation of IO, then the
fractional derivative may not be considered nonlocal, hence (as the author says), it “cannot be used
to describe processes and systems with non-locality and memory”. Then, it is shown that the local
definition of a conformable derivative does not satisfy the principle of nonlocality. However, the more
surprising fact may be observed for the Caputo–Fabrizio definition of the order α ∈ (0, 1) defined by a
certain integral, which also fails to satisfy the nonlocality principle. It is shown that a certain linear
differential equation with the Caputo–Fabrizio derivative is actually equivalent to an appropriate
first-order differential equation. The above-mentioned equivalence is valid only for functions which
are regular enough, but it seems to be a good reason to consider such derivatives as nothing more than
IO differential operators. The other arguments connected with this discussion may be found in [86–88].
The objection raised against the above-mentioned definitions is that they are defined as integral
operators with nonsingular kernels (as the author states in [89]: “Fractional-order derivatives defined
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by continuous kernels are too restrictive”). In the case of all derivatives with nonsingular kernels
(covering the definitions of Caputo–Fabrizio, Atangana–Baleanu and Atangana–Koca–Caputo), it is
observed that their usage in some natural initial-value problems leads only to trivial solutions [89,90].
On the other hand, an alternative form of initial conditions is suggested in [91], in order to overcome
these difficulties.

Nevertheless, as it is mentioned in [16], none of the derivatives of Caputo–Fabrizio and Atangana–
Baleanu satisfy the semigroup property (15) in full generality, and nor does the conformable definition.

6. Conclusions

In this paper, the properties of FO derivatives required for the circuit-level modeling
are considered. Potential problems related to generalization of the transmission-line equations with
the use of FO derivatives are discussed. In FO models of transmission lines, the FO inductance
can be useful for modeling of the skin effect, whilst the FO capacitance is able to model various
non-idealities of dielectric media characteristics (e.g., accumulation of electric charge along the line and
memory effects in dielectric polarization). In general, the time- and frequency-domain methods of the
transmission-line analysis should return equivalent results. It is demonstrated that, in order to obtain
the equivalence between the results in the time and frequency domains, the FO derivative modeling
electrical characteristics of circuit elements should satisfy the semigroup condition and be representable
in the phasor domain. From this point of view, we consider the following definitions of FO derivatives
applied for the circuit-level modeling: Riemann–Liouville, Caputo, Liouville–Caputo, Liouville,
Marchaud, Grünwald–Letnikov, Caputo–Fabrizio, Atangana–Baleanu, Atangana–Koca–Caputo and
the conformable derivative. Out of the most popular approaches considered in this paper, only the
Grünwald–Letnikov and Marchaud definitions (which are actually equivalent) satisfy the semigroup
property and are naturally representable in the phasor domain. The generalization of this concept,
i.e., the two-sided fractional Ortigueira–Machado derivative, satisfies the semigroup property, but its
phasor representation is less natural. Other ideas (including the Riemann–Liouville and Caputo
derivatives–with a finite or an infinite base point) seem to have limited applicability.
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65. Stefański, T.P.; Gulgowski, J. Fractional Order Circuit Elements Derived from Electromagnetism.
In Proceedings of the 2019 MIXDES—26th International Conference “Mixed Design of Integrated Circuits
and Systems”, Rzeszów, Poland, 27–29 June 2019; pp. 310–315.
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