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Abstract—In this paper, concepts of fractional-order (FO)
derivatives are analysed from the point of view of applications in
the electromagnetic theory. The mathematical problems related
to the FO generalization of Maxwell’s equations are investigated.
The most popular formulations of the fractional derivatives, i.e.,
Riemann-Liouville, Caputo, Grünwald-Letnikov and Marchaud
definitions, are considered. Properties of these derivatives are
evaluated. It is demonstrated that some of formulations of the
FO derivatives have limited applicability in the electromagnetic
theory. That is, the Riemann-Liouville and Caputo derivatives
with finite base point have a limited applicability whereas the
Grünwald-Letnikov and Marchaud derivatives lead to reasonable
generalizations of Maxwell’s equations.

Index Terms—Computational electromagnetics, electromag-
netic modelling, Maxwell’s equations, fractional calculus.

I. INTRODUCTION

For many years, fractional-order (FO) mathematical models
are applied in the electromagnetic theory based on various
formulations of derivative and integral operators [1]–[7]. Such
models are useful for characterization of dielectric media [8]
and conductors [9], [10]. Hence, the FO modelling is applied
in microwave engineering [11]–[13].

The FO derivative operator Dα (α ∈ R, α > 0) is a
generalization of the standard concept of the n-fold operator
of differentiation Dn where n is a natural number (n ∈ N).
In classical monographs [14]–[16], one may find review of
formulations of fractional derivatives. Some of definitions are
well established and widely applied in the electromagnetic
theory, whereas some ideas appeared quite recently and are
not too much popular. In this contribution, the applicability of
four important derivative definitions, i.e., Riemann-Liouville,
Caputo, Grünwald-Letnikov and Marchaud, is discussed. The
motivation for our research stems from an ambiguity of
definitions of the FO derivative whose properties sometimes
exclude them from applications in the electromagnetic theory.
Therefore, opinions appear that questionize applicability of FO
derivatives and models in electrical sciences and engineering
[17], [18]. Recent discussion in literature suggests that the
proposed analysis of properties of FO derivatives from the
electromagnetic theory point of view is necessary.

In the sequel, it is only assumed that functions are smooth
enough for the FO derivative operator Dα (α > 0) to be
applied. Quite recently, several attempts have been made to

specify the conditions that constitute fractional derivatives
[19]–[21]. Among them, one may find the linearity of the
fractional derivative operator

Dα(af(t) + bg(t)) = aDαf(t) + bDαg(t) (1)

and the semigroup property (also called the index law)

DαDβf(t) = DβDαf(t) = Dα+βf(t), α, β ∈ R.
(2)

The semigroup property is sometimes validated under addi-
tional assumptions that, e.g., either α, β < 0 or 0 < α, β, α+
β < 1. These assumptions appear to be crucial when applying
operator Dα in the FO generalizations of Maxwell’s equations.
However, as it is noticed in [18], the condition (2) may not
be satisfied for widely applied definitions of FO derivative.
Furthermore, for the phasor representation of signals in the
electromagnetic theory, the trigonometric functions invariance
property is required

Dαejωt = (jω)αejωt (3)

where j =
√
−1. The last property is a generalization of the

obvious formula taken from the integer-order (IO) calculus.
We demonstrate that properties (1)–(3) are natural when

using the classical methods of the electromagnetic theory and
refer to the wave-type equations formulated either in time or
frequency domain. Then, a short review of different definitions
of fractional derivatives is given from this perspective. Finally,
conclusion is drawn at the end of the paper.

II. PROBLEM STATEMENT

The electromagnetic problem can be solved in either time
or frequency domain. However, solutions obtained in both
domains should be equivalent, i.e, they should be related by
the Fourier transformation. In this section, we demonstrate
that it requires satisfaction of the semigroup condition (2) by
the definition of FO derivative applied in the electromagnetic
analysis.

A. Maxwell’s Equations

Let us formulate Maxwell’s equations in isotropic and
homogeneous media

∇ ·D = ρ (4)
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∇×E = −∂B
∂t

(5)

∇ ·B = 0 (6)

∇×H =
∂D

∂t
+ J (7)

where E and H denote respectively the electric- and
magnetic-field intensities, D and B denote respectively the
displacement- and magnetic-flux densities, J denotes the
current density, ρ denotes the charge density. Constitutive
relations for a linear medium described by IO model (IOM)
are defined as follows:

J = σE (8)

D = εE (9)

B = µH. (10)

For the sake of brevity, let us consider a free space without
losses (σ = 0) and sources. Using (4)–(10) and the semigroup
property (2) for IO derivatives (where α = β = 1), one obtains
the following wave equations in the time domain:

∇2

{
E
H

}
− µε ∂

2

∂t2

{
E
H

}
= 0. (11)

Let us consider the phasor representation of the electromag-
netic field, i.e.

E = <(Ẽejωt) (12)

H = <(H̃ejωt) (13)

where Ẽ and H̃ are electric and magnetic field phasors that
are functions of the spatial variables only and ω denotes
the angular frequency. From (11)–(13), one obtains the wave
equations in the frequency domain

∇2

{
Ẽ

H̃

}
+ µεω2

{
Ẽ

H̃

}
= 0. (14)

Let us consider the function f(t) defined in the entire real
line for which the bilateral Laplace transform can be defined

f̂ = L{f(t)} =

∫ +∞

−∞
f(t)e−stdt. (15)

It is identical to the unilateral Laplace transform given by

f̂ = L{f(t)} =

∫ +∞

0

f(t)e−stdt (16)

for causal functions (i.e., f(t) = 0 for t ∈ (−∞, 0)). Then,
(16) is applied to the wave equation (11). Hence, one obtains

∇2

{
Ê

Ĥ

}
− µεs2

{
Ê

Ĥ

}
= 0. (17)

Substituting s = jω into (17), one obtains the Fourier
transformed wave equations which are equivalent to (14).

B. FO Maxwell’s Equations

Let us focus now on time-fractional generalizations of
Maxwell’s equations. Let us treat the fractional derivative of
the order α ∈ (0, 1) with respect to t as an abstract operator
Dα
t defined on some functional domain. Let us then introduce

constitutive relations for a medium described by FO model
(FOM) [22]–[25]

J = σαD
1−α
t E, 0 < α ≤ 1 (18)

εβE = D1−β
t D, 0 < β ≤ 1 (19)

µγH = D1−γ
t B, 0 < γ ≤ 1. (20)

Time-fractional derivatives appear in the constitutive relations
when hereditary mechanisms of power-law type exist in elec-
tromagnetic media. For α = 1, β = 1 and γ = 1, one obtains
the classical constitutive relations (8)–(10).

Let us consider Maxwell’s equations (4)–(7) with FO con-
stitutive relations (18)–(20) in a free space without losses
(σα = 0) and sources. Then, one obtains

∇ ·E = 0 (21)

∇×E = −µγDγ
tH (22)

∇ ·H = 0 (23)

∇×H = εβD
β
t E. (24)

From (21)–(24), one can derive the following diffusion-wave
equations:

∇2E− µγεβDγ
tD

β
t E = 0 (25)

∇2H− µγεβDβ
t D

γ
tH = 0. (26)

As can be noticed, the electric- and magnetic-field intensities
satisfy the same diffusion-wave equation if and only if α = β
or the FO operators are commutative (i.e., Dγ

tD
β
t = Dβ

t D
γ
t ).

Let us apply the phasor representation (12)–(13) to FO
Maxwell’s equations (21)–(24)

∇ · Ẽ = 0 (27)

∇× Ẽ = −µγ(jω)γH̃ (28)

∇ · H̃ = 0 (29)

∇× H̃ = εβ(jω)βẼ. (30)

The following diffusion-wave equations can be obtained in the
frequency domain from (27)–(30):

∇2

{
Ẽ

H̃

}
− µγεβ(jω)β+γ

{
Ẽ

H̃

}
= 0. (31)

As can be noticed, inconsistency is obtained because if one
applies the phasor representation (12)–(13) to (21)–(24) then
the same equation is obtained for the electric- and magnetic-
field intensities. On the other hand, the electric- and magnetic-
field intensities satisfy different diffusion-wave equations in
the time domain, refer to (25)–(26). Furthermore, it cannot
be assumed a priori that the set of common solutions to (25)
and (26) exists as demonstrated in [26]. In this paper, one
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can see the relatively simple example demonstrating that the
equation Dα+βy = y is not equivalent to DαBβy = y for the
Riemann-Liouville derivative.

C. Solution to the Problem

For definitions of the fractional derivative that satisfy both
(2) and (3), the time-domain diffusion-wave equations (25)–
(26) are consistent with the frequency-domain formulation
(31). Hence, the diffusion-wave equations (25)–(26) take the
form

∇2

{
E
H

}
− µγεβDβ+γ

t

{
E
H

}
= 0 (32)

which is consistent with (31) originating from the phasor
representation (12)–(13).

III. FO DERIVATIVES

Let us now consider a few definitions of the fractional
derivative. Let us assume that the function f : R → R is
defined on the real line. Each of the presented definitions has
its left-sided and right-sided version. We do not refer to both of
them but only to the left-sided version. These approaches are
symmetric and the left-sided version looks at the past times,
so it is closer to the concept of causality. One should note
that both Riemann-Liouville and Caputo derivatives require a
value of the base point. The classical approach assumes that
the base point a ∈ R is a number, but the definitions may
also be extended to a = −∞. Usually, due to the causality
assumption, a = 0 is the natural selection. If this is the case,
one may restrict the domain of the function f to the interval
[0,+∞). One should note that all of the definitions discussed
in the paper satisfy the linearity property (1).

A. Riemann-Liouville

The Riemann-Liouville integral of the function f : R 7→ R
is defined as

Jαf(t) =
1

Γ(α)

∫ t

a

f(τ)(t− τ)α−1dτ (33)

where α > 0 is an order of integration, Γ is the Gamma
function and a is the fixed base point. Based on this definition,
the Riemann-Liouville derivative of order α ∈ (n − 1, n) is
introduced as

Dαf(t) = DnJn−αf(t). (34)

One should note that the Riemann-Lioville derivative does not
satisfy neither (2) nor (3). A valuable discussion on the semi-
group property for the Riemann-Liouville intergral may be
found in Section 3.2. of [19]. The interesting counterexamples
(actually related to fractional differential equations) are given
in [26] (see Example 6.2 and Remark 5). For instance, the
base point a = 0 leads to the derivatives of the sine and
cosine functions being nonelementary functions (see e.g. [27,
Propositions 11, 12])

Dα sin(ωt) =
t−α

2
(E1,1−α(jωt) + E1,1−α(−jωt)) (35)

Dα cos(ωt) =
t−α

2
(E1,1−α(jωt)− E1,1−α(−jωt)) (36)

where Eα,β(z) denotes the generalized Mittag-Leffler func-
tion. On the other hand, if a = −∞ then the Riemann-
Liouville integral of neither sine nor cosine exists due to
divergent integral in the unbounded domain for any α > 0.

The Laplace transform of the order α derivative (α ∈ [n−
1, n) where n ∈ N) of the function f : [0,+∞)→ R is given
by

L{Dαf(t)} = sαL{f(t)} −
n−1∑
k=0

sk[Dα−k−1f(t)]t=0. (37)

It is the formula (1.85) from [16].

B. Caputo

The Caputo derivative may be defined in a similar way
as the Riemann-Liouville derivative (34) but with the reverse
order of operators (i.e., order of fractional integration and IO
derivative is interchanged)

Dαf(t) = Jn−αDnf(t) (38)

where α ∈ (n−1, n). However, one may also refer to another
definition based on the Riemann-Liovuille integral (see [16,
Formula (1.12)] or [15, Formula (2.4.1)])

CD
αf(t) = RLD

α

[
f(t)−

n−1∑
k=0

tk

k!
f (k)(0)

]
(39)

where CD
α denotes the Caputo derivative and RLD

α denotes
the Riemann-Liouville derivative with the same base point a =
0. These two definitions agree for a function f of the class
Cn, although the definition (39) formally requires only the
existence of (n− 1)-th derivative in the neighbourhood of the
base point a = 0. The formula (39) applied to a function
f(t) = sin t returns for α ∈ (0, 1) that (35) is also valid for
the Caputo derivative with the base point a = 0. Hence, the
Caputo derivative does not satisfy (3) – for exact formulas see
[27, Propositions 11, 12]. Furthermore, the semigroup property
(2) fails in general for this definition, refer again to [26] and
especially to Example 6.1 therein.

The Laplace transform of the derivative of the order α ∈
(n− 1, n] (where n ∈ N) of the function f : [0,+∞)→ R is
given by

L{Dαf(t)} = sαL{f(t)} −
n−1∑
k=0

sα−k−1f (k)(0). (40)

It is the formula (1.88) from [16].

C. Grünwald-Letnikov

The (left-sided) Grünwald-Letnikov derivative of the order
α > 0 of the function f defined on the real line is given by
the discrete formula (see [14, Formula (20.7)])

Dαf(x) = lim
h→0+

1

hα

∞∑
m=0

(−1)m
(
α

m

)
f(x−mh) (41)

where
(
α
m

)
= α(α−1)...(α−m+1)

m! . It is well know that this
definition satisfies both (2) (see [28, Section 2.6.1]) and (3)
(see [28, Formula (2.65)]).
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The bilateral Laplace transform of the derivative of the order
α ∈ (n − 1, n) (where n ∈ N) of the function f : R → R is
given by

L{Dαf(t)} = sαL{f(t)}, <s > 0. (42)

The details of this result and an interesting discussion may be
found in Sections 2.7.3 and 2.8 of [28].

D. Marchaud

The definition of the Marchaud derivative is similar to the
Riemann-Liouville derivative with a base point a = −∞ and
for a broad class of functions these two definitions are equiv-
alent (i.e., for a class of sufficiently smooth functions with an
appropriate behaviour at −∞, as discussed in [14, Section
5.4]). However, there are some very important differences
between both definitions. The most important difference is that
the Marchaud derivative can be calculated for a broader class
of functions than the Riemann-Liouville derivative – including
the sine and cosine functions. Furthermore, one should notice
that the Marchaud defintion is equivalent to the Grünwald-
Letnikov definition (see Theorems 20.2 and 20.4 in [14]). We
would like to refer here to the recent survey paper [29] which
discusses both approaches in detail.

In general, the Marchaud derivative is defined for α > 0
(refer to Section 5.5 in [14], Section 1.3.1 in [16], and [30]
for a historical perspective). When α ∈ (n− 1, n) and n ∈ N
then

Dαf(t) =
α− n+ 1

Γ(n− α)

∫ +∞

0

f (n−1)(t)− f (n−1)(t− τ)

τ2+α−n
dτ

(43)
where f is assumed to be smooth enough, e.g., f ∈ Cn−1(R)
with f (n−1) bounded. As mentioned above, it is equivalent to
the Grünwald-Letnikov derivative which immediately confirms
that it satisfies both (2) and (3). Still, one may verify (3)
directly from the Formula 5 in Table 9.2 in [14]. The formulas

I
(1−α)
+ (sinωt) = ωα−1 sin(ωt− (1− α)

π

2
) (44)

I
(1−α)
+ (cosωt) = ω(α−1 cos(ωt− (1− α)

π

2
) (45)

are satisfied for ω > 0 and α ∈ (0, 1). Then, (44)–(45) should
be differentiated to get the fractional Marchaud derivative of
the order α. Hence, one obtains

Dα(cosωt+ j sinωt) = (46)

ωα(− sin(ωt− (1− α)
π

2
) + j cos(ωt− (1− α)

π

2
) =

ωα(− sin(ωt+ α
π

2
− π

2
) + j cos(ωt+ α

π

2
− π

2
) =

ωαejωtejα
π
2 = (jω)αejωt

for α ∈ (0, 1) and ω > 0. Similar derivations are obtained for
ω < 0. For α > 1, it is sufficient to refer to the semigroup
property (2) with α = n− 1 + {α} where {α} ∈ (0, 1).

IV. CONCLUSION

The time- and frequency-domain methods of analysis should
return equivalent results when applied to FO generalizations of
Maxwell’s equations. It is demonstrated that in order to obtain
the equivalence between results in the time and frequency do-
mains, the FO differential operator should satisfy the linearity
and semigroup conditions as well as be representable in the
phasor domain. Out of four of the most popular approaches
considered in this paper, only two of them are looking at the
entire time-history of an input function and are appropriate
choices for the electromagnetic theory. The Riemann-Liouville
and Caputo derivatives with finite base point have a limited
applicability, whereas the Grünwald-Letnikov and Marchaud
definitions (which are actually equivalent) lead to reasonable
generalizations of Maxwell’s equations.
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