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Abstract-The problem of estimating spectra! density of a 
nonstationary process satisfying local stationarity conditions 
is considered. The proposed solution is a two step procedure 
based on loca) autoregressive (AR) modeling. In the first step 
Bayesian-like averaging of AR models, differing in order, is 
performed. The main contribution of the paper is development 
of a new final-prediction-error-Jike statistic, which can be used 
to select optima! estimation bandwidth in the second step of 
the procedure. Simulation experiments demonstrate that the 
combined cooperative-competitive approach outperforms the 
previously introduced fully competitive scheme. 

I. lNTRODUCTION

Spectra) estimation of stationary processes can be per
formed using multitude of methods, among which autore
gressive (AR) modeling takes an important place. This is 
due to its ease of use, accuracy, high resolution and direct 
links with the Burg's maximum entropy analysis [l]. 

Recent advances in statistics show that AR modeling is 
an effective tool which can be used in spectra! estimation of 
nonstationary processes [2]. Under such circumstances, the 
ever-changing spectra! content of a nonstationary s.ignal re
quires one to use loca! estimation techniques. T his however, 
requires solution of two problems. First, the structure of the 
AR model should be parsimon.ious, yet offer enough capacity 
to accommodate the loca! spectra! content. Second, the 
estimation bandwidth (related to the estimation memory of 
the parameter tracking algorithm) should be locally adjusted 
so as to match the rate of nonstationarity of the process. 

In a recent paper [3] .it was shown that the two problems 
mentioned above can be solved jointly using a competitive 
estimation scheme. The method is based on parallel estima
tion of multiple AR models, differing in order and bandwidth 
settings. At each time instant the best model is selected using 
the generalized Akaike's finał prediction error criterion. 

In this study we present a different solution, which com
bines the competitive approach with the cooperative one. Co
operation is achieved using the model averaging technique, 
introduced by Akaike f 47. Since model averaging using the 
Akaike's frarnework can be performed in a meaningful way 
only for models estimated using the same bandwidth settings, 
the optima! estimation bandwidth selection must be carried 
out separately. To this end we extend the finał prediction 

error statistic to averaged AR models, which is the main 
contribution of this work. 

The paper is organized as follows. Section II states the 
problem of interest and summa.rizes the proposed solution. 
The core part of the paper is Section III, where the finał 
prediction error statistic is developed for averaged models. 
Section IV presents results of computer simulations and 
Section V concludes. 

Il. PROBLEM STATEMENT AND THE MAIN RESULT 

Consider the problem of estimation of a spectra! density 
function of a nonstationary autoregressive (AR) signal {y(t)}
govemed by 

n 

y(t) = Lai(t)y(t - ·i)+ cn(t), var[t:n(t)] = Pn(t) (I) 
i=l 

where t = . . .  , -1, O, 1, ... denotes notmalized (dimension-
less) time, a;(t),i = l, ... ,n denote time-varying autore-
gressive coefficients, and c,,_ (t) denotes white noise with 
variance p.,,_(t). Note that (I) can be rewritten in a more 
compact form 

y(t) = tp;(t)an(t) + t:n(t) 

where an.(t) = [a1(t), ... ,an.(t)J T denotes the vector of 
AR coefficients, and 'Pn (t) = [y(t - 1), ... , y(t - n)] T is 
the regression vector. 

According to Dahlhaus [2], when {y(t)} obeys local sta
tionarity assumptions (i.e., when the AR model is uniformly 
stable and parameter trajectories ar� of bounded variation), 
its time-varying spectra! density function given by 

(2) 

where w E (--rr, -rr] denotes normalized angular frequency 
and j = ,/=I, is a well and uniquely defined characteristic 
in the rescaled time domain (in this framework a fixed-length 
time interval is sampled over a fi ner and fi ner grid of points 
as the sample size increases). 

When parameters of the AR model (1) a.re not know n, one 
can replace them in the formu"la (2) with loca! estimates, e.g. 
with the estimates obtained using the weighted least squares 
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(WLS) approach 

a„1 k(t) = [a1,,. 1 dt), ... , a,.,,.1 k(t)JT

k 

= arg min L 11•k(l) [y(t + l) - <p� (t + l)a,.] 2 

On 
1. =-k 

k 

Pnlk(t) = L L wk(l)[y(t + l) - t.pJ(t + l)anlk(t)]2 

l=-k 

(3) 

where wk(l) = y(l/k), l = -k, ... , k, y [-1, l] --+ 
[O, l], 9(0) = 1, denotes a symmetric bell-shaped window 
of effective width 

k 

Lk = L wk(l).
l=-k 

Such a two-sided (noncausal) estimation allows one to sig
nificantly reduce bias errors caused by the effect known 
as estimation delay [5] (in causa! estimation schemes the 
expected trajectory of parameter estimates can be regarded, 
to a certain extent, as a delayed version of the true trajectory). 

A. Competitive estim.ation

The value of k should be chosen in accordance with
the rate of parameter variation, and the value of n - in 
accordance with the spectra] richness (resonant structure) 
of the analyzed signal. When the most approp1iate values 
of k and n are not known, one can simultaneously run 
severa! WLS algorithms with different window width and 
order settings, and select at each time instant t the best 
configuration. 

Denote by K = { k1 , ... , kK} the set of competing 
window widths, and by N = {l, ... , N} - the set of 
considered model orders. As shown in r3l, the loca! estimates 
of k and n can be obtained using the suitably modificd 
Akaikc's finał prediction error (FPE) criterion, namely 

where 

and 

{k(t), n(t)} = a.rg min FPEn.11c(t) (4) 
kEK. 
aEJI/ 

(5) 

1\lh, = 

is tl1e so-called equivalent window width. 
Based on (4), the instantaneous spectrum estimate can be 

expressed in the fonn 

B. Cooperative estimation

In the competitive approach one looks for the best-local
values of k and n, ignoring the uncertainty embedded in 
the underlying decision process - the point estimates k(t) 
and n(t) are in same sense the most Iikely the best, but 
not certainly the best, choices of k and n, respectively. The 
uncertainty factor can be accounted for when estimation is 
carried out within the Bayesian framework. Tn this framework 
the estimated quantities, such as model parameter , are 
regarded as realizations of random variables with assigned 
prior distributions. Consider, for example, the problem of 
one-step-ahead prediction of a stationary AR signal based 
on its available observation history ·y(t) = {y(s), s � t}. 
The optima!, in the Bayesian sense, predictor of y( t + 1) 
takes the form [6) 

where 

N 

fj(t +lit)= L �Ln(t)ffn(t + l[t) (7) 
n=l 

Yn(t +lit)= t.pJ(t + l)an(t) 

denotes predictor based on the AR model of order n, and 
µn (t) is the posterior probability of n given Y(t). Since 
posterior probabilitie are nonnegative and sum up to I 

N 

µ,.(t) 2:- O, n E }./, L �i"(t) = 1 (8) 
n=l 

the obtained solution is a convex combination of predictors 
obtained for different hypothetical va]ues of n. Note that the 
fommla (7) can be rewritten in the fo_Ilowing equivalent form 

(9) 

where Ó'.N (t) denotes the vector of averaged parameters 
N 

aN(t) = Lµn(t)a�(t) (10) 
n=l 

and a�(t) = [oJ(t), o1-nl
T denotes the vector of parame

ters corresponding to the AR model of order n, extended with 
N - n zero . In a similar way, one can cbtain the Bayesian 
estimate of the driving noise variance 

N 

PN(l) = L µn(t)pn (t). ( 11) 

n=l 
The estimates aN(t) and f5N(t) correspond to the "averaged·' 
signal model (of order N) - introduced by Akaike (4). 
As shown in [4], under unifonn, i.e., noninfonnative prior 
distribution of n, the poste1ior probabilities of n, referred to 
by Akaike as model likelihoods, cari be obtained from 

µn(t) ex cxp {-�AICn(t)} (12) 

where 
� Pn(t)lk(t/t)
5n(t)lk(t)(w, t) = _ 2 

1
1 s::-'n.(t) � {t) - jwi I 

(6) AIC 11(t) = tlogp:,.(t) + 2n (13) 

- L..,i=l a,,n(t)lk(t) e · denotes the Akaike's information statistic [7]. 
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In [8] the concept of model averaging was extended to 
WLS estimators. For a fixed value of k, parameters of the 
averaged model are given in the form analogous to (10)-(11) 

N 

n=l 
N 

PNlk(t) = L µn lk(t)Pnldt) ( 14) 
n=l 

where 

(15) 

and 

( 16) 

denotes the generalized AIC statistic. 
Our interest in the model averaging technique stems from 

the fact that spectra! estimates ba ed on (14) 
- PNlk(t) 
SN lk(w,t) = 2 

11 - I:��l ai,Nldt)e-iwil

are usually mare accurate than the "point" estimates 

S�- (w t) = Pn:k(t)lk(t) 
nk(t)lk > 

I 
_ 

12 
°"n(t) � ( ) 

· · 
1 - L..i=l au,.(t) lk t c-JW1. 

( 17) 

(18) 

obtained when the model order n is fixed at its "most likely" 
value nk(t) [8] 

nk(t) = arg min AICnlk{t) 2:! arg min FPEn.lk(t) (19) 
nEN nEN 

Remark: Note that when n «: Mb it holds that 

log FPEnlk(t) 
= log Pnlk(t) + log(l +n/Mk) - log(l - n/ A,h) 

� ( ) 2n 1 ) 2:! logpnlk t + 
M 

= 
1

AICnlk(t 
k k 

which means, that selection of the model order based on 
minimization of the ATC statistic yields approximately the 
same results as that based on minimizing the FPE statistic. 

The spectra! estimate (17) corresponds to a particular 
(fixed) value of k. In the next section we will show how the 
model averaging technique can be used in the case where, 
due to signal nonstationarity, the most appropriate value of 
k is not known and possibly time-dependent. The proposed 
spectrum estimation formula, which constitutes the main 
contribution of the paper. has the form 

- PNlk(ti(t) 
S Nlk(t) (w, t) = . . 2 (20) 

/1 - I:[:1 ai,N!k(t)(t)e-1w•I

where 

(21) 

and 

FPE;.., 1k (t) =

1 + .J. I:::::=l I:;�=l µmlk(t)µnlk(t) min(m, n) � 
l _ � Pndt) lk(t) 

ivh 

(22) 

denotes the FPE-like stati tie. 

III. DERIVATION OF THE MODIFIED FINAL PREDICTION
ERROR STATTSTTC 

In our quest for the locally the best value of k we will use 
the Akaike's concept of the finał prediction error. Denote by 
j\.(t) = {y(t - k - n), ... , y(t + k)} another realization 
of the analyzed data sequence, independent of the sequence 
Yk(t) = {y(t - k - n); . . .  , y(t + k)} used for identification 
purposes, and let ipN(t) = [y(t - 1), ... , y(t - N)]T. Finał 
prediction error for the model (14) is defined as 

8k(t) = E {[y(t) - 'P1(t)óN1dt)] 2 } (23) 

where expectation is carried out with respect to to Y,.(t) and 
Yk(t), i.e., it is the mean squared prediction error observed 
when the model is verified using an independent data set. 

Our approximation of llk{ t) will take advantage of some 
well-known properties of the AIC/FPE based order selection. 
Tt is known that ATC shows some tendency to overestimate 
the trne model order no (under stationary conditions the 
probability of selecting the order n > no does not tend to 
zero when the number of observations tends to infinity) but 
it is efficient in eliminating underestimated models (under 
stationary conditions the pro_bability of selecting n < nu 
quick ly decays to zero for growing sample size) [7]. This 
means that in the case considered one can assume that 

µ,.,k(t) 2:! O, \:/n< no. 

The second assumption concems !ocal signal stationarity 

(A2) The signal {y(t)} �an be regarded as 
stationary in the interval [t - k - N, t + kJ
with "true" para.meters a.,,_0 and (),,_0 . 

Denote by a�-u = [aJ
U 
l oJ;._noF the vector a„u (t) 

extended with N - n0 zeros to length N, and define ci�
lk (t)

in an analogous way. Then the following result holds trne 
Lemma I: For n0 :S n :S N and n0 :S m :S N it hol ds 

that 

E[a�
l
k(t)] 2:! a�0 

E{�ci�lk(t)[�ii�pJt)f} 2:! �;: Pwiu(m,11.) (24) 

where 

denotes esti mation error and p _ [ R;;: 1 ] n - O(N-n)xn O(N-n)x(N-n) 
nx(N-n) 

R,. = E[<,0n(t)<,0J(t)]. 

Proof See Appendix T. 
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The next lemma is a straightforward consequence of the 
farmer one. 

Lemma 2: The averaged parameter estimator (14) is unbi
ased with covariance matrix of estimation errors given by 

E{ fla�
lk (t) [ fla:'r. 1k (t)] T}

N N
� :;o 

L L µ,,,,k(t)µnp,(t)P111i11(m,n) ·
1 k 

m=I n=l 

(25) 

Proof The proof is elementary. Since µ,, lk(t) � O for n<

no, and each estimator o�
1
k(t) is unbiased for no ś n ś N,

so is their convex combination a�
1 k

(t). Substituting (24) into 
( 14) one gets, after some elementary manipulations, (25).

We are now ready to state the following proposition 

Fig. l: Model morphing scenario. 

Ob 

,; ,; 
(J.ł . 

regarding predictive properties of the averaged estimate. o,·· 

Proposition I: Finał prediction enor of the averaged 
estimate (14) can be expressed in the form 

Proof- See Appendix II. 

Tt is well known that for n 2 n0 it holds that [5], [3], 

E[/?nlk(t)] � ( 1 - ;;J Pnu ·

i.e., Pnlk(t) is a biased estimator of the true vaiiance Pno ·
Replacing Pno in (26) with the debiased variant of Pnk(t)lk (t) 
yields the estimate which can be immediately recognized as 
our modified prediction error statistic (22). 

TV. COMPUTER STMULATTONS 

As shown in [3], the WLS estimator equipped with the 
window wk(i) yields approximately the same results as 
the Yule-Walker (YW) estirnator equipped with data taper 
v!c(i) = �- The YW estimates can be obtained by 
solving the set of YW equations, after replacing the true 
autocorrelation coefficients r ,,_ with their estimates 

1 k 
rnlk(t) = L L yk(t + i.lt)yk(t + i - nit) (27) 

k i=n-k 

n=0, ... ,N 

where Yk(t+ilt) = vk(i)y(t+i), i= -k, ... , k is the tapered 
data sequence. 

In our simulation experiments we used YW estimators in 
lieu of WLS estimators for two important reasons. First, the 
YW estimates Onlk(t), Pn1 1c(t), n= 1, . .. , N can be evalu
ated using the well-known order-recursive Levinson-Durbin 
algorithm, which is computationally attractive and guarantees 
that the resulting AR models of different orders are at all 
times stable. Model stability is an imp01tant property (which 
may not hold if the original WLS scheme is used) since it is a 
prerequisite for well-posed parametric spectmm estimation. 

·1 n 

Real Part 

Fig. 2: Trajecto,ies of zeros of the characteristic polynomial. 

Second, when the Hann (raised cosine) window Wk(i) =

[1 + cos(-rri/(k + l))]/2 = [cos(-rri/(2(k + 1)))]2 is used, 
i.e., when vk(i) = cus(-rri/(2(k+l))_), the estimates (27) are
recursively computable [3], [9], which further reduces the
computational load.

To show advantages of the proposed method, a nonstatio
nary AR process was generated, defined in terms of 4 time
invariant "anchor" AR models Mi, of orders 2i, i = 1, .... 4. 
The forming filter l/A.i(z- 1

, t) corresponding to model M; 
had i resonant modes, determined by i pairs of complex
conjugate zeros of its characteristic polynornial A;(z- 1

, t): 
zt = 0.995e±ik1r/5

, k = 1, ... , i.

The analyzed signal {y(t), t = 1..., T0 }, T0 = 5500, 
consisted of segments generated by time-invariant models 
M1 , ... ,M4 and segments go\/emed by time-varying models 
obtained by means of applying the "morphing" technique -
see Fig. I. A smooth transition from model M._ 1 to M. was 
realized by relocating progressively the i-th pair of zeros 
from their initial positions at the origin to terminal positions 
close to the unit circle. The corresponding zero trajectories 
are depicted in Fig. 2. The breakpoipts shown in Fig. l had 
the following coordinates: t1 = 1000, t2 = 1500, t3 = 2500, 
t4 = 3000, t5 = 4000 and tG = 4GOO. 

The parallel estimation scheme was made up of 5 Yule
Walker estimators equipped with cosinusoida! windows of 
widths k1 = 100, k2 = 150, k3 = 225, k4 = 337 and 
kr, = 500. Data generation was started 500 instants prior to 
t = l and was continued for 500 instants after T0 = 5500. 
Such an approach allows one to start the estimation process 
at the instant 1 and end it at the instant To for all bandwidths 
considered. 

The mean Ttakura-Saito spectra! distortion measure [ I OJ 
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TABLE I: Comparison of estimation results obtained for 
5 fixed-order ( n 1, ... , 20) Yule-Walker algorithms 
with different bandwidths k1 , k2, k�, k4 , kr, , with the results 
yielded by 2 order-and-bandwidth-adaptive parallel estima
tion schemes based on the FPE statistic and the FPE* 
statistic, respectivety. 

n/.V ., k; k:, k, kr, Fl'E 

I 3,6122 3,5804 3.5575 3,5425 3.5342 3.5606 

2 2,1265 2,0874 2,0649 2,0588 2,071] 2,0928 

3 2,U251 1,9815 1,9556 1,9480 1,9608 1,9980 
4 1,166) 1,1247 l,IIJ'.?3 l,Cl!/97 1,12111 1,1446 

5 1,1769 1,1276 1,0997 1.(1943 1,1154 1.1sg2 
6 0,5484 0,5105 0,4922 0,4944 0,5260 0,5218 
7 0,5483 0,5024 0,4789 0,4773 0,50J9 0,5196 " 0,117h0 ll,04ó2 11,11.l.ll n.m.l:! fl,11.112 11,0:?91 

9 0,0RJ5 0,0515 0,0365 0,034R 0,0493 0,0304 

10 0,0919 0,0569 0,0401 0,0369 0,0493 0,0314 
li 0,0998 0,0621 0,0434 0,0387 0,0492 0,0322 
I� O. IOłS� 0,0676 U,0469 0.0407 0,0499 0.03�9 
13 11,1162 ll.(1729 11.0503 0Jł426 11,11505 0.11335 

14 0,1245 0,078[ 0.0534 0,0442 0,0505 0.0337 

15 0,1329 0,0835 0,0569 0,0463 0,0513 0,0340 

16 0,1413 U,0890 U.0605 0.0485 U.0524 U.0342 
17 0,1499 ll.1�46 IIJl64ll Cl.11507 ll,05.l7 ll.ll.l4:\ 

18 0,1601 0,1009 0,0677 0,0528 0,0549 0,0345 
19 0,1687 0,1065 0,0712 0,0549 0,0560 0,0347 

20 0,1778 U,1123 0,0749 U,0572 U,0573 U,0347 

was used to evaluate spectral estimation results 

drs(t) 

_ E { 
-
2_ (" 

[ 
Sn (w, t) 

- 211' }_" Snlk (w,t) - log fn(w, t)

Sn lk (w, t) 

Fl'E' 

35606 

2,0928 
1,9979 

l,144� 

l.156R 

0,5209 
0,5170 
0,0'.?.?>i 

0.02•)0 
0,0299 

0,0307 
0,0315 

OJ1321 

0,0324 

0,0328 

U.0331 
n.o.n� 

0,0336 
0,03J7 

0,0339 

Table 1 presents the mean IS scores, obtained for 100 
independent realizations of {:t;{t)} and averaged over time 
(t E [1, T0]). The first five columns show results yielded 
by the Yule-Walker estimators corresponding to different 
choices of estimation bandwidth (k) and model order (n).

The next two columns present results yielded by the parallel 
estimation scheme with FPE based and FPE* based joint 
bandwidth and order selection, for different values of the 
maximum model order N. The results presented in Table 1 
clearly demonstrate the advantage of the FPE* based scheme 
over the FPE based one. Note also that both adaptive order
and-bandwidth selection schemes provide better results than 
the best fixed-order fixed-bandwidth ones. 

The locally time averaged histogram (obtained for 100 in
dependent realizations of {y(t)}) of the results of bandwidth
selection is depicted in Fig. 3. Each time bin incorporates 250 
consecutive time instants. Note that during transition phases, 
when AR parameters change, the smaller bandwidths are 
selected more frequently than the larger ones. On the other 
hand, during time-invariant phases (constant AR parameters) 
the larger bandwidths are preferred. 

Fig. 4 shows the locally time and ensemble averaged 
histogram of the likelihood coefficients µnlk(t) (t), evaluated
according to (15) and (21). Note good order adaptivity of 
the proposed order scheduling method. 

V. CONCLUSTONS

We considered the problem of !ocal autoregressive model
ing of nonstationary random processes. The proposed solu
tion combines the "soft" Bayesian-like model averaging with 
"hard" selection of optima] estimation bandwidth, catTied out 

100 

SO 

bandwidth 

Fig. 3: Locally time averaged histogram of the results of 
bandwidth selection. 

�me order 

Fig. 4: Locally time averaged histogram of the likelihood 
coefficients. 

using the newly developed extension of the Akaike's finał 
prediction error crite1ion. Simulation expe1iments show im
proved pe1formance of the new adaptive estimation method. 
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APPENDTX T where R,,,m = E[<,o n (t)cp;,(t)]. Since for rn ś nit holds 
PROOF OF LEMMA 1 that 

We will first show that a�
l
k(t) is an unbiased estimate 'Pm(t) = [Im On -m]'Pn(t) = X�--+n'Pn(t) , 

of a��n. Recall (from e.g. [5]) that the WLS estimator (3)
admits the following closed form solution one can express R.,,,m in terms of R„ 

where 
k 

Q nj k(t) = L Wk(l)cpn(t + l)cpJ(t + l) 
ł=-k 

k 

qn lk(t) = L wk(l)<,on(t + l)y(t + l).
ł=-k 

(28) 
Combining all earlier results, one arrives at 

Also note that, for n � n0, it holds that 

y(t) = cpJ(t)a�;• + €n0 (t), 
Employing the fact that &�_

1k(t) = X n--+NCTnjk(t) and m ś
(29) n, one obtains

where 

and 

denotes the expansion matrix. 
Substituting (29) into (28) leads to 

an lk (t) =a�;:•+ Q;_;-1�(t)Pnlk(t) (30) 

where 
k 

P n jk(t) = L wlc(l)<pn(t + l)t:n0 (t + l) . 
l=-k 

Using the genernlized law of large numbers for weighted 
sums of random variables [11], one arrives at the following 
approximation 

where 

Q -1 (t) c,; v-1 
nlk - nlk 

Vnjk = E[Qnjk(t)] = L wk(l)E[<,on(t + l)<pJ(t + l)] 
l=-k 

k 

= R„ L w1c(/) 
ł=-k 

leading to 
ó&nidt) e:' v;;:1�P111, (t) 

and E[óanlk (t)] e:' v;;:
1
�E[Pnlk(t)] = 011, i.e. E[ii„1dt)] e:' 

a�;;'. Taking into account the fact that a�;
0 

= X n-> N a��n. 

and &�1k (t) = X,. ..... N& n.11c (t), one immediately completes 
the first part of the proof. 

To evaluate crosscorrelation of estimation errors assume, 
without loss of generality, that m, ś n. Note that 

E[ó&n.1 1c(t)ó&�lk(t)] e:' E[V;;:1�Pn.1k(t)p� lk(t)V��kl 

and 

E[pr, 1dt)p� 1 dt)] e:' Rn,mPno L w%(l)
l=-k 

E{ó&�lk(t)[ó&� lk(tW} 

e:' Xn->NE[óan.lk(t)ó&�lk (t)]X�->N = P
M

n
o Pm .

k 

Using sirnilar arguments for n ś m, one gets 

E{.ó.a� lk(t)[óa�,lk(t)]T } e:' P
M

n
o Pn .

J k 

which finally leads to (24). 

Let 

APPENDIX Il 
PROOF OF PROPOSITION l 

i(t) = y(t) - ip;.(t)iiN1 dt) 

o 

Using y(t) = ipI, (t)a�11 + c,,,, (t) and ÓNlk(t) = a�., + 
óaNJk(t), one arrives at 

e(t) = En.u (t) - ip;.(t)óa,Njk(t). 

Since Óa,Nlk (t) is, by definition, independent of En.u (t) and 
'PN (t), one obtains 

Ók (t) = P no + E[ip;;.(t)C\cpN(t)], (31) 

where 
Ck = E[óiiNlk(t)óa;;. lk (t)]. 

According to Lemma 2 it holds that 
N N 

E[ipi(t)C k 'PN(t)] e:' �: L L µmlk(t)µnlk(t)
m.= l n=l 

X tr {Pmin(m,n )E[<pN(t)ł1(t)]} 

Note that E[ip N (t)<p;;,(t)] = RN and

tr [Pmin(m,n)RN] 
{ [ R- 1 

= tr miÓm,n)

= tr { [ IminÓm,n ) 

� ] [ Rmint, n) 

: ] } 
�]} = min(m., n).

(32) 

where the symbol * is used to denote mat,ices that have no 
effect on the finał result. Combining this formula with (31) 
and (32) leads to (26) and completes the proof. o 
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