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On Bayesian Tracking and Prediction of Radar
Cross Section

Michał Meller

Abstract—We consider the problem of Bayesian tracking of
radar cross section. The adopted observation model employs
the gamma family, which covers all Swerling cases in a unified
framework. State dynamics are modeled using a nonstationary
autoregressive gamma process. The principal component of the
proposed solution is a nontrivial gamma approximation, applied
during the time update recursion. The superior performance of
the proposed approach is confirmed using simulations and a real-
world dataset.

Index Terms—radar cross section, Bayesian tracking, autore-
gressive gamma process

I. INTRODUCTION

TO characterize a target succinctly, a radar engineer may
choose to specify its radar cross section (RCS). Radar

cross section of the target quantifies its magnitude. It is
defined as a cross-sectional area of a perfectly reflecting sphere
that produces the echo of the same strength as the actual
target [1]–[3]. The concept of RCS is essential to system
analysis and design because radar performance figures, such
as the detection range or accuracy, are meaningless if they are
not accompanied by a specification of a “nominal” target of
interest. Typical values of RCS employed in system analysis
are in the range of 1-2 m2 for “fighter sized” targets, 10-100
m2 for “bomber sized” targets, and 0.0001-0.01 m2 for the so-
called low observable (LO) targets, such as stealth airplanes,
missiles or projectiles, among others [1].

However, the benefits of knowing RCS figures are not lim-
ited to system analysis and design. Improved performance has
been demonstrated in the areas such as discrimination between
targets and clutter [4], [5], multi-target tracking [6]–[9], track-
to-truth assignment [10], non-cooperative target recognition
[11]–[14], and resource management [15]–[17].

Resource management is, in fact, the application that moti-
vated this paper. A multifunction radar must share its resources
between multiple tasks, such as the search and active tracking
of multiple targets, among others. Knowledge of the tracked
targets’ RCS allows one to schedule the optimal, in the
sense of minimizing the time/power budget allocation, track
update looks, which will increase the number of targets that
the radar can handle before it saturates. The difficulty of
implementing such an advanced radar management scheme
lies in the fact that the RCS of a target is often unknown.
To mitigate this obstacle, one has two options. First, one
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can employ a database containing values of RCS for vari-
ous target classes, obtained using measurements [18]–[20] or
computational methods [21]–[24]. However, no matter how
extensive, such a database will likely need updating with
new target classes. Additionally, this approach requires one
to know the target class accurately, which is difficult in
military applications. The second option, which is free of such
limitations, is to equip the radar with an RCS estimator and
entrust it with the task of assessing the target’s RCS on-line,
i.e., by analyzing the contents of the actual echo signal.

The design of the RCS estimator should take into account
the properties of the RCS specific to the radar application.
When one measures the RCS on a range, it natural to treat
it as a deterministic quantity, whose value is a function of an
aspect angle. However, when the radar is observing a target,
the aspect angle varies, which causes fluctuations of the radar
echo strength. Since the fluctuations appear to be random, it
makes more sense to employ the stochastic modeling tools
than to rely on the deterministic modeling techniques [3].
A typical stochastic model of RCS specifies a value of the
average RCS and a probability density family that describes
the distribution of the fluctuations. This class includes, among
others, the Swerling I-IV models [1], [25], which belong to
the broader family of χ2 models [26].

It can be argued, however, that the models of this form,
while adequate for system analysis and design, are too sim-
plistic for the resource management. It is well known that
radar targets can exhibit different statistical properties when
viewed from different sectors [10]. For example, the designs
of modern fighter planes include the features that reduce their
backscatter in the frontal area. To avoid feeding the resource
manager with outdated information, the RCS estimator should
work out the local estimates of the parameters of the stochastic
RCS model, i.e., it should be a tracker with limited memory.

The final requirement concerns the ability to deliver pre-
dictive distributions of the future RCS. Such distributions
are necessary for accurate decision-making because of the
random behavior of RCS in radar. To enable generation of
the predictive distributions, one can design the tracker using
the Bayesian framework. In this approach, the parameters are
treated as random variables and assigned a priori distributions.
Application of Bayes’ formula allows one to work out the
a posteriori distribution of the parameters [27], which is a
complete description of one’s current state of knowledge about
the tracked process. To form the predictive distribution, one
should propagate the a posteriori distribution into the future
and compound it with the model distribution. Note that the
straightforward approach of substituting point estimates into
the model distribution can result in a degraded performance
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because of long sequences of data required to obtain accurate
estimates of the average RCS [5].

The problem of on-line RCS estimation is typically con-
sidered in the context of target tracking. Unfortunately, the
existing solutions fail to satisfy at least one out of three of the
above requirements. The estimators proposed in [7], [8] are
parts of larger probability hypothesis density (PHD) filtering
schemes. These algorithms employ stochastic models of RCS,
whose parameters are assumed to be constant. Additionally,
even though these trackers include the formulas that allow
one to compute the estimates of the average RCS and their
uncertainties, the resultant predictive pdfs were not presented.
Another solution was proposed in [10]. It is a heuristic design
which employs the alpha filtering approach to smooth out
the fluctuations of the individual measurements. This solution,
owing to its limited memory, is capable of tracking the time-
varying parameters of the model. However, like in the previous
case, the issue of computing the predictive distribution was not
addressed. Finally, in [15] the authors described the cognitive
resource management scheme which includes the estimation of
the SNR, rather than RCS. Their solution relies on extracting
the estimate of the SNR from the ambiguity function and
treating it as valid for the next decision cycle. Neither the issue
of uncertainty nor the random behavior of RCS was recognized
in this scheme.

This paper proposes a novel Bayesian tracker which satisfies
all of the above requirements. Derivation of the algorithm
employs a nongaussian model that combines the observation
process and the underlying, hidden, state process. The model
is constructed such that, using a nontrivial gamma approx-
imation, one can reach a remarkably simple final form of
the tracker. Interestingly, a closer inspection of our algorithm
shows that one may regard the existing methods as approxi-
mations of the Bayesian solution proposed here.

The paper is organized as follows. Section II specifies
the problem assumptions and presents the derivation of the
tracking algorithm. Section III presents the extensions of
the basic scheme. Section IV validates the proposed tracker
using computer simulations and real-world data. Section V
concludes the paper.

II. BAYESIAN FILTERING OF A HIDDEN AUTOREGRESSIVE
GAMMA PROCESS

A. A quick review of Bayesian filtering

We will begin with a quick review of a general nonlinear
Bayesian filtering problem. This material will serve as the
reference when we derive the tracker.

Denote by xn ∈ X (n = 0, 1, . . . is a discrete, dimension-
less time) a state vector, i.e., a p-dimensional Markov process
with state transition probability density p(xn|xn−1) and the
initial distribution of the state p(x0). The state is assumed to
be hidden, i.e., not observed directly. The information about
the state is conveyed via an observation process yn, which has
the following property

p(yn|x0,x1, . . . ,xn, . . . ) = p(yn|xn) ,

where p(yn|xn) is a known probability density function.

The Bayesian filtering problem is to find the a posteriori
density p(xn|Yn), where Yn = {y0,y1, . . . ,yn} denotes the
observation history available at the time instant n. Its solution
is a generic recursion, consisting of two steps [27]
1) Time update

p(xn|Yn−1) =

∫
X

p(xn|xn−1)p(xn−1|Yn−1)dxn−1 . (1)

2) Measurement update

p(xn|Yn) = c p(yn|xn)p(xn|Yn−1) , (2)

where

c =

∫
X

p(yn|xn)p(xn|Yn−1)dxn

−1

is a normalizing constant which guarantees that∫
X

p(xn|Yn)dxn = 1 .

The simplicity of equations (1)-(2) can be deceiving. The
main difficulty arising in the Bayesian filtering is that the so-
lution is very often analytically or computationally intractable.
Faced with this problem, one may resort to approximations,
such as Grid-based or Monte Carlo methods, that often pro-
duce good results, albeit at the expense of a high computational
cost [27]–[30].

The Bayesian filtering problem can be solved using the an-
alytical approach if certain regularity conditions are satisfied.
Let p(yn|xn) belong to a family F , where xn enters as a
parameter

p(yn|xn) = F(yn;xn) .

Suppose that p(xn|Yn−1) happens to be the so-called conju-
gate prior distribution of p(yn|xn),

p(xn|Yn−1) = F ′(xn;θn|n−1) ,

where F ′(·) denotes the conjugate prior of F(·) and θn|n−1
is the vector of the so-called hyperparameters. Then the a
posteriori distribution also belongs to the family F ′

p(xn|Yn) = F ′(xn;θn|n) ,

where the a posteriori vector of the hyperparameters θn|n is a
function of θn|n−1 and yn – see [31] for more details and an
exhaustive number of examples of the conjugate prior pairs.

Note that, the conjugate prior property can be employed
repeatedly, i.e., in each iteration of the recursion, only when
p(xn|xn−1) satisfies the following condition

p(xn+1|Yn) = F ′(xn+1,θn+1|n) . (3)

This situation occurs, among others, when the probabilities
p(xn|xn−1), p(yn|xn) stem from the linear Gaussian model

xn+1 = Anxn +wn

yn = Cnxn + vn ,

where {wn}, {vn} are mutually independent zero-mean Gaus-
sian white noise processes and p(x0) is a known Gaussian
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density. In such case, the Bayesian filter takes the form of the
celebrated Kalman filter [27], [32].

When the condition specified by Eq. (3) does not take place,
it might be possible to approximate p(xn+1|Yn) with a suit-
ably chosen distribution F ′(xn+1,θn+1|n). Approximations
of this kind are the cornerstones of the so-called nonlinear
Kalman filters, such as the unscented Kalman filter [33] and
the cubature Kalman filter [34]. Note that, even though the
nonlinear Kalman filters are no longer optimal, they perform
more than adequately in a broad spectrum of applications
[35]–[38]. We will refrain from discussing the details of
these algorithms any further – the purpose of mentioning this
approach stems from the fact the proposed tracker will also
exploit a favorable approximation of p(xn+1|Yn), although
not the Gaussian one.

B. Assumptions

Following the above short discussion, we can now introduce
the process model which become a foundation for our tracker.
Denote by γ(x;α, β) the probability density function of the
gamma distribution with a shape parameter α and a rate
parameter β, α > 0, β > 0

γ(x;α, β) =

 0 for x < 0
βα

Γ(α)
xα−10 e−βx for x ≥ 0

(4)

Suppose that the radar’s plot extractor can assess the target’s
RCS during a dwell. Such a functionality can be implemented
by a straightforward scaling of the target’s echo power with
a factor obtainable from the radar equation [7]. The measure-
ments of the RCS obtained from the plot extractor will play
the role of the (scalar) sequence of observations {yn}. We will
assume that

(A1) The conditional distribution of the observations is the
gamma with a known shape parameter a > 0 and an unknown
rate parameter xn

p(yn|xn) = γ(yn; a, xn) =

 0 for yn < 0
xan

Γ(a)
ya−10 e−ynxn for yn ≥ 0

(5)

Assumption (A1) can be regarded as a generalization of
the Swerling family [25] in two ways. First, with a proper
choice of a, the density in Eq. (5) can cover all Swerling
cases. For instance, the Swerling-I case corresponds to a =
1, while a = 2 yields the Swerling-III case. The extended
Swerling cases, introduced in [26], can be obtained as well.
Second, the assumption introduces the state variable xn, whose
role is to explain differences in behavior of yn over different
aspect angles. Observe that the conditional mean of yn, which
corresponds to the average RCS, is inversely proportional to
xn

E[yn|xn] =
a

xn
= ax−1n . (6)

By allowing xn to vary, one can model targets whose statistical
properties are time-dependent, rather than fixed. Since, in
such a case, the quantity on the right-hand side of Eq. (6)

characterizes the local properties of the observation process,
we will further refer to it as the local average RCS.

Finally, note that the form of (A1) implies that any influence
of the receiver noise on yn is neglected. Arguably, this is not
a severe limitation. Compared with fluctuations of RCS, the
effects of the noise are rather small, especially if one considers
the problem of predicting the future values of yn. On the other
hand, the benefits of neglecting the noise are quite substantial
because the construction of the tracker becomes considerably
simplified – see, e.g., [7] for an example of the RCS estimator
that employs similar simplifications.

The next two assumptions specify the dynamics of the state
variable and its initial probability distribution.

(A2) The state sequence {xn} forms a scalar Markov chain
with state transition probability density p(xn|xn−1) given by
the following limit [39]

p(xn|xn−1) = lim
δ→0

pδ(xn|xn−1)

pδ(xn|xn−1) =
0 for xn < 0

exp
(
−xn
c

) ∞∑
k=0

e−bxn−1bkxkn−1
cδ+kΓ(δ + k)

xδ+k−1n

k!
for xn ≥ 0

(7)

where c > 0 is a small constant, c ≈ 0, and b = 1/c.

(A3) The initial state x0 is a gamma-distributed random
variable with known shape and rate parameters, α0 > 0, β0 >
0

p(x0) = γ(x0;α0, β0) =

 0 for x0 < 0
βα0
0

Γ(α0)
xα0−1
0 e−β0x0 for x0 ≥ 0

(8)

Following [39], the state is modeled using the limiting case
(δ → 0) of the autoregressive gamma process [c.f. (A2)-
(A3)]. Although the form of (7) is unusually complex, it
is used here deliberately to place the paper in a broader
context of nongaussian autoregressive modeling [40], [41]. In
practice, the two following results are more useful. First, one
can generate trajectories of xn corresponding to (A2) using
the following recursion, which is the special case of a more
generic formula presented in [40], [41], obtained for δ → 0,

xn =

N(xn−1)∑
i=1

Wi , (9)

where Wi are exponential i.i.d. random variables with parame-
ter 1/c and N(x) is a Poisson distributed random variable with
parameter x/c. Second, Laplace transform of p(xn|xn−1) has
a remarkably simple form (see Appendix A for the derivations
of the results presented in this part of our discussion)

L (p(xn|xn−1)) =

∞∫
0

p(xn|xn−1)e−sxndxn

= exp

(
−sxn−1
sc+ 1

)
. (10)
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We will employ (10), rather than (7), throughout most of the
paper.

It is clear from (9) that the adopted model is not backed by
any actual physics. However, the model in this form allows
one to perform a tractable analysis of the problem without
sacrificing the essential features of the dynamic model of RCS.
Observe that, under δ → 0 and b = 1/c, the process {xn} has
the martingale property

E [xn|xn − 1] = xn−1 (11)

and can drift unbounded. The degree of nonstationarity of
xn is governed by the parameter c, as can be seen from the
expression for the conditional variance

V [xn|xn−1] = 2cxn−1 . (12)

It follows that, for small values of c, the state variable will
drift slowly. Since any changes in xn immediately affect the
local average RCS [c.f. (6)], the proposed model offers enough
flexibility to explain the behavior of RCS, at least in a local
timeframe.

C. The tracker – the time update step

Since the statistical properties of yn are governed by the
state, we will design the tracker to estimate xn. Such an ap-
proach will later allow us to construct a forecasting mechanism
to predict the future values of yn.

Suppose that p(xn−1|Yn−1) corresponds to the gamma pdf
with the shape αn−1 and the rate βn−1

p(xn−1|Yn−1) = γ(xn−1;αn−1, βn−1) . (13)

Using (1), (4) and (10) one can arrive at

p(xn|Yn−1) =

∞∫
0

dxn−1p(xn|xn−1)p(xn−1|Yn−1)

=

∞∫
0

dxn−1

σ+j∞∫
σ−j∞

ds exp

(
−sxn−1
sc+ 1

)
esxnp(xn−1|Yn−1) .

Reversing the order of the integration yields the formula that
can be identified as the inverse Laplace transform

p(xn|Yn−1) =

σ+j∞∫
σ−j∞

K(s)esxnds = L−1(K(s)) , (14)

where

K(s) =

∞∫
0

exp

(
−sxn−1
sc+ 1

)
p(xn−1|Yn−1)dxn−1 .

Substitution of Eq. (13) into K(s) eventually leads to

K(s) =

[
sc+ 1

s(β−1n−1 + c) + 1

]αn−1

. (15)

Fig. 1 shows a comparison of p(xn−1|Yn−1) with the
corresponding p(xn|Yn−1) for c = 0.05, αn−1 = 10 and
three choices of βn−1. All plots of p(xn|Yn−1) were obtained
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Figure 1. Comparison of p(xn−1|Yn−1) (solid line) and p(xn|Yn−1)
(dashed line) for c = 0.05 and three choices of αn−1, βn−1.

by evaluating the inverse Laplace transform of the formula
(15). Observe that, even though the predictive distribution of
xn widens, its overall shape remains similar to the gamma
distribution, which presents an opportunity to approximate
p(xn|Yn−1) using the gamma pdf.

Indeed, the L-transform of γ(xn; α̃n, β̃n) reads

Kγ(s) =
1(

sβ̃−1n + 1
)α̃n

,

and differs from K(s) primarily by the absence of zeros. Since
the zeros of K(s) are located in the high-frequency range, their
influence on the overall shape of p(xn|Yn−1) is small.

One can obtain a simple gamma approximation of
p(xn|Yn−1) using the moment matching technique. We shall
equalize the first two moments of p(xn|Yn−1) and its approx-
imation, i.e., we shall request that

− d

ds
Kγ(s)

∣∣∣∣
s→0

= − d

ds
K(s)

∣∣∣∣
s→0

d2

ds2
Kγ(s)

∣∣∣∣
s→0

=
d2

ds2
K(s)

∣∣∣∣
s→0

. (16)

The left-hand side terms of the above system of equations are
equal to α̃n/β̃n and α̃n(α̃n + 1)/β̃2

n, respectively. The terms
on the right-hand side read (see Appendix B for the derivation)

− d

ds
K(s)

∣∣∣∣
s→0

=
αn−1
βn−1

d2

ds2
K(s)

∣∣∣∣
s→0

=
αn−1
βn−1

(
αn−1 + 1

βn−1
+ 2c

)
. (17)
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Figure 2. Comparison of p(xn|Yn−1) (solid line) and its approximation
using the gamma density γ(xn; α̃n, β̃n) (dashed line) for c = 0.05 and
three choices of αn−1, βn−1.

Combining the above partial results allows one to arrive at
the following formulas for the parameters α̃n, β̃n of the
approximation γ(xn; α̃n, β̃n)

α̃n =
αn−1

1 + 2cβn−1
β̃n =

βn−1
1 + 2cβn−1

. (18)

Fig. 2 shows a comparison of p(xn|Yn−1) and its approxima-
tion (18) for c = 0.05 and the same three choices of αn−1,
βn−1 as in Fig. 1. Even though the plots presented in Fig. 2
cannot be regarded as a proof that (18) works, they show a
good agreement of both densities for a fairly wide range of
βn−1. Additional tests show that the quality of (18) decreases
with increasing c, but stays reasonable for c as large as 0.1.
Note that c = 0.05 already corresponds to quite fast changes
of xn [c.f. (12) and Fig. 1],which means that larger values of
c are unlikely to be of practical importance.

Remark: A “quick and dirty” approximation of K(s) can
be obtained by neglecting the zeros of (15) and modifying
its exponent so as to match the means of K(s) and Kγ(s).
This procedure yields the rule whose form is almost the same
as (18), except that the coefficient 2 in the denominator is
replaced with 1. The accuracy of the resulting approximation
is substantially worse than (18), however.

D. The tracker – the measurement update step

We will now derive the measurement update rule. To this
end, we will assume that the approximation introduced in the
previous subsection is sufficiently accurate, p(xn|Yn− 1) '
γ(xm; α̃n, β̃n).

Under (A1), one is allowed to take advantage of the conju-
gate prior property of the gamma family, summarized in the
following lemma [31]

Lemma 1. Let V be a gamma distributed random variable
with a known shape a > 0 and an unknown rate b. Assume that
the a priori distribution of b is also a gamma with a known
shape α̃ > 0 and rate β̃ > 0. The a posteriori distribution of
b, p(b|v) is the gamma with the shape α = α̃+a and the rate
β = β̃ + v, where v denotes the observed realization of V .

A straightforward application of Lemma 1 leads to the
conclusion that the conditional distribution p(xn|Yn) is
γ(xn;αn, βn), whose shape and rate parameters take the
following form

αn = α̃n + a βn = β̃n + yn . (19)

Note that the proposed update rules, stated in equations
(18) and (19), can be employed perpetually, i.e., they form
a recursion that can be executed for every n.

E. A summary of the algorithm

The proposed tracker is summarized in Table I. Since the
table is meant to serve as a quick reference, it includes
interpretations of all quantities appearing in the equations.

The pair of measurement update equations is responsible
for factoring the new observation yn into the Bayesian state
estimate, i.e., into the a posteriori density p(xn|Yn). The
form of these equations suggests that αn/a can be interpreted
as the effective number of observations, while βn – as the
effective sum of observations. The minimum mean square
error (MMSE) estimate of the state, which reads,

E [xn|Yn] =
αn
βn

(20)

is proportional to the inverse of the effective sum of observa-
tions.

The pair of time update equations implements the me-
chanism of discarding the old data by applying a variable
forgetting factor 1/(1 + cβ−1n−1) on αn−1 and βn−1. The fact
that the forgetting factor depends on the current estimate of the
state stays in agreement with the behavior of the state process
[recall Eq. (12)].

Since the a posteriori distribution of the state is the gamma
with the shape and rate equal to αn and aβn, respectively,
the a posteriori distribution of the local average radar cross
section is the inverse gamma, with the shape αn and the scale
aβn [c.f. (6)]. It follows that the MMSE estimate of the local
average cross section reads

aE
[
x−1n |Yn

]
= a

∞∫
0

x−1n p(xn|Yn)dxn = a
βn

(αn − 1)
, (21)

where it must hold that αn > 1. Observe that, when the
effective number of observations is large, Eq. (21) agrees with
the more straightforward estimate

aE
[
x−1n |Yn

]
≈ aβn

αn
. (22)
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Prerequisites
Observation model: shape parameter a

yn ∼ γ(a, xn)

State dynamics model: nonstationarity coefficient c
Initial distribution of the state: shape and rate parameters α0, β0

x0 ∼ γ(α0, β0)

Interpretation of quantities
Observations yn are RCS values obtained from the plot extractor
State variable xn is proportional to the inverse of the local average RCS

E[yn|xn] = ax−1
n

Tracker variables α̃n, β̃n parametrize the a priori pdf of the state

p(xn|Yn−1) ' γ(xn; α̃n, β̃n)

Tracker variables αn, βn parametrize the a posteriori pdf of the state

p(xn|Yn) ' γ(xn;αn, βn)

For n = 1, 2, . . . execute
Time update

α̃n =
αn−1

1 + 2cβn−1

β̃n =
βn−1

1 + 2cβn−1

Measurement update

αn = α̃n + a

βn = β̃n + yn

MMSE estimate of the local average RCS

a
βn

αn − 1

Table I
SUMMARY OF THE PROPOSED TRACKER.

The advantage of the formula (21) over (22) lies in the fact
that it accounts for the extra uncertainty caused by the tail
behavior of p(xn|Yn), which can be a significant factor for a
small number of observations or fast changes of the state.

F. Initialization of the scheme

Assumption (A3) can be relaxed to include useful uninfor-
mative (improper) priors. The uniform prior

p(x0) ∝ 1, x0 > 0

can be recognized as the limiting case of the gamma distribu-
tion, α0 → 1, β0 → 0.

The Jeffreys prior, i.e., the prior which is proportional to
the square root of the Fisher information, takes the form

p(x0) ∝
√
a

x0
, x0 > 0

which corresponds to the initialization using α0 = β0 = 0.

G. A qualitative comparison with existing approaches

We will now compare the proposed tracker with three
existing solutions, presented in [8], [10], and explain the
advantages of our approach.

The tracker proposed in [8] is a part of a larger PHD filter,
which precludes direct comparison with our solution. How-
ever, under the assumption that the probability of detection
equals 1, the Swerling-I tracker proposed in [8] reduces to the
following pair of equations

σ̂n =
µn−1 − 1

µn−1
σ̂n−1 +

yn
µn−1

µn = µn−1 + 1 , (23)

where σ̂n denotes the estimate of target average RCS, assumed
to be constant by this algorithm. One can show that (23)
is equivalent to the proposed tracker if the nonstationarity
coefficient c is assumed to be zero. Indeed, multiplying both
sides of the first recursion of (23) with µn−1 yields

µn−1σ̂n = (µn−1 − 1)σ̂n−1 + yn ,

which, using the second recursion in (23), can be rewritten in
the following form

(µn − 1)σ̂n = (µn−1 − 1)σ̂n−1 + yn .

Set a = 1, αn = µn and βn = (µn − 1)σ̂n and the
equivalence of (23) and the proposed algorithm becomes
apparent. Moreover, the second tracker proposed in [8], i.e.,
the Swerling-III tracker, is also equivalent to the proposed one
(a = 2, c = 0), which can be shown using a similar argument.

Note that, unlike (23), our solution is free from the as-
sumption that the (local) average RCS is constant, which
is a considerable advantage. As argued in the introduction,
the observation process yn might be nonstationary when a
maneuvering target is observed. In this situation, one should
adjust the memory length of the tracker to achieve a bal-
ance between its bias and variance. Generally, increasing
the tracker’s memory will increase the bias, but reduce the
variance, and vice versa. However, the algorithm (23) pays
equal attention to the observations from the distant and the
near past, i.e., it has an infinite memory, which means that the
estimates σ̂n will suffer from a substantial bias. The proposed
solution, on the other hand, includes a simple, but efficient,
mechanism for discarding the old data and does not suffer
from such a problem.

The paper [10] also presents two trackers. The first tracker
takes the form of the so-called alpha filter, i.e., a fading
memory filter based on exponential forgetting. When written
using our notation, this algorithm takes the following form

σ̂n = (1− λ)σ̂n−1 + λyn , (24)

where σ̂n denotes the estimate of the local average RCS
and 0 < λ < 1 is the filter gain. Comparing (24) and our
solution, it straightforward to see that (24) can be regarded
as a simplified version of our approach, where the time-
varying forgetting factor is replaced with a constant one and
the MMSE estimate of the local average RCS (21) is replaced
with the formula (22).

The second tracker proposed in [10] is a simple median of
last N observations, where N was chosen to be 10. Note that
the median is a questionable estimator of the average RCS
because it will treat spikes of yn as outliers and reject them.
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The spikes are, however, typical to the behavior of RCS. As
a consequence, the median estimator can exhibit a significant
downward bias.

III. EXTENSIONS

A. Forecasting the future RCS

As argued in the introduction, a statistical characterization
of yn+1, conditioned on the available observation history Yn,
may be valuable for radar resource management. A complete
description of one’s knowledge about the behavior of yn+1 is
encoded in the conditional density p(yn+1|Yn)

p(yn+1|Yn) =

∞∫
0

p(yn+1|xn+1)p(xn+1|Yn)dxn .

Substituting (8) and approximating p(xn+1|Yn) with
γ(xn+1; α̃n+1, β̃n+1) leads to [42], [43]

p(yn+1|Yn) = β′(yn+1; a, α̃n+1, 1, β̃n+1) , (25)

where

β′(x;α, β, p, q) =
p
(
x
q

)αp−1 [
1 +

(
x
q

)p]−α−β
qB(α, β)

(26)

denotes the generalized beta prime distribution with param-
eters α > 0, β > 0, p > 0, q > 0 and B(x, y) denotes the
beta function [the distribution resulting from (25) is commonly
called the compound gamma].

If needed, the conditional moments of (25) can be computed
using the following lemma [42]

Lemma 2. Let X be a compound gamma distributed random
variable, X ∼ β′(x;α, β, 1, q). For −α < t < β it holds that

E[Xt] = qt
B(α+ t, β − t)

B(α, β)
. (27)

Combining (25) with (27) yields

E
[
ytn|Yn−1

]
= β̃tn

B(a+ t, α̃n − t)
B(a, α̃n)

. (28)

In particular, for t = 1 the above formula simplifies to

E [yn|Yn−1] = a
β̃n

(α̃n − 1)
for α̃n > 1

and for t = −1 to

E
[
y−1n |Yn−1

]
=

α̃n

β̃n(a− 1)
for a > 1 .

B. The Interacting Multiple Model solution

The proposed tracking algorithm requires one to specify the
parameters a and c. It is, however, unrealistic to assume that
these quantities can be known precisely because any of them,
c in particular, can be time varying.

The uncertainty of model parameters can be addressed using
the interacting multiple model (IMM) approach [44]. Denote
by x̄n the normalized state variable,

x̄n =
xn
a
.

State interaction
For j = 1, 2, . . . ,K

ψn−1,j =

K∑
i=1

µn−1,i pij

µn−1,i|j =
µn−1,i pij

ψn−1,j
, i = 1, 2, . . . ,K

m̄0
n−1,j =

K∑
i=1

µn−1,i|j
ᾱn−1,i

β̄n−1,i

v̄0n−1,j =

K∑
i=1

µn−1,i|j

[
ᾱn−1,i

β̄2
n−1,i

+

(
ᾱn−1,i

β̄n−1,i
− m̄0

n−1,j

)2
]

ᾱ0
n−1,j =

(
m̄0

n−1,j

)2
v̄0n−1,j

β̄0
n−1,j =

m̄0
n−1,j

v̄0n−1,j

Filter propagation
For j = 1, 2, . . . ,K

˜̄αn,j =
ᾱ0
n−1,j

1 + cj β̄0
n−1,j/aj

β̃n,j =
β̄0
n−1,j

1 + cj β̄0
n−1,j/aj

ᾱn,j = ˜̄αn,j + aj β̄n,j = ˜̄βn,j + ajyn

Model likelihood update
For j = 1, 2, . . . ,K

µn,j ∝ ψn−1,jβ
′(yn; aj , ˜̄αn,j , 1,

˜̄βn,j/aj)

Mixing of local average RCS estimates
K∑

j=1

µn,j
β̄n,j

ᾱn,j − 1

Table II
THE PROPOSED IMM SOLUTION.

The normalization facilitates implementation of the IMM
scheme, because estimates of the normalized state, yielded by
filters with different assumed values of the parameter a, are di-
rectly comparable. Under such a transformation of variables, it
holds that E[yn|x̄n] = x̄−1n and p(x̄n|Yn−1) ' γ(x̄n; ˜̄αn,

˜̄βn),
p(x̄n|Yn) ' γ(x̄n; ᾱn, β̄n), where

˜̄αn =
ᾱn−1

1 + cβ̄n−1/a
˜̄βn =

β̄n−1
1 + cβ̄n−1/a

ᾱn = ˜̄αn + a β̄n = ˜̄βn + ayn .

Suppose that the behavior of the state and the observations
can be governed by one of K models of the form (A1)-
(A3), with parameters (ak, ck), k = 1, 2, . . . ,K. Let pij ,
i = 1, 2, . . . ,K, j = 1, 2, . . . ,K denote the probability of a
switch from the model i to the model j. Furthermore, assume
that, when the switch occurs, the state variable xn undergoes
a renormalization by the ratio of the new and the old value
of the parameter a, which ensures the normalized state x̄n
remains unaffected by the model transition. The IMM tracker
resulting from these assumptions is summarized in Table II.
For this algorithm, the predictive distribution of observations
is a mixture of the predictive distributions corresponding to
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Figure 3. Typical behavior of the hidden autoregressive gamma process (a =
2, c = 0.002, x0 = 1) and corresponding tracking results. Top plot: xn
(solid line) and its MMSE estimate (dashed line). Bottom plot: observations
yn (lollipops), local average RCS (solid line), and its MMSE estimate (dashed
line).
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Figure 4. Typical behavior of the hidden autoregressive gamma process (a =
2, c = 0.02, x0 = 1) and corresponding tracking results. Top plot: xn (solid
line) and its MMSE estimate (dashed line). Bottom plot: observations yn
(lollipops), local average RCS (solid line) and its MMSE estimate (dashed
line).

each model in the model set with weights ψn,j

p(yn+1|Yn) =

K∑
j=1

ψn,jβ
′(yn+1; aj , ˜̄αn+1,j , 1,

˜̄βn+1,j/aj) .

(29)

IV. SIMULATED AND REAL WORLD RESULTS

A. A basic example

Fig. 3 shows a typical realization of (xn, yn), obtained using
(9) for x0 = 1, a = 2 and c = 0.002. We also plot the MMSE
estimates of xn and of the local average RCS, computed using
(20) and (21), respectively. The tracker, which employed the
correct values of a and c, was initialized using the Jeffreys
prior and exhibits good accuracy through the entire simulation.

Fig. 4 shows the results of a similar simulation experiment,
differing in the value of c, which was increased to 0.02.
Observe qualitative differences between the two presented
choices of c – for c = 0.02 the changes in the local average
RCS are much faster, which makes tracking considerably more
difficult.

B. A quantitative comparison with existing approaches

We investigated how the proposed approach compares
against existing solutions in quantitative terms. The following
algorithms were compared:
• The proposed tracker.
• Algorithm (23).
• Algorithm (24), where the parameter λ was set to 0.1.
• The median of 10 observations.
• The Extended Kalman Filter constructed using assump-

tions (A1)-(A3), which takes the form

pn|n−1 = f2npn−1|n−1 + qn

x̂n|n−1 = x̂n−1|n−1
en = yn − a/x̂n|n−1
kn = pn|n−1hn/(h

2
npn|n−1 + rn)

x̂n|n = x̂n|n−1 + knen

pn|n = (1− knhn)pn|n−1 , (30)

where fn = 1 [c.f. (11)], qn = 2cx̂n−1|n−1 [c.f. (12)],
hn = −a/x̂2n|n−1, rn = a/x̂2n|n−1 [c.f. (A1)]. The local
average RCS was estimated using the formula a/xn|n
[c.f. (6)].

All algorithms were compared using 1000 realizations of
(xn, yn), generated in the following way: for each realization
x0 was drawn from the gamma distribution with shape and rate
equal to 20. The remaining trajectory of xn, 1 ≤ n ≤ 100, was
generated using (9). The observation process was governed by
assumption (A1) with a = 1.

We compared tracking accuracy and quality of forecasts
generated by each algorithm. The accuracy was scored by
accumulating the squared errors of local average RCS es-
timates. To eliminate the influence of the initial conditions
on the results, we discarded twenty initial samples from
the accumulation. The quality of forecasts was measured by
accumulating predictive log-likelihoods of the observations in
the same interval. The predictive likelihoods were obtained
by substituting the actual observed values of yn+1 into the
predictive distributions p(yn+1|Yn) generated by each of the
compared trackers [45], [46]. For the proposed algorithm we
employed Eq. (25). In case of the EKF, p(yn+1|Yn) takes the
form of the Gaussian distribution with mean a/x̂n|n−1 and
variance sn. The remaining algorithms were not fitted with
the forecasting mechanism and were modified to include one.

Owing to the discussion presented in Section II.G, extending
algorithms (23) and (24) was straightforward. For (23), one
can use β′(yn+1; a, µn, 1, (µn − 1)σ̂n). In case of (24), one
can add the second recursion

µn = (1− λ)µn−1 + λ

and employ β′(yn+1; a, µn, 1, µnσ̂n) as the predictive distri-
bution.

Finally, for the median filter, the inverse of its output served
as the estimate of the state and was substituted into (5), which
neglects the uncertainty of such an estimate.

Table III shows the comparison of mean accumulated
squared local average RCS estimation errors yielded by all
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c Proposed Alg. (23) Alg. (24) Median EKF
0.0000 1.34 1.34 4.95 15.6 1.41
0.0001 1.96 2.04 5.19 15.9 2.10
0.0002 2.57 2.92 5.53 16.6 2.65
0.0005 4.53 6.71 6.93 20.3 5.43
0.0010 10.2 20.9 11.1 29.4 —
0.0020 34.1 86.2 35.1 65.9 —

Table III
COMPARISON OF MEAN ACCUMULATED SQUARED LOCAL AVERAGE RCS

ESTIMATION ERRORS YIELDED BY THE PROPOSED TRACKER,
ALGORITHMS (23), (24), THE MEDIAN FILTER, AND THE EXTENDED

KALMAN FILTER, FOR SEVERAL VALUES OF c.

c Proposed Alg. (23) Alg. (24) Median EKF
0.0000 -82.9 -82.9 -84.5 -88.1 -121
0.0001 -83.1 -83.1 -84.5 -88.5 -122
0.0002 -84.0 -84.1 -85.3 -88.9 -124
0.0005 -86.6 -87.0 -87.6 -91.7 -130
0.0010 -88.9 -90.2 -89.5 -93.8 —
0.0020 -94.0 -97.6 -94.3 -98.3 —

Table IV
COMPARISON OF MEAN ACCUMULATED PREDICTIVE LOG-LIKELIHOODS

OBTAINED WITH THE PROPOSED TRACKER, ALGORITHMS (23), (24), THE
MEDIAN FILTER, AND THE EXTENDED KALMAN FILTER, FOR SEVERAL

VALUES OF c.

algorithms for several values of c. Table IV shows the corre-
sponding mean accumulated predictive log-likelihood scores.

In all cases, the proposed approach outperforms the other
ones. As could be expected, algorithm (23) works well only
for slow changes of the process parameters, i.e., for small
values of c. Algorithm (24), on the other hand, starts poorly
but gradually catches up with increasing c. The median filter
does very poorly at estimating the local average RCS and not
too well in generating forecasts. The EKF works reasonably
well at tracking until c = 0.001, when its performance breaks
down. However, it consistently fails at forecasting because
the Gaussian distribution matches the behavior of yn poorly.
We verified that one can obtain considerably better results by
forming the predictive distribution using x̂n|n−1 and (5), but
such a solution still lags behind the proposed approach.

C. The IMM tracker – a basic example

To demonstrate the advantages of the IMM estimator, we
will use the following scenario. The behavior of xn is governed
by (A2) with c = 0.002 at all times except n = 20 when

x20 =
x19
3

is enforced. The initial condition is set to x0 = 2. The
observations are governed by (8), where a = 2 at all times.
Under such setup, the behavior of the state variable at n = 20
corresponds to an abrupt, three-fold, increase of the local
average RCS.

The IMM structure was built around four models, specified
by the following values of a and c: (a1, c1) = (1, 0.002),
(a2, c2) = (1, 0.02), (a3, c3) = (2, 0.002) and (a4, c4) =
(2, 0.02). The probabilities of the model switch pij are set
to 0.025 (i 6= j) and 0.925 (i = j), respectively.
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Figure 5. The behavior of the IMM estimator under an abrupt change of the
local average RCS. Top plot – observations, true values of the local average
RCS (solid line) and their IMM estimates (dashed line). Bottom plot – model
likelihoods: solid line a = 1, c = 0.002; dashed line a = 1, c = 0.02;
dotted line a = 2, c = 0.002; dash-dotted line a = 2, c = 0.02.

Fig. 5 shows the behavior of the IMM estimator observed
for this scenario. Inspection of the model likelihoods around
n = 20 confirms their proper reaction to the abrupt change.
Furthermore, the IMM structure achieves better accuracy than
any of the four constituting trackers alone. In the simulation
shown, the accumulated squared RCS estimation error yielded
by the IMM solution was equal to 15.6, against 19.4, 55.3,
20.5 and 18.1 obtained using (a1, c1), (a2, c2), (a3, c3) and
(a4, c4), respectively.

D. The IMM tracker applied to a real-world dataset

Fig. 6 shows the behavior of the proposed IMM tracker for
real-world data, collected by observing a cooperative target.
For simplicity, all settings of the tracker were left unchanged
from the last simulation example.

We will start with the qualitative inspection of the data and
the behavior of the tracker. Consider the fragment between
n1 = 20 and n2 = 35, for example. The average RCS during
this period varies rather slowly, and the distribution of the
observations seems closer to Swerling-III than to Swerling-
I. The IMM scheme recognizes this situation correctly – the
likelihoods of the two models with a = 2 are larger than for
the models with a = 1. Near the end of that fragment, the
likelihood of the model with a = 2 and c = 0.002 exceeds
0.6. Observe, however, that when the RCS decreases sharply
between n2 = 35 and n3 = 50, the likelihood of the model
with a = 2 and c = 0.002 decreases instantly.

Another interesting part occurs between n4 = 80 and n5 =
120, where the observations become very spiky. Observe a
nearly instantaneous reaction of the model likelihoods to this
change of behavior.

Since the true values of the local average RCS are unknown
for real-world datasets, we can quantify only the quality of the
forecasts generated by the algorithm. As in Section IV.B, the
assessment can be based on the cumulative predictive log-
likelihood scores. For the data shown, the IMM algorithm’s
score was -221, while algorithms (23) and (24) could only
reach -263 and -226, respectively. These values confirm that
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Figure 6. The behavior of the IMM estimator for real-world measurements.
Top plot – observations and estimates of the local average RCS. Bottom plot –
model likelihoods: solid line a = 1, c = 0.002; dashed line a = 1, c = 0.02;
dotted line a = 2, c = 0.002; dash-dotted line a = 2, c = 0.02.

the forecasts generated using the proposed approach are su-
perior not only in the simulations but also for the real-world
data.

V. CONCLUSIONS

An approximate Bayesian tracker of radar cross section was
proposed. The scheme exploits the conjugate prior property
of the gamma family by modeling the state using an au-
toregressive gamma process and applying a nontrivial gamma
approximation during the time update step. The analysis of the
tracker allowed us to formulate noteworthy observations about
the existing RCS tracking solutions. Finally, to cope with the
unknown process parameters, the interacting multiple model
extension of the basic scheme was proposed. The behavior of
all proposed solutions was verified using simulations and a
real-world dataset.
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[12] Lee, Y., Choos, H., Kim, S., and Kim, H., “RCS based target recogni-
tion with real FMCW radar implementation,” Microwave and Optical
Technology Letters, vol. 58, no. 7, pp. 1745–1750, 2016.

[13] Ehrman, L. and Lanterman, A., “A robust algorithm for automatic
target recognition using passive radar,” in Proc. thirty-sixth southeastern
symposium on system theory, 2004, pp. 102–106.

[14] Jiang, H., Xu, L., and Zhan, K., “Joint tracking and classification based
on aerodynamic model and radar cross section,” Pattern recognition,
vol. 47, no. 9, pp. 3096–3105, 2014.

[15] Bell, K. L., Johnson, J. T., Smith, G. E., Baker, C. J., and Rangaswamy,
M., “Cognitive radar for target tracking using a software defined radar
system,” in 2015 IEEE Radar Conference (RadarCon), 2015, pp. 1394–
1399.

[16] Meller, M., “Radar time budget optimization subject to angle accuracy
constraint via cognitive approach,” in Proc. 18th International Radar
Symposium (IRS 2017), Prague, Czech Republic, 2017.

[17] Han, Q., Pan, M., and Liang, Z., “Joint power and beam allocation of
opportunistic array radar for multiple target tracking in clutter,” Digital
Signal Processing, vol. 78, pp. 136–151, 2018.

[18] Ochodnicky, J., Matousek, Z., Sostronek, M., and Hykel, A., “Radar
cross section measurement by subscale models,” in 2008 International
Radar Symposium, Wroclaw, Poland, 2008.

[19] Knott, E. F., Radar Cross Section Measurements. New York: Van
Nostrand Reinhold, 1993.

[20] Dybdal, R. B., “Radar cross section measurements,” Proceedings of the
IEEE, vol. 75, no. 4, pp. 498–516, 1987.

[21] Crispin, J. W. and Maffett, A. L., “Radar cross-section estimation for
simple shapes,” Proceedings of the IEEE, vol. 53, no. 8, pp. 833–848,
1965.

[22] ——, “Radar cross-section estimation for complex shapes,” Proceedings
of the IEEE, vol. 53, no. 8, pp. 972–982, 1965.

[23] White, R. G., “Simulated annealing algorithm for radar cross-section
estimation and segmentation,” Proc. SPIE, vol. 2243, pp. 231–240, 1994.

[24] Crispin, J. J., Methods of radar cross-section analysis. Elsevier, 2013.
[25] Swerling, P., “Probability of detection for fluctuating targets,” IRE

Transactions on Information Theory, vol. 6, no. 2, pp. 269–308, 1960.
[26] ——, “Radar probability of detection for some additional fluctuating

target cases,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 33, no. 2, pp. 698–709, 1997.

[27] van Trees, H. L., Bell, K. L., and Tian, Z., Detection, Estimation and
Modulation Theory, Part I. John Wiley & Sons, 2011.

[28] Stone, L. D., Handbook of Multisensor Data Fusion. Boca Raton,
FL: CRC Press, 2001, chapter A Bayesian approach to multiple-target
tracking.

[29] Arulampalam, M. S., Maskell, S., Gordon, N., and Clapp, T., “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174–188,
2002.

[30] Doucet, A. and Johansen, A. M., “A tutorial on particle filtering and
smoothing: Fifteen years later,” Institute of Statistical Mathematics,
Japan and Department of Statistics, University of Warwick, Tech. Rep.,
2008.

[31] Fink, D., “A compendium of conjugate priors,” Environmental Statistics
Group, Department of Biology, Montana State University, Tech. Rep.,
1997.

[32] Anderson, B. D. O. and Moore, J. B., Optimal Filtering. Englewood
Cliffs, New Jersey: Prentice–Hall, 1979.

[33] Julier, S. J. and Uhlmann, J. K., “Unscented filtering and nonlinear
estimation,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, 2004.

[34] Arasaratnam, I. and Haykin, S., “Cubature Kalman filters,” IEEE Trans-
actions on Automatic Control, vol. 54, no. 6, pp. 1254–1269, 2009.

[35] Farina, A., Benvenuti, D., and Ristic, B., “Estimation accuracy of a land-
ing point of a ballistic target,” in Proceedings of the Fifth International
Conference on Information Fusion. (FUSION 2002), vol. 1, 2002, pp.
2–9 vol.1.

[36] Novanda, H., Regulski, P., González-Longatt, F. M., and Terzija, V.,
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APPENDIX A
DERIVATION OF (10)-(12)

We start by deriving L(pδ(xn|xn−1)), the Laplace transform
of pδ(xn|xn−1). Applying L-transform to (7) yields

L(pδ(xn|xn−1)) = e−bxn−1

∞∑
k=0

bkxkn−1
cδ+kΓ(δ + k)

Lk(s)

k!
, (31)

where

Lk(s) = L
[
exp

(
−xn
c

)
xδ+k−1n

]
.

Using the substitution yn = (s + 1/c)xn yields, after some
straightforward manipulations,

Lk(s) =

∞∫
0

exp
(
−xn
c

)
xδ+k−1n e−sxndxn

=
cδ+k

(sc+ 1)δ+k
Γ(δ + k) . (32)

Substituting Lk(s) into (31), after canceling and rearranging
the remaining common terms, leads to the following formula

L(pδ(xn|xn−1)) =
e−bxn−1

(sc+ 1)δ

∞∑
k=0

bkxkn−1
(sc+ 1)kk!

, (33)

where the sum is immediately recognizable as the exponent
function

L(pδ(xn|xn−1)) =
e−bxn−1

(sc+ 1)δ
exp

(
bxn−1
sc+ 1

)
=

1

(sc+ 1)δ
exp

(
−scbxn−1

sc+ 1

)
.

Equation (10) is obtained with δ → 0 and cb = 1.
The moments of p(xn|xn−1) can be computed using the

following property

L(p(xn|xn−1)) = E
[
e−sxn |xn−1

]
.

It follows immediately that

E[xkn|xn−1] = (−1)k
dk

dsk
exp

(
−sxn−1
sc+ 1

)∣∣∣∣
s→0

.

Equation (11) stems directly from the above equality (k = 1).
Reaching Eq. (12) requires one to combine the results obtained
for k = 1 and k = 2.

APPENDIX B
DERIVATION OF (17)

Let
k(s) =

sc+ 1

s(c+ β−1n−1) + 1
.

Since K(s) = [k(s)]αn−1 , it holds that

d

ds
K(s) = αn−1[k(s)]αn−1−1 d

ds
k(s) , (34)

where
d

ds
k(s) =

−β−1n−1
[s(c+ β−1n−1) + 1]2

.

Substituting s = 0 into k(s) and its derivative, one obtains the
following two equalities

k(0) = 1
d

ds
k(s)

∣∣∣
s→0

= − 1

βn−1
(35)

which, when combined with Eq. (34), lead to

− d

ds
K(s)

∣∣∣
s→0

=
αn−1
βn−1

.

Note that this result could be alternatively derived by invoking
(11) and evaluating its expectation over xn−1.

The second derivative of K(s) reads

d2

ds2
K(s) = −αn−1

βn−1

{
(αn−1 − 1)[k(s)]αn−1−2

[s(c+ β−1n−1) + 1]2
d

ds
k(s)

− 2[k(s)]αn−1
c+ β−1n−1

[s(c+ β−1n−1) + 1]3

}
.

Evaluating d2K(s)/ds2 for s → 0, substituting (35), and
performing some straightforward simplifications allows one to
obtain the second formula in Eq. (17).
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