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a b s t r a c t

We study a new problem for cubic graphs: bipartization of a cubic graph Q by deleting
sufficiently large independent set I . It can be expressed as follows: Given an integer k and a
connected n-vertex tripartite cubic graph Q = (V , E) with independence number α(Q ), does
Q contain an independent set I of size k such that Q − I is bipartite? We are interested for
which values of k the answer to this question is affirmative.We prove constructively that if
α(Q ) ≥ 2n/5, then the answer is positive for each k satisfying ⌊(n−α(Q ))/2⌋ ≤ k ≤ α(Q ).
It remains an open question if a similar construction is possible for α(Q ) < 2n/5.

We also show that this problem with α(Q ) ≥ 2n/5 and k satisfying ⌊n/3⌋ ≤ k ≤ α(Q )
can be related to semi-equitable graph 3-coloring, where one color class is of size k, and
the subgraph induced by the remaining vertices is equitably 2-colored. This means that Q
has a coloring of type (k, ⌈(n − k)/2⌉, ⌊(n − k)/2⌋).

© 2015 Elsevier B.V. All rights reserved.

1. Some preliminaries

There are many challenging and interesting problems involving independent sets and cubic graphs. One of the most
known is the problem of independence, IS(Q , k):

Given a connected cubic graph Q = (V , E) and an integer k, does Q contain an independent set of size at least k?

An independent set of a graph Q is a subset I of the vertices of Q , I ⊆ V (Q ), such that no two vertices in I are joined by
an edge in Q . The size of the largest independent set is called the independence number of Q , and it is denoted by α(Q ). The
problem of finding the value of α(Q ) is widely discussed in the literature. In general, the problem IS(Q , k) is NP-complete
for cubic graphs, and even for planar cubic graphs [5]. A comprehensive survey of results on the IS problem, including cubic
graphs, was presented in [1,8,10].

The second type of problems is connected with decycling sets of cubic graphs (also known as feedback-vertex sets). For
a graph Q , a subset S ⊆ V (Q ) is a decycling set of Q if and only if Q − S is acyclic, where by Q − S we mean the subgraph
of Q induced by the vertices in S = V (Q ) \ S. Although the decycling set decision problem is NP-complete in general, it is
polynomially solvable for cubic graphs [11].
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The third group contains problems connected with bipartization of cubic graphs. Given a graph, the task is to find a
smallest set of vertices whose deletion makes the remaining graph bipartite. Choi et al. [4] showed that the bipartization
decision problem is NP-complete for cubic graphs. Some approximation algorithms were given in [9].

In this paper we combine the above approaches and define the Bipartization IS problem BIS(Q , k), as follows:

Given a connected cubic graph Q = (V , E) and integer k, does Q contain an independent set I of size at least k such
that Q − I is bipartite?

We are interested for which values of k the answer to this question is affirmative. This problem can be seen as a task of
finding independent odd decycling sets.

We say that a graph G is t-colorable if its vertex set can be partitioned into t independent sets-color classes. The smallest
value of t admitting t-colorability of graph G is named the chromatic number of G and denoted by χ(G). Let us recall Brooks’
theorem:

Theorem 1 ([2]). For any connected graph G with maximum degree ∆, the chromatic number χ(G) of G is at most ∆, unless G
is a clique or an odd cycle.

This implies that

2 ≤ χ(Q ) ≤ 3

for all cubic graphs except K4.
It is obvious that for 2-chromatic cubic graphs and k ≤ |V (Q )|/2 the answer to BIS(Q , k) is affirmative. Hence, in the

sequel we consider only connected cubic graphs Q with χ(Q ) = 3. This means that V (Q ) can be partitioned into three
independent sets and Q is not bipartite. The class of such cubic graphs will be denoted by Q3. Its subclass of graphs on n
vertices will be denoted by Q3(n).

A graph is equitably t-colorable if and only if its vertex set can be partitioned into independent sets V1, V2, . . . , Vt such
that

|Vi|−|Vj|
 ≤ 1 for all i, j = 1, 2, . . . , t . The smallest value of t admitting such coloring of the graphG is named equitable

chromatic number of G and denoted by χ=(G).
In the case of cubic graphs we know that

χ=(Q ) = χ(Q ), (1)

where χ=(Q ) is the equitable chromatic number of Q . This follows from

Theorem 2 (Chen, Lih, andWu, 1994, [3]). Every proper coloring of connected cubic graph can be made equitable without adding
new colors.

Chen et al.’s [3] algorithm relies on repeatedly decreasing the width of coloring (the difference between the cardinality
of the largest and smallest color class) by one until the difference is not greater than one.

In this paper we are also interested in equitable coloring of Q − I . We will present an algorithm which, given an
independent set of size k ≥ 2n/5, constructs an appropriate independent set I of size k for the BIS(Q , k) problem with
Q ∈ Q3(n). We will also prove that such cubic graphs have colorings of type (k, ⌈(n − k)/2⌉, ⌊(n − k)/2⌋), which means
that Q − I has an equitable 2-coloring. Such type of coloring is called semi-equitable, i.e. the coloring in which exactly one
color class is of any size while the cardinalities of the remaining color classes differ by at most 1. Colorings of this kind are
useful in a problem of scheduling identical jobs on three parallel uniform processors [7]. In such a model of scheduling one
of processors is faster than the remaining two, while the two slower processors are of the same speed and the conflict graph
is cubic.

2. Main results

Our main result concerning BIS(Q , k) is as follows.

Theorem 3. If Q ∈ Q3(n) and α(Q ) ≥ 2n/5, then there exists an independent set I of size k in Q such that Q − I is bipartite
for ⌊n/3⌋ ≤ k ≤ α(Q ).

Note, that this leaves the problem open for ⌈n/3⌉ ≤ α(Q ) < 2n/5.
Before we prove Theorem 3, we need some auxiliary concepts.
We consider connected cubic graphs Q ∈ Q3(n) with independence number α(Q ) ≥ 2n/5, and let I be an independent

set of size at least 2n/5. If Q − I is not bipartite, then the subgraph Q − I consists of two parts: a 2-chromatic part of all
bipartite components and a 3-chromatic part containing odd cycles (possibly with chords, bridges, pendant edges, etc.).

Definition 1. For Q ∈ Q3, the residuum R(I) of Q with respect to an independent set I is the set of all odd cycles in the graph
Q − I .

For example, for the graph in Fig. 1 and given I , R(I) = {v1v2v3, v4v5v6}.
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Fig. 1. Example of a cubic graph in Q3(20) with independent set I of size 8. The vertices of I are marked in black. R(I) = {v1v2v3, v4v5v6}.

Fig. 2. Subgraph of Q containing: (a) diamond K4 − ewith pseudo-free vertices u and w of type 1; u, w ∈ I; (b) diamond K4 − ewith pseudo-free vertices
u and w of type 2; u, w, x ∈ I .

Definition 2. Vertex w ∈ I is a free vertex in Q ∈ Q3 with respect to independent set I if and only if its removal from I (but
not from V (Q )) results in the same residuum, i.e. R(I) = R(I \ {w}). The set of all free vertices in I will be denoted by F0.

For the graph in Fig. 1 and given independent set I , F0 = {w2, w3, . . . , w8}. Vertex w1 is not free because moving it from
I to Q − I creates a new odd cycle in Q − I , namely w1v2v3. Clearly, F0 ⊂ I .

Definition 3. A diamond in Q with respect to independent set I is a subgraph D on vertices {u, w, a, b} ⊆ V (Q ) isomorphic
to K4 − e, where u, w ∈ I .

Definition 4. Vertices u, w ∈ I are pseudo-free vertices of type 1 in Q with respect to independent set I if and only if there
is a diamond D in Q on vertices {u, w, a, b}, and there is no odd cycle C of length at least 5 with vertices in I ∪ {u, w} such
that |V (C) ∩ V (D)| = 3, (cf. Fig. 2(a)). The set of all pseudo-free vertices of type 1 will be denoted by F1.

Note that F1 ⊂ I and F1 is a disjoint union of pairs of vertices {u, w} satisfying Definition 4.

Definition 5. Vertices u, w ∈ I are pseudo-free vertices of type 2 in Q with respect to independent set I if and only if there is
a diamond D in Q on vertices {u, w, a, b}, and there is a cycle C5 with vertices in I ∪ {u, w} such that |V (C5) ∩ V (D)| = 3,
and the two vertices {c, d} = V (C5) \ V (D) have a common neighbor x in I (cf. Fig. 2(b)). The set of all pseudo-free vertices
of type 2 will be denoted by F2.

Note that vertices c and d are consecutive on C5, and F2 ⊂ I is a disjoint union of pairs of vertices {u, w} satisfying
Definition 5.

Let F(I) = F0 ∪ F1 ∪ F2. Clearly, Fi ∩ Fj = ∅ for i, j = 0, 1, 2 and i ≠ j.
The following main auxiliary lemma implies that, under the assumptions of Theorem 3, if R(I) is nonempty, then so is

F(I).

Lemma 1. If Q ∈ Q3(n) has an independent set I of size at least 2n/5 and R(I) ≠ ∅, then there exists a free or pseudo-free (of
type 1 or 2) vertex in I.

We will prove Lemma 1 in Section 3.

Proof of Theorem 3. First, we will prove that our theorem holds for k satisfying 2n/5 ≤ k ≤ α(Q ).
Let I be any independent set of size at least 2n/5. Assume that R(I) ≠ ∅. We will show that there exists another

independent set, say J , such that |J| ≥ |I| and R(J) ( R(I).
Let C be an odd cycle belonging to R(I). Any vertex v ∈ V (C) must be of degree 2 or 3 in Q − I . If there exists v ∈ V (C) of

degree 3 in Q − I , then we set J = I ∪ {v}. The new residuum R(J) is a subset of R(I) \ {C}. Otherwise, if each v ∈ V (C) is of
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Fig. 3. Example of a subgraph of Q with alternating path P = v1v2v3v4v5w, where vertex v5 is as vi of Subcase 1.2.

Fig. 4. Example of a subgraph of Q and path P = v1v2v3v4v5v6w, which is not alternating. Vertices v2, v4, w ∈ I , vertex v5 is as vj in Case 2. After applying
the procedure described in Case 2: v1, v3 ∈ I ′ while v2, v4 ∈ I ′ and there is a cycle C ′

= v4v5v6v7v8v9v10 with vt = v6 (Subcase 2.2).

degree 2 in Q − I , then let v1 ∈ V (C) and P = v1v2 . . . vp be the shortest path from v1 to any vp ∈ F(I) in Q such that none
of vertices v1, v2, . . . , vp−1 is free or pseudo-free. We know from Lemma 1 that F(I) is nonempty. We consider two cases.

Case 1: P is a path alternating between I and I.
This means that v1, v3, . . . , vp−1 ∈ I and v2, v4, . . . , vp ∈ I , vp = w.

Subcase 1.1: Each vertex of v3, v5, . . . , vp−1 has exactly two neighbors in I.
Then we interchange even and odd vertices between I and I along the path P so that a new independent set

J =


I ∪ {v1, v3, . . . , vp−1} \ {v2, v4, . . . , vp} if w ∈ F0,
I ∪ {v1, v3, . . . , vp−1, a} \ {v2, v4, . . . , vp, u} if w ∈ F1 ∪ F2,

of the same size is obtained, and R(J) ⊂ R(I) \ {C}.
Subcase 1.2: There is a vertex in I on path P such that all (three) of its neighbors belong to I.

In this case we choose among such vertices one with the smallest index, say vi, 3 ≤ i ≤ p − 1 (see vertex
v5 in Fig. 3). Let us observe that vertex vi−1 ∈ I can belong to odd cycles in Q − (I \ {vi−1}), including the edge
{vi−2, vi−1}, but there is no odd cycle in Q − (I \ {vi−1}) passing through {vi−1, vi}. We interchange even and
odd vertices along the prefix subpath v1v2 . . . vi−1 of P , so that J = I ∪ {v1, v3, . . . , vi−2} \ {v2, v4, . . . , vi−1},
and R(J) ⊂ R(I) \ {C}.

Case 2: P is not an alternating path.
This means that there is a vertex in Q − I on P such that its successor on path P is also in I . We choose among

such vertices one with the smallest index, say vj (see vertex v5 in Fig. 4).
We consider the alternating part of the path P up to vertex vj−1 as in Case 1. Let I ′ be a new independent set
obtained after applying the procedure from Case 1. Now, we have one of the following subcases:

Subcase 2.1: There is no odd cycle in Q − I ′ containing the edge {vj−1, vj}.
Cycle C is broken and no new odd cycle is created. J = I ′.

Subcase 2.2: There is an odd cycle C ′ in Q − I ′ containing the edge {vj−1, vj}.
If there exists v ∈ V (C ′) of degree 3 in Q − I ′, then we set J = I ′ ∪ {v} (the new residuum R(J) is a subset

of R(I ′) \ {C ′
}; of course, R(J) ( R(I)). Otherwise, let vt be the vertex belonging to both C ′ and P whose index t

is the highest (see vertex v6 in Fig. 4). Note, that vt+1 ∈ I ′. In this case we consider the alternating part of the
path P starting with vertex vt as in Case 1, and finally obtain J , which clearly satisfies R(J) ( R(I).

In fact, one can see that a single iteration of the algorithm breaks all odd cycles in R(I) containing vertex v. If the new
independent set has nonempty residuum, we repeat our algorithm iteratively (with another cycle C and path P). There is at
least one odd cycle broken in each iteration of the algorithm. Consequently, after s iterations of the algorithm, we obtain a
sequence of independent sets J1, J2, . . . , Js of non-decreasing sizes, R(Js) = ∅, and hence Q − Js is bipartite.

Therefore, by Lemma 1, if a cubic graphQ ∈ Q3 has an independent set I of size k ≥ 2n/5, then it also has an independent
set Js of size at least k such that Q − Js is bipartite. Due to Chen et al.’s [3] constructive proof of Theorem 2 thus obtained
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3-coloring of Q can be equitalized to (⌊n/3⌋, ⌊(n+ 1)/3⌋, ⌊(n+ 2)/3⌋) by decreasing the width of the coloring one by one,
which completes the proof for all k, ⌊n/3⌋ ≤ k ≤ α(Q ). �

A single iteration of our bipartization construction of Theorem 3 clearly runs in O(n2) time. The naive worst case bound
may require |R(I)| such iterations, and |R(I)| is bounded by the number of odd cycles in the original graph, which in turn can
be exponential. On the other hand, one can easily note that the size of the set of vertices on all cycles in R(I) is decreasing.
Thus, O(n) iterations are sufficient to complete the algorithm and the computational complexity of the whole algorithm is
O(n3).

3. Proof of Lemma 1

Lemma 1. If Q ∈ Q3(n) has an independent set I of size at least 2n/5 and R(I) ≠ ∅, then there exists at least one free or
pseudo-free (of type 1 or 2) vertex in I.

Proof. We need to prove that F(I) = F0 ∪ F1 ∪ F2 ≠ ∅. First, we assume that n is divisible by 10 and let I be an independent
set of size 2n/5. Let |L| = l, where L denotes the set of isolated vertices in Q − I . We are interested in the structure of Q − I ,
including the value of l. This is a graphwith 3n/5 vertices and 3n/10 edges. Let us notice that ifQ − I has no isolated vertices,
Q − I must define a perfect matching, in which case we have 3n/10 K2’s. If Q − I contains components with more than one
edge, then we have some number of isolated vertices. For example, a cycle Cp in Q − I ‘‘implies’’ p isolated vertices, and a
path Pp ‘‘implies’’ p − 2 vertices. In general, a component of Q − I withm′ edges and n′ vertices ‘‘implies’’ 2m′

− n′ isolated
vertices.Q − I can contain as components K1, K2, Pp, Cp′ (p, p′

≥ 3), and components which have at least one vertex of degree
3. Let Ql denote the part of Q − I excluding K1’s and K2’s, i.e. the part which ‘‘implies’’ the isolated vertices. For given Q and
I , the subgraph Q − I consists of Ql, l isolated vertices K1 and k2 isolated edges K2.

We consider two cases:

Case 1: l > 2n/15.
Since 3l > |I|, there must exist at least one vertex in I , say u, which is adjacent to at least two vertices in L. Note

that u cannot be on any cycle together with vertices of Q − I . This means that u ∈ F0 is a free vertex, and F0 ≠ ∅.
Case 2: l ≤ 2n/15.

Defineγ1,γ2 as thenumber of non-free vertices in I implied by k2 isolated edges inQ−I , and others, respectively.
We have |I| = |F(I)| + γ1 + γ2.

In this case, where l ≤ 2n/15, F0 ⊂ F(I) may be empty. We will show that if F0 = F1 = ∅, then F2 ≠ ∅.
First, we will prove that there exists K2 among all k2 isolated edges such that it is a subgraph of a diamond

(K4 − e). We introduce some additional notation. Let K i denote the set of all such K2’s in Q − I , whose endvertices
have exactly i common neighbors in I , and let |K i

| = ki2, i = 0, 1, 2. Of course, k2 = k02 + k12 + k22. Moreover, let us
notice that k22K2’s result in desirable k22 diamonds with respect to I .

Claim. There is a diamond with respect to I in Q , i.e. k22 > 0.
Proof of Claim. For a contradiction to the Claim, let us assume that the endvertices of each K2 have at most one
common neighbor in I . This means that k2 isolated edges cause at most k2 non-free vertices.

Since F0 = ∅, then all vertices in I are non-free. Note that any vertex in I is adjacent to at most one isolated
vertex in Q − I , since otherwise it would be free.

We will show that

3n/10 − 2l + 3 ≤ k2 ≤ 3n/10 − 3l/4. (2)

Indeed, let us consider the structure of Ql implying the minimal number of K2’s. It is easy to see that such Ql must
contain C3 and (l−3)P3, with 3(l−2) vertices and 2(l−2)+1 edges. This implies that k2 ≥ (3n/5−l−3(l−2))/2 =

3n/10−2l+3. On the other hand, the structure of Ql maximizing k2 must contain the minimal number of vertices
equal to 3n/5− 2k2 − lwith 3n/10− k2 edges. Hence k2 satisfies 3(3n/5− 2k2 − l) ≥ 3n/5− 2k2, which implies
the upper bound in (2).

We will bound from above the maximum number of non-free vertices in I for which an odd cycle (resulting
from the fact that they are non-free vertices) is formed by vertices of Ql ∪ I (this bound is denoted by γmax). One
can check that its maximal value is equal to 3l/2 − 7/2 and it is achieved by Ql = C3 ∪ (l − 3)/p Pp+2 for even p.
The number of vertices in such Ql is maximal for p = 2. In this case k2 = 3n/10 − 3l/2 + 3/2.

Hence, the maximum number of non-free vertices in I implied by vertices of Q − I , assuming that F0 = ∅ and
that the endvertices of each K2 have at most one common neighbor in I , is γmax + k2 and we have

γmax + k2 ≤ (3l/2 − 7/2) + (3n/10 − 3l/2 + 3/2) < 2n/5. (3)

End of proof of Claim.
Now, let us assume that F1 = ∅ (with F0 = ∅). This means that three vertices of each diamond D formed by

edges from K2 lie on an odd cycle of length at least 5 (due to Definition 4). We note that such odd cycles can be
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caused by joining vertices from I ∩ V (D) to endvertices of K2 from K1
∪ K0. Observe that diamonds connected in

this way to K2 ∈ K1 result in pseudo-free vertices of type 2.
Finally, assume that F2 = ∅. This implies that the endvertices of each K2 ∈ K2 are joined to vertices of Ql or to

endvertices of K2 ∈ K0. Since Q is cubic and connected, there is at most one diamond joined to each of K2 ∈ K0.
Since |V (Ql)| + l + 2k2 = 3n/5, and k2 = k02 + k12 + k22, and by (2), we have

|V (Ql)| + l + k02 + k12 + k22 = 3n/5 − k2 ≤ 3n/10 + 2l − 3.

Since γ2 ≤ |V (Ql)|/2, we get

2γ2 + l + k02 + k12 + k22 ≤ 3n/10 + 2l − 3.

Because clearly

γ2 + 2k22 + k12 = 2n/5 = |I|,

and hence k12 = 2n/5 − γ2 − 2k22 − k12, we have:

k22 ≥ γ2 + n/10 + k02 + 3 > γ2 + k02. (4)

Since F1 = ∅, inequality (4) means that at least one diamond with respect to I is joined to K2 ∈ K1. This implies
F2 ≠ ∅, a contradiction. �

4. Bipartization and equitable colorings

In the paper we have posed a new problem for cubic graphs Q ∈ Q3(n)with an independent set I of size k. We answered
the question about existence of appropriate bipartizing independent set for ⌊n/3⌋ ≤ k ≤ α(Q ) and α(Q ) ≥ 2n/5.

On the other hand, Frieze and Suen [6] showed that the independence number of almost all cubic graphs on n vertices
satisfies α(Q ) ≥ 2.16n/5 − ϵn, for any constant ϵ > 0. Moreover, they gave a simple greedy algorithm which finds an
independent set I of that size in almost all cubic graphs. In practice this means that a graph from Q3(n) is very likely to have
an independent set of size k ≥ 2n/5. Certainly, such a set I need not be bipartizing (cf. [7], Fig. 3).

Taking into consideration the structure of the bipartized subgraph Q − I , it turns out that such a subgraph can be colored
in equitable waywith two colors. Let us assume that |I| = 2n/5. Notice that 3n/5 vertices of Q − I induce binary trees (some
of themmay be trivial) and/or graphs whose 2-core is equibipartite (an even cycle possibly with chords). Note that deleting
an independent set I of cardinality 2n/5 from a cubic graph Q means also that we remove 6n/5 edges from the set of all
3n/2 edges of Q . The resulting graph Q − I has 3n/5 vertices and 3n/10 edges. Let si, 0 ≤ i ≤ 3, be the number of vertices in
Q − I of degree i, Σ3

i=0si = 3n/5. Since the number of edges is half the number of vertices, the number of isolated vertices,
s0, is equal to s2 + 2s3. If s0 = 0, then Q − I is a perfect matching and its equitable coloring is obvious.

Suppose that s0 > 0. Consider the part of Q − I without isolated vertices and its 2-coloring. Each vertex of degree 3
causes the difference between cardinalities of color classes equal to at most 2 (K1,3), similarly each vertex of degree 2 causes
the difference at most 1 (K1,2). The difference between the cardinalities of color classes in any coloring satisfying these
conditions is at most s2 + 2s3 in Q − I − L, and an appropriate assignment of colors to isolated vertices L makes the graph
Q − I equitably 2-colored. Hence, we have:

Proposition 4. If Q ∈ Q3(n) has an independent set I of size |I| = 2n/5, then it has a semi-equitable coloring of type
(4n/10, ⌈3n/10⌉, ⌊3n/10⌋).

Note, that if an n-vertex cubic graphQ has an independent set I of cardinality |I| ≥ 2n/5 and consequently, by Theorem2,
there exists independent set J of the same cardinality such that Q − J is bipartite, then we have more isolated vertices in
Q − J and a partition of Q − J into V1 and V2 such that

|V1| − |V2|
 ≤ 1 is possible. Hence we have

Corollary 5. If Q ∈ Q3(n) has an independent set I of size |I| ≥ 2n/5, then it has a semi-equitable coloring of type
(|I|, ⌈(n − |I|)/2⌉, ⌊(n − |I|)/2⌋).

Taking into account above considerations Theorem 3 can be extended as follows.

Theorem 6. If Q ∈ Q3(n) and α(Q ) ≥ 2n/5, then there exists an independent set I of size k in Q such that Q − I is bipartite
for ⌊(n − α(Q ))/2⌋ ≤ k ≤ α(Q ). �

The problem BIS(Q , k) for k < ⌊(n − α(Q ))/2⌋ in Q3(n) with α(Q ) ≥ 2n/5 stays open as well as the problem for cubic
graphs with α(Q ) < 2n/5. We think that our algorithm is effective also for solving many instance of open cases.

Finally, note that Theorem 6 cannot be generalized to all 3-colorable graphs, since the sun S3 graph1is a counterexample.

1 The 3-sun S3 is a graph on 6 vertices partitioned into two subsets U = {u0, u1, u2} and independent set W = {w1, w2, w3}, where vertices from U
form a cycle and each vertex wi ∈ W has exactly two neighbors, ui−1 and ui mod 3 .
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