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ABSTRACT

Magnetosonic periodic perturbations in a uniform and infinite plasma model are considered. Damping due to compressional viscosity,
electrical resistivity, and thermal conduction are taken into account, as well as some heating–cooling function, which may destroy the
isentropicity of wave perturbations. The wave vector forms arbitrary angle h with the equilibrium straight magnetic field, and all
perturbations are functions of time and longitudinal coordinate. Variable h and plasma-b bring essential difficulties in the description of
magnetosonic perturbations, which may be fast or slow. Wave damping of each kind depends differently on h and plasma-b. Longitudinal
velocity, which is periodic at any distance from an exciter, is analytically constructed. It approximates the exact solution with satisfactory
accuracy.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5142608

I. INTRODUCTION

Nonlinear acoustics usually deals with the Burgers equation,
which describes the propagation of finite-magnitude perturba-
tions in a planar flow with Newtonian attenuation and thermal
conduction.1–3 It may be rearranged into the diffusion equation
and solved exactly. Taking into account the inhomogeneity of the
background thermodynamic parameters, bulk flows, external
forces, and dispersive properties of a flow produces more complex
equations.3,4 Only a small part of them has an analytical solution.
Especial interest is paid to the flows in open systems with
destroyed adiabaticity. Among others, this is connected with pro-
gress in experimental and theoretical studies in astrophysics and
flows of unmagnetized gases with nonequilibrium chemical reac-
tions and vibrational relaxation.5–10 Heating and cooling effects
destroy the adiabaticity of a flow and may lead to enhancement of
sound, that is, to the acoustical activity of a medium. This is con-
ditioned by some special type of generic heating–cooling function.
Evolution of perturbations in initially uniform unbounded flows,
when heating/cooling applies alone, without mechanical and

thermal damping, is well understood. The leading-order equation
may be rearranged into the purely nonlinear equation, which in
turn may be exactly solved by the method of characteristics.1,7,11,12

Perturbations in acoustically active media amplify until sup-
pressed by nonlinear damping. This leads to discontinuities in the
waveforms.13–15 Involving damping complicates the dynamic
equation for wave perturbations in a medium. The exact solutions
to it are not found yet. The asymptotic behavior of perturbations
far from a wave driver in a thermally conducting plasma has been
analyzed by Chin et al.16 It has been proven that perturbations in
acoustically active flow develop into autowaves, that is, waveforms
dependent on equilibrium plasma parameters but not on the ini-
tial magnitude of perturbations. The authors concluded that the
autowaves exist only for the wavelength larger than the parameter
depending on the ratio of thermal conduction and degree of non-
adiabaticity introduced by some heating–cooling function. The
evaluations concern nearly saw-tooth profiles of velocity.
Magnetosonic periodic and monopolar waveforms with disconti-
nuities in weakly attenuating plasma also develop into self-similar

Phys. Plasmas 27, 032110 (2020); doi: 10.1063/1.5142608 27, 032110-1

Published under license by AIP Publishing

Physics of Plasmas ARTICLE scitation.org/journal/php

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://doi.org/10.1063/1.5142608
https://doi.org/10.1063/1.5142608
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5142608
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5142608&domain=pdf&date_stamp=2020-03-11
https://orcid.org/0000-0003-1106-9049
mailto:anna.perelomova@pg.edu.pl
https://doi.org/10.1063/1.5142608
https://scitation.org/journal/php
http://mostwiedzy.pl


waveforms at any distance from an exciter. The periodic wave is
stationary if nonlinear attenuation balances the inflow of energy.
This particular stationary waveform and exact dynamics of ini-
tially saw-tooth and monopolar triangular velocity profiles were
discussed in Ref. 17.

In this study, we derive the dynamic equation for longitudinal
particle velocity in magnetosonic waves by taking into account
mechanical damping, electrical resistivity, and thermal conduction
and discover various contributions of every damping factor in depen-
dence on the angle between the equilibrium magnetic field and the
wave vector and plasma-b. The complete dynamical equation consid-
ers also weak nonlinearity and the heating–cooling function (Sec. II).
The approximate solution to it is suggested and analyzed in Sec. III B.
Section IIIA recalls periodic saw-tooth waves in the purely nonlinear
flow of a magnetic gas.

II. EVOLUTIONARY EQUATION IN THE FINITE-
MAGNITUDE FLOW WITH DAMPING DUE TO
MECHANICAL AND THERMAL LOSSES AND
ELECTRICAL RESISTIVITY

We make use of a set of MHD equations describing homoge-
neous fully ionized gas with finite electrical conductivity, thermal con-
duction, and mechanical viscosity. It includes the continuity equation,
momentum equation, energy balance equation, and electrodynamic
equations in the differential form18,19

@q
@t
þ ~r � ðq~vÞ ¼ 0;

q
D~v
Dt
¼ �~rpþ Divpþ 1

l0
ð~r �~BÞ �~B;

Dp
Dt
� c

p
q
Dq
Dt
¼ ðc� 1Þ

"
Lðp; qÞ þ ~r � ðk~rTÞ þ 1

r

~r �~B
l0

 !2

þ Grad~v : p

#
;

@~B
@t
¼ ~r � ð~v �~BÞ þ D~B

l0r
;

~r �~B ¼ 0; (2.1)

where q and ~v are the density of a plasma and its velocity. The
magnetic field is designated by~B, and l0 is the permeability of the
free space. r denotes the electrical conductivity of a plasma (recip-
rocal of electrical resistivity), and k is its thermal conduction. The
third equation in the set (1) follows from the continuity and
energy equations. It refers to an ideal gas with the ratio of specific
heats (per unit mass) under constant pressure and constant den-
sity c, c ¼ CP=CV . T is the temperature of a plasma, obeying an
ideal gas state T ¼ p

ðCP�CV Þq. The fourth equation is the induction

equation of a gas with the electrical conductivity, and the fifth one
is the Maxwell equation reflecting the solenoidal character of ~B.
The generic heating–cooling function Lðp;qÞ may destroy the
non-isentropicity of a flow.16,20 It incorporates the effects of heat-
ing and radiative cooling of a plasma. While heating may vary in

dependence on the physical conditions, the radiative cooling
occurs due to optically thin radiation. Nakariakov et al.20 reviewed
physically meaningful kinds of the heating function in the context
of astrophysical applications, in particular in the high-
temperature atomic plasma and cold molecular interstellar gas
(coronal current dissipation, heating by Alfv�en mode/mode con-
version, constant heating per unit mass, heating by cosmic rays,
and grain photoelectrons).

The momentum equation contains mechanical losses, which
are described by Divp, where the Navier–Stokes form of the vis-
cous stress is

p ¼ g0ðGrad~v þ ðGrad~vÞT �
2
3
ð~r �~vÞEÞ;

where upper index T denotes transpose, E is the unit tensor, and g0
designates the so-called compressional viscosity.19,21 We retain
only the first term in the Braginskii’ expression for the viscous ten-
sor. Typically, it strongly dominates all other terms. In the solar
corona, it is at least five orders of magnitude larger and at least two
orders in magnitude larger in the upper chromosphere.22 The term
1
r ð

~r�~B
l0
Þ2 ¼~j

2

r indicates heat losses by Joule heating (~j is the current

density). This rate is usually small but should be included in resis-
tive MHD energy balance to be consistent with the resistivity in
the Ohm law. The transport parameters depend on the tempera-
ture and the angle between the magnetic field and particle velocity.
The classical transport theory concludes that heat conduction par-
allel to the magnetic field is much larger than the perpendicular
one, that is, kjj � k?, where k ¼ k? sin2ðhÞ þ kjj cos2ðhÞ
(kjj � T5=2). The electrical resistivity results from collisions
between electrons and ions and depends on temperature as
T�3=2.23 It is anisotropic with at most r�1? � 3:4r�1jj , where the

electrical conductivity along the magnetic field rjj is the Spitzer
value. In resistive MHD, it is customary not to distinguish parallel
and transverse electrical resistivities but make use of an isotropic

r, so as
~j
r ¼

~j jj
rjj
þ~j?

r?
.19 In general, the transport parameters also

depend on the microturbulent processes in a plasma. It is conve-
nient not to specify transport parameters. We follow the ideas of
Chin et al. and Kumar et al. in this issue.16,24 The terms reflecting
the variation of damping coefficients with coordinates are not con-
sidered. We assume that the wave vector of a planar flow is
directed along the z axis and forms constant angle h (0 � h � p)
with the straight equilibrium magnetic field ~B0. All perturbations
in a flow are functions of t and z. The y-component of ~B0 equals
zero, so as

B0;x ¼ B0 sin ðhÞ; B0;z ¼ B0 cos ðhÞ; B0;y ¼ 0:

We accept the geometry used in the studies of Nakariakov et al. and
Chin et al.16,20

In order to analyze the linear flow, all thermodynamic quanti-
ties are expanded around the equilibrium thermodynamic state as
f ðz; tÞ ¼ f0 þ f 0ðz; tÞ. A plasma is motionless in equilibrium:
~v0 ¼~0. The leading-order system includes quadratic nonlinear
terms
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@q0

@t
þ q0

@vz
@z
¼ q0

@vz
@z
� v

@q0

@z
;

@vx
@t
� B0;z

q0l0

@Bx

@z
� g0

q0

@2vx
@z2
¼ �vz

@vx
@z
� B0;z

q2
0l0

q0
@Bx

@z
;

@vy
@t
� B0;z

q0l0

@By

@z
� g0

q0

@2vy
@z2
¼ �vz

@vy
@z
� B0;z

q2
0l0

q0
@By

@z
;

@vz
@t
þ 1

q0

@p0

@z
þ B0;x

q0l0

@Bx

@z
� 4g0
3q0

@2vz
@z2
¼ q0

q2
0

@p0

@z
þ B0;x

q2
0l0

q0
@Bx

@z
� 1

q0

@

@z

B2
x þ B2

y

2l0

 !
� vz

@vz
@z

;

@p0

@t
þ c2q0

@vz
@z
� ðc� 1ÞðLpp0 þ Lqq

0Þ � k
CVq0

@2p0

@z2
þ kp0

q2
0CV

@2q0

@z2
¼ �cp0

@vz
@z
� vz

@p0

@z
;

@Bx

@t
þ @

@z
B0;xvz � B0;zvxð Þ �

1
l0r

@2Bx

@z2
¼ �Bx

@vz
@z
� vz

@Bx

@z
;

@By

@t
� @

@z
B0;zvyð Þ �

1
l0r

@2By

@z2
¼ �By

@vz
@z
� vz

@By

@z
; (2.2)

where Lp ¼ @L
@p ; Lq ¼ @L

@q are evaluated at the equilibrium state (p0,q0).
It represents in fact Taylor series expansions of Eq. (2.1) in powers of
the magnetosonic Mach number M. The Mach number is a dimen-
sionless quantity, which is determined as the ratio of typical magneto-
sonic velocity magnitude to the speed of magnetosonic perturbations.
It is usually small. This ensures weak nonlinear distortions of a wave.
The terms of order M are collected on the left of Eq. (2.2), and the
terms of order M2 are collected on the right. Some linear terms are
proportional to Lp, Lq, k, g0, and r�1, that is, they are responsible for
linear wave damping or amplification. These effects may be described
by the general small dimensionless parameter, say, k, which ensures
weak variations of perturbation magnitude in the course of wave prop-
agation. Hence, these terms are of order Mk. We treat k and M as
parameters of the comparable smallness. The terms OðM2kÞ; OðMk2Þ
along with OðM3Þ are discarded in the expansions of Eqs. (2.1) and
(2.2). The resulting model describes small-signal magnetosonic pertur-
bations and accounts for combined effects of weak nonlinearity and
weak damping/amplification on magnetosonic waves. The dynamic
equation for longitudinal velocity in a magnetosonic wave contains
terms of order M, Mk, and M2. OðMkÞ terms may be obtained from
the linear analysis (Sec. IIA), and OðM2Þ terms follow from the non-
linear analysis with damping/amplification linear phenomena dis-
carded (Sec. IIB).

A. Linear analysis

This is the case of small-magnitude perturbations, which is
described by Eq. (2.2) with zero nonlinear terms in the right-hand side
of equations. The dispersion relations follow from Eq. (2.2), if one
looks for solution in the form of a sum of planar waves proportional
to exp ðixðkzÞt � ikzzÞ

f 0ðz; tÞ ¼
ð1
�1

~f ðkzÞ exp ðixðkzÞt � ikzzÞdkz;

where kz designates the wave number. Four relations are inherent to
the wave motion, which rely on compressibility

xj ¼ Cjkz � iDjCj þ i
aj
2
k2z ; j ¼ 1;…; 4; (2.3)

where

Dj ¼
CjðC2

j � C2
AÞðc� 1Þ

2c20ðC4
j � c20C

2
A;zÞ

ðc20Lp þ LqÞ;

aj ¼ ag;j
4g0
3q0
þ ak;j

k
1
CV
� 1
Cp

� �
q0

þ ar;j
1

l0r
;

ag;j ¼
C4
j þ C2

j ð6c20 � C2
AÞ � 3c20ðc20 þ C2

AÞ
4c20ð2C2

j � c20 � C2
AÞ

;

ak;j ¼
C2
j � C2

A

2C2
j � c20 � C2

A
; ar;j ¼

C2
j � c20

2C2
j � c20 � C2

A
:

(2.4)

Cj is the magnetosonic speed satisfying the equation

C4
j � C2

j ðc20 þ C2
AÞ þ c20C

2
A;z ¼ 0; (2.5)

CA and c0

CA ¼
B0ffiffiffiffiffiffiffiffiffiffi
l0q0
p ; c0 ¼

ffiffiffiffiffiffiffi
cp0
q0

r

designate the Alfv�en speed and the sound speed in unmagnetized gas
in equilibrium, CA;z ¼ CA cos ðhÞ. The real part of frequency will
experience modification in the full, not asymptotic case. This would
cause wave dispersion, as it has recently been shown in the infinite
field approximation for slow magnetosonic waves by Zavershinskii
et al. in Ref. 25.

There are two dispersion relations specifying the Alfv�en waves,
and one relation corresponds to the entropy mode. The dispersion
relations Eqs. (2.3) and (2.5) have been established by Nakariakov
et al.16,20 (along with an appropriate evolutionary equation for longitu-
dinal velocity in a plasma) in the flows of perfectly conducting plasma
with zero mechanical viscosity, that is, with infinite r and zero g0.
Equation (2.3) is leading-order and valid with accuracy up to terms
proportional to the first powers of Lp, Lq, g0, k, and r�1. We consider
perturbations slowly varying over the characteristic wavelength. This
imposes the smallness of effects associated with the heating–cooling
function and damping
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jDjj 	 kz;
aj
2
kz 	 jCjj:

The magnetosonic perturbations may enhance if a linear flow is adia-
batically unstable26,27

c20Lp þ Lq > 0; (2.6)

and the total damping is weak

DjCj >
aj
2
k2z :

The latter condition depends on the spectrum of perturbations.
Equation (2.5) readily determines the linear dynamic equation

for magnetosonic perturbations, in particular for vzðz; tÞ, bearing in

mind that ix corresponds to @=@t and ikz corresponds to �@=@z. It
takes the form

@vz
@t
þ Cj

@vz
@z
� DjCjvz �

aj
2
@2vz
@z2
¼ 0: (2.7)

The ordering number of the magnetosonic mode will be omitted in
Sec. II B.

B. Nonlinear dynamic equation

The term of order M2 in the dynamic equation was first derived
by Nakariakov et al.20 The author obtained a similar one in the studies
of the magnetosonic heating by establishing the following links of
magnetosonic perturbations:

q0 ¼ q0

C
vz þ

ðc20 þ C4ðc� 4Þ � C2C2
Aðc� 3ÞÞq0

4C4ðc20 þ C2
A � 2C2Þ v2z ;

vx ¼
CA;z

CA;x

c20
C2
� 1

� �
vz þ

c20ðC2 � c20Þðc40 � C2ð2c20 þ ðc� 1ÞC2
AÞ þ cC4Þ

2C5ðC2 � C2
AÞðc20 þ C2

A � 2C2Þ
CA;z

CA;x
v2z ;

vy ¼ 0; B0y ¼ 0;

p0 ¼ c20q0

C
vz þ

c20ðc40 � 3cC4 þ C2ð2c20ðc� 1Þ þ C2
Aðcþ 1ÞÞq0

4C4ðc20 þ C2
A � 2C2Þ v2z

B0z ¼
ðC2 � c20ÞB0

CCACA;x
vz þ

B0ðC2 � c20ÞðC6 � C2c40 � C4ð3C2
A;z þ c20ðc� 3ÞÞ þ c20C

2
A;zðC2

A;zðcþ 1Þ � c20ÞÞ
4C2ðC4 � c20C

2
A;zÞCAC3

A;x
v2z :

(2.8)

Relations (2.8) are reproduced from Ref. 28. Substituted into Eq.
(2.2), they yield the equivalent dynamic quadratic nonlinear equations
for the longitudinal velocity vz, bearing in mind that vz

@vz
@t � �Cvz

@vz
@z .

This dynamic equation sounds

@vz
@t
þ C

@vz
@z
þ evz

@vz
@z
¼ 0; (2.9)

where e is responsible for nonlinear distortions

e ¼ 3c20 þ ðcþ 1ÞC2
A � ðcþ 4ÞC2

2ðc20 � 2C2 þ C2
AÞ

:

The resulting equation, which incorporates weak nonlinearity and
weak damping/amplification [Eqs. (2.7) and (2.9)], takes the form

@vz
@t
þ C

@vz
@z
þ evz

@vz
@z
� DCvz �

a
2
@2vz
@z2
¼ 0: (2.10)

Equation (2.10) does not consider the nonlinear interaction of modes
but only nonlinear “self-action” of an individual magnetosonic mode.
This supposes that the perturbations associated with this dominant
mode are much larger than those of other wave and non-wave modes.
Equation (2.10) refers to both slow and fast modes. The evolutionary
equation has been derived by Nakariakov et al.20 in the case with zero
mechanical viscosity and electrical resistivity of a gas. In the case of
unmagnetized gas and D¼ 0, Eq. (2.10) rearranges into the Burgers
equation

@vz
@t
þ c0

@vz
@z
þ e0vz

@vz
@z
� a0

2
@2vz
@z2
¼ 0 (2.11)

with

e0 ¼
cþ 1
2

; a0 ¼
4g0
3q0
þ ð1=CV � 1=CPÞk

q0
;

where g0 designates the Newtonian shear viscosity of a gas. It may
look unexpected that the coefficients by compressional viscosity, ther-
mal conduction, and electrical resistivity not only vary with h and
plasma-b but vary differently, in contrast to that in Eq. (2.11) where
they are unit, with exception of ar;0

ag;0 ¼ ak;0 ¼ 1; ar;0 ¼ 0:

Plasma-b is determined as the ratio of thermodynamic and magnetic
pressures

b ¼ 2
c
c20
C2
A
:

Figure 1 shows coefficients ag, ak, and ar as functions on h and b in
the cases of fast and slow magnetosonic modes. In all evaluations of
this study, c ¼ 5

3.
In both fast and slow modes, ag varies from 3

4 till 1, and ak and ar

vary from 0 till 1.
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III. DYNAMICS OF PERIODIC PERTURBATIONS IN A
PLASMA
A. Periodic magnetosonic saw-tooth waves in the case
a ¼ 0 (recall)

We remind briefly the results of Ref. 17. For definiteness, we con-
sider modes with C> 0, that is, waves, slow or fast, propagating in the
positive direction of the axis z. Hence, the sign of D coincides with the
sign of c20Lp þ Lq. Equation (2.10) readily rearranges in the new varia-
bles (for non-zero D and C)

V ¼ vz exp �Dzð Þ; f ¼ eDz � 1
D

; s ¼ t � z=C (3.12)

into the leading-order equation

@V
@f
� e
C2

V
@V
@s
¼ 0: (3.13)

f is always positive for non-zero D. Equation (3.13) is well studied in
the nonlinear wave theory.1,2 It may be solved by the method of char-
acteristics. A discontinuity in the harmonic at an exciter waveform
with the period T0 always forms in acoustically active media (that is, in
the case of D> 0) and in the case of negative D if DC2T0

2ep > �1.7 We
consider the saw-tooth shaped waves at an exciter waveform. One
period of perturbations of velocity at an exciter situated at Z¼ 0 is
determined by the formula

FIG. 1. Coefficients in different terms of
Eq. (2.4). Factors by 4g0

q (that is, ag),
ð1=CV�1=CPÞk

q0
(ak), and 1

l0r
(ar) in the total

damping in a plasma [Eq. (2.4)]. Left
panels: fast magnetosonic modes and
right panels: slow magnetosonic modes.
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V
V0
¼ �2 s

T0
; �T0

2
< s � T0

2
: (3.14)

The method of characteristics results in a solution to Eq. (3.13) in the
form of saw-tooth impulse series of the constant period T0 and vari-
able magnitude, which depends on the distance from an exciter

Vðf; sÞ ¼ � 2s
T0
� V0

1þ 2eV0f
C2T0

(3.15)

and

vzðz; sÞ ¼ �2
s
T0
� v0eDz

1þ 2ev0ðeDz � 1Þ
DC2T0

; �T0

2
< s � T0

2
: (3.16)

If D¼ 0, the solution takes the form

vzðz; sÞ ¼ �2
s
T0
� v0

1þ 2ev0z
C2T0

; �T0

2
< s � T0

2
: (3.17)

This is the case where f ¼ z and V¼ vz. The shape remains saw-tooth
at any distance from an exciter for arbitraryD. The amplitude of veloc-
ity at large distances depends on the sign of D: it tends to zero if D< 0

and tends to DC2T0
2e in acoustically active flow. Hence, the limiting mag-

nitude in acoustically active flow does not depend on the initial magni-
tude of an impulse v0.

17

B. Impact of mechanical damping, thermal
conduction, and electrical resistivity

We start from the Burgers equation, which accounts for nonlin-
ear and viscous terms

@V
@f
� e
C2

V
@V
@s
� a
2C3

@2V
@s2
¼ 0: (3.18)

It is well studied in the wave theory and may be transformed into the
linear diffusion equation by the Hopf-Cole transformation. The simple
periodic exact solution at

�T0

2
< s � T0

2

may be constructed making use of the solution to the purely nonlinear
equation (3.13), that is, Eq. (3.15) and the shock smooth front

V ¼ tanh
V0eCs

a

� �
; (3.19)

which is a stationary solution to Eq. (3.18). It satisfies the equation

e
C2

V
@V
@s
þ a
2C3

@2V
@s2
¼ 0:

The exact solution to Eq. (3.18) incorporates Eqs. (3.15) and (3.19)
and accounts for variations of amplitude of the shock front with f as
V0

1þ2eV0f

C2T0

. It takes the form2

V ¼ V0

1þ 2eV0fC�2T�10
�2 s

T0
þ tanh

V0eCs
að1þ 2eV0fC�2T�10 Þ

� �� �
:

(3.20)

These preliminary remarks are useful when we take a look at
Eq. (2.10) rearranged in the retarded time s ¼ t � z=C and coordinate
z. Its leading-order form differs from the Burgers equation by the
termDvz

@vz
@z
� e
C2

vz
@vz
@s
� Dvz �

a
2C3

@2vz
@s2
¼ 0: (3.21)

This suggests us to try to construct a solution to it over one period of
oscillations �T0=2 < s � T0=2 on the model of Eqs. (3.16) and
(3.20), namely,

vz ¼
v0 exp ðDzÞ

1þ 2ev0ðexp ðDzÞ � 1ÞD�1C�2T�10

� �2 s
T0
þ tanh

eCsv0 exp ðDzÞ
að1þ 2ev0ðexp ðDzÞ � 1ÞD�1C�2T�10 Þ

� �� �
:

(3.22)

It turns out that Eq. (3.22) is not the exact solution to Eq. (3.21) but
gives a discrepancy

D ¼ C5D3 exp ð2DzÞeT2
0sv

2
0

aðC2DT0 þ 2ðexp ðDzÞ � 1Þev0Þ2
cosh�2

� C3D exp ðDzÞeT0sv0
aðC2DT0 þ 2ðexp ðDzÞ � 1Þev0Þ

 !
:

The discrepancy is a result of substitution of Eq. (3.22) into (3.21).
It should be small in magnitude compared with the terms on the
left of Eq. (3.21). All of them are of comparable order. It seems rea-
sonable to compare magnitudes of discrepancy and a small term,
which distinguishes Eq. (3.21) from the Burgers equation, Dvz.
This suggests us to introduce the dimensionless parameter, which
equals a ratio of absolute values of the discrepancy and Dv0. It indi-
cates the smallness of the discrepancy, which is conditioned by
inequality

jDj
jDjv0

	 1:

In dimensionless variables,

H ¼ s
T0
; Z ¼ z

CT0
; X ¼ eDdZ

1þ ðeDdZ � 1ÞG ;

the discrepancy sounds as

d ¼ jDjjDjv0
¼ X2RjHjcosh�2ðXRHÞ; (3.23)

where

Dd ¼ DCT0; G ¼ 2eM=Dd; R ¼ eMT0C2

a
; M ¼ v0

C
;

X ¼ eDdZ

1þ ðeDdZ � 1ÞG :

where M, jDdj; a
T0C2 are much less than unity. This is conditioned by

weak nonlinearity and weak variations of magnitudes of MHD pertur-
bations during one period of oscillations (in order to support the wave
process). The magnetosonic Reynolds number R measures the impact
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of nonlinear to damping effects. The approximate solution (3.22) in
the dimensionless variables rearranges as

vz
v0
¼ X �2Hþ tanhðXRHÞð Þ: (3.24)

In the case Dd< 0, X quickly tends to zero as Z enlarges. For assis-
tance, Fig. 2 shows functions ycosh�2ðyÞ and X sketchy. X represents a
dimensional amplitude of longitudinal velocity.

In view of limited XRHcosh�2ðXRHÞ, which does not exceed
0.448 for any XRH, Eq. (3.22) is a good approximation for solution to
Eq. (3.18) independently on R. Evaluations for Z ensuring the small-
ness of absolute discrepancy d may be done by expanding X in series
in the vicinity Z¼ 0, X � 1þ Ddð1� GÞZ, so as

1� ðjDdj þ 2eMÞZ 	 ð0:448Þ�1 � 2:23;

which may be recognized as correct at zero Z and even more so at
Z> 0. The most interesting case is positive D, when enlargement of
perturbations due to heating counteracts damping and cooling. X is a
limited function for any Z, if G 
 1; G�1 < X � 1

G 
 1; d � 0:448; (3.24a)

and d decreases as Z grows. This condition may be considered
as of satisfying the smallness of d at any Z, R, and H. In the
case 0 < G < 1 (1 � X < G�1), we may make estimations for
all Z

0 < G < 1; d � X2RjHj � R
2G2
	 1; (3.24b)

since jHj � 0:5.
The case of especial importance is X¼ 1 for any Z, that is, G¼ 1.

This gives the stationary waveform independent of the distance from a
wave driver and the discrepancy RjHjcosh�2ðRHÞ, which does not
exceed 0.448 and may be set arbitrarily small by choice of domain of
the Reynolds numbers. This particular case is discussed in Summary
and Remarks.

The profiles of one period at various R, G are shown in Fig. 3.
They depend on the dimensional distance from a wave driver, which
indicates each curve. The magnitude of velocity may enlarge in a flow
with weak damping and strong non-adiabaticity, which ensures isen-
tropic instability (this is the case R¼ 0.05, G¼ 0.5 in Fig. 3). In the
case D> 0 (G> 0), the profile takes the following shape as z tends to
infinity:

vz ¼
DC2T0

2e
�2 s

T0
þ tanh

DC3T0s
2a

� � !

¼ MC
G
�2Hþ tanh

RH
G

� �� �
: (3.25)

The limiting vz does not depend on the initial magnitude v0, that is,
the autowave develops. The ratio smax

T0
, where vz achieves maximum

vz;max, and the dimensionless maximum G
MC vz;max are shown in Fig. 4

as functions of GR. Both plots refer to the distances far from the exciter.
The smooth shock front forms at large distances from an exciter

if 0 < G
R < 0:5. In other cases, the saw-tooth wave develops.

IV. SUMMARY AND REMARKS

The main results of this study are the dynamic equation (2.10)
(and its modified form (3.21)) and its approximate analytic solution
(3.22) along with the analysis of this solution. The theory concerns fast
and slow magnetosound waves. Equation (2.10) incorporates weak
nonlinearity and weak damping/amplification due to the joint impact
of the heating–cooling function, thermal conduction, compressional
viscosity, and electrical resistivity of a plasma. The evolutionary equa-
tion expands the previous result by Chin et al.16 by inclusion of com-
pressional viscosity and electrical resistivity. The advantage of an
approximate solution is its simple analytical form. The nonlinear
regime is not well studied. The progress in studies of nonlinear MHD
flows has been achieved mostly by numerical simulations of very par-
ticular cases. A plasma is considered as an open system with some
generic function Lðp; qÞ describing unspecified heating and radiative
cooling.5,20,29 The theory may potentially find applications in astro-
physical plasmas and laboratory plasmas (in the case of stable labora-
tory plasma affected by a nearly straight magnetic field). The theory is
also of interest to the analysis of edge localized modes in laboratory
plasma devices, in particular of the phenomenon of multifaceted
asymmetric radiation from the edge (MARFE).30,31 Studies of MHD
waves in the coronal loops are important in the context of understand-
ing of transfer of energy through the transition region and into the
corona. The mechanism of dynamic flows in a corona and coronal
heating is still an unresolved problem. Ofman and Wang were first
who interpret SUMER oscillations in hot coronal loops associated
with flares in terms of standing damped slow magnetosonic waves.32

The decayless oscillations have also been detected in flaring coronal
loops. This indicates the heating mechanism, which ensures the isen-
tropical instability of a plasma flow. Solar flares are relatively small
and local, taking place in the low solar atmosphere, and may be

FIG. 2. Functions ycosh�2ðyÞ and X ¼ eDdZ

1þðeDdZ�1ÞG.
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considered as a possible reason for instability. Nakariakov et al. inter-
preted perturbations in the cool coronal loops as slow magnetosonic
waves and proved the possibility of isentropic instability (that is, potential
growth of wave perturbations in weakly damping plasma) in the solar
atmosphere and in the cold intersellar molecular gas (ISM). Recent high-
resolution ground-based and spaceborne observational instruments show
the ubiquity of magnetoacoustic wave processes in the solar atmosphere.
The dynamic equation (2.10) covers isentropically stable, neutral, and
unstable flows and its approximate solution (3.22). In particular,
the results may be addressed to a high temperature atomic plasma with

T > 104K and cold interstellar molecular gas with T < 103K .20 In these
kinds of plasmas, the magnetosound waves may amplify due to some
heating regime. The results may be useful in remote diagnostics of astro-
physical plasmas. There is no restrictions on the plasma-b (that is, on the
magnitude of the equilibrium magnetic field) and an angle between the
equilibrium magnetic field and the wave vector. The results may be
addressed to both gases with low b as cold plasma of the inner atmo-
sphere and that with finite b as rarified plasma of the outer atmosphere.

Equation (2.10) describing velocity in the fast or slow magneto-
sonic wave contains parameters depending on h and plasma-b.

FIG. 4. The ratio smax
T0

where vz achieves maximum far from the exciter (left panel), and the dimensionless maximum G
MC vz;max at various G

R values (right panel).

FIG. 3. The profiles of one period of velocity at different distances from an exciter, jDjz at various R and G. Dimensionless distances are designated by numbers. R¼ 20,
G ¼ –1 (top row, left panel), R¼ 0.05, G¼ 0.5 (top row, right panel), R¼ 10, G¼ 2 (bottom row, left panel), and R¼ 50, G¼ 5 (bottom row, right panel).
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This concerns linear magnetosonic speed, the parameter of nonlinear-
ity, and individual factors by damping terms. The coefficients in the
terms responsible for thermal conduction, compressional viscosity,
and electrical resistivity of a plasma vary differently with plasma-b
and h. Similar equations but with constant parameters determined by
the equilibrium thermodynamic state and the heating–cooling func-
tion arise in various non-magnetic flows with destroyed adiabaticity.
In particular, they describe perturbations in gases with excited oscilla-
tory degrees of freedom in molecules and in gases with chemical reac-
tions.7–10 The total damping of magnetosonic waves consists of parts
associating with compressional viscosity, electrical resistivity, and ther-
mal conduction. The relative importance of compressional viscosity

and thermal conduction is determined by the ratio Pr
b , where Pr ¼

Cpg0
k

denotes the Prandtl number.33 In the coronal plasma, b ¼ 0:016;
Pr ¼ 10�2, so that Pr

b � 1.34 Hence, thermal conduction and viscosity

contribute equally. The magnetic Prandtl number Prm is determined
as a ratio of viscous to magnetic effects, g0l0r

q0
. For the solar corona,

Ruderman et al. obtained Prm ¼ 1010,33 and electrical resistivity has
only very small impact.

The approximate solution to (2.10), Eq. (3.22), is determined by
the parameters R (this is the magnetosonic Reynolds number, which
equals the ratio of nonlinear and damping factors) and G (the ratio of
nonlinearity and the degree of non-adiabaticity). The case G< 0
relates to a flow giving off energy. Along with losses due to other fac-
tors, this leads to quick damping of wave perturbations. G> 0 is the
case with energy recharge, which counteracts damping due to mechan-
ical friction, thermal conduction, and electrical resistivity. The scenario
of evolution and the shape of the waveform depend on the balance of
nonlinearity, non-adiabaticity, and damping. The magnitude of veloc-
ity may enlarge or get smaller, and the shape of the waveform takes
smooth or saw-tooth shape (Fig. 3). The especial case G¼ 1 yields the
stationary waveform, which does not vary with the distance from a
wave driver.

Examples of stationary waveforms for different R values are
shown in Fig. 5. They also may take a smooth or saw-tooth shape and
R¼ 2 in accordance with Eq. (3.24), and Fig. 3 shows the limiting
value between these two species. In the case of acoustically active flow,

the waveform far from the exciter is described by Eq. (3.25). It does
not depend on the initial magnitude of velocity at an exciter.

Chin et al. have analyzed the dynamics of the harmonic initially
signal numerically for some parameters of a flow in thermoconducting
nonlinear active flow in Ref. 16. The authors established stationary
asymptotic autowaves analytically in the form of the saw-tooth wave
despite that thermal conduction prevents the formation of discontinu-
ities. Equation (3.22) includes this case for infinitely large distances
from an exciter and damping tending to zero.17 It describes a wave-
form at each distance from an exciter and accounts for electrical resis-
tivity and compressible viscosity of a plasma. Hence, it may find more
applications. It takes simple analytical form. Autowaves, that is, waves
with parameters determined exclusively by the equilibrium parameters
of a medium, were analytically studied in the context of solitary per-
turbations in magnetic flux tubes.35 They are of growing interest in the
fluid mechanics since this is an asymptotic case to which waveforms
usually develop independently on the initial conditions. The autowaves
observations may be especially useful in remote interpretation of plas-
ma’s features and processes in it.
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