Postprint of: Dzedzej Z., Gabor G., On homotopy Conley index for multivalued flows in Hilbert spaces, Topological Methods in Nonlinear Analysis, Vol. 38, Iss. 1 (2011), pp. 187 - 205 The final publication is available at the TMNA webpage via https://apcz.umk.pl/TMNA/article/view/TMNA.2011.028

On homotopy Conley index for multivalued flows in Hilbert spaces

Zdzisław Dzedzej¹ Faculty of Technical Physics and Applied Mathematics Gdańsk University of Technology ul. Narutowicza 11/12, 80-952 Gdańsk, Poland e-mail:zdzedzej@mif.pg.gda.pl

Grzegorz Gabor Faculty of Mathematics and Computer Science Nicolaus Copernicus University Chopina 12/18, 87–100 Toruń, Poland e-mail: ggabor@mat.uni.torun.pl

Keywords: Conley index, multivalued dynamical system

2000 Mathematics Subject Classification: 37B30, 37J45, 34A60.

Abstract

An approximation approach is applied to obtain a homotopy version of the Conley type index in Hilbert spaces considered in [6]. The definition given in the paper is more elementary and, as a by-product, gives a natural connection between indices from [13] and [16] in a finite-dimensional case. Some geometric properties from [7] are discussed in an infinite dimensional situation.

1 Preliminaries on set-valued maps

Let X, Y be metric spaces. By a set-valued map φ from X into Y (written $\varphi : X \multimap Y$) we mean a map that assigns to each $x \in X$ a closed nonempty subset $\varphi(x)$ of Y. If, for any closed (resp. open) set $U \subset Y$, the preimage $\varphi^{-1}(U) := \{x \in X \mid \varphi(x) \cap U \neq \emptyset\}$ is closed (resp. open), then we say that φ is upper (resp. lower) semicontinuous (written usc(resp. lsc)); a map φ is continuous if it is upper and lower semicontinuous simultaneously. The graph $\operatorname{Gr}(\varphi) := \{(x, y) \in X \times Y \mid y \in \varphi(x)\}$ of an upper semicontinuous map φ is closed. A map φ is upper semicontinuous and has compact values (i.e., for each $x \in X$, the set $\varphi(x)$ is compact) if and only if, for any sequence $(x_n, y_n) \in \operatorname{Gr}(\varphi)$ such that $x_n \to x \in X$, there is a subsequence

¹Supported by the Ministry of Sciences and Higher Educaton, Poland, under grant N N 201 394037

 (y_{n_k}) such that $y_{n_k} \to y \in \varphi(x)$ (in other words the projection $p_{\varphi} : \operatorname{Gr}(\varphi) \to X$ is proper (²)); in this case the *image* $\varphi(K) := \{y \in Y \mid y \in \varphi(x) \text{ for some } x \in K\}$ of any compact $K \subset X$ is compact. We say that a map φ is *compact* if it is upper semicontinuous and $\operatorname{cl} \varphi(X)$ is compact; φ is *completely continuous* if the restriction $\varphi|_B$ of φ to any bounded subset $B \subset X$ is compact.

A proper surjection $p: X \to Y$ is a Vietoris map if, for each $y \in Y$, the fibre $p^{-1}(y)$ is acyclic in the sense of the Alexander-Spanier cohomology. A map $p: (X, X') \to (Y, Y')$ of pairs (X, X'), (Y, Y') (i.e. $p: X \to Y$ and $p(X') \subset Y'$) is a Vietoris map, if p is a Vietoris map and $p^{-1}(Y') = X'$ (observe that the restriction $p': X' \to Y'$ of p is a Vietoris map, too). A map $\varphi: X \multimap Y$ is admissible (in the sense of Górniewicz) if there exist a space Γ , a Vietoris map $p: \Gamma \to X$ and a continuous map $q: \Gamma \to Y$ such that, for every $x \in X, \varphi(x) = q(p^{-1}(x))$. It is clear that admissible maps are upper semicontinuous with nonempty compact values.

The class of admissible maps is rich: for example any acyclic map $\varphi : X \multimap Y$ is admissible $(\varphi \text{ is acyclic if it is upper semicontinuous and, for any } x \in X, \varphi(x) \text{ is acyclic});$ it is determined by the pair $(p_{\varphi}, q_{\varphi})$ where $p_{\varphi} : \operatorname{Gr}(\varphi) \to X$ and $q_{\varphi} : \operatorname{Gr}(\varphi) \to Y$ are the restrictions of the projections $X \times Y \to X$ and $X \times Y \to Y$, respectively. Moreover a superposition of acyclic maps is admissible. For more details concerning admissible maps - see [9]. Let us prove the following elementary:

Proposition 1.1 Let X be a metric space, E - a linear normed space, and $F : X \multimap E$ a map with nonempty values. Then for each $\varepsilon > 0$ there exists a continuous map $f : X \to E$ such that $f(x) \in \operatorname{conv}(F(B_{\varepsilon}(x)))$.

Proof. For each $x \in X$ we can choose a point $v_x \in F(x)$. Let $\{\lambda_s\}_{s \in S}$ be a continuous partition of unity subordinated to the covering $\{V_s\}$, which is a locally finite refinement of the covering $\{B_{\varepsilon}(x)\}_{x \in X}$. For $s \in S$ we fix a point x_s such that $\operatorname{supp} \lambda_s \subset V_s \subset B_{\varepsilon}(x_s)$. Define a continuous map

$$f(x) := \sum_{s \in S} \lambda_s(x) v_s,$$

where $v_s = v_{x_s}$. If $s \in S_x = \{s \mid \lambda_s(x) \neq 0\}$, then $x \in B_{\varepsilon}(x_s)$. Thus $x_s \in B_{\epsilon}(x)$, and hence $v_s \in F(B_{\varepsilon}(x))$. Therefore $f(x) \in \operatorname{conv} F(B_{\epsilon}(x))$.

Remark 1.2 Observe that E could be a topological vector space in the previous proposition. The map f is locally Lipschitz if we take a locally Lipschitz partition of unity.

We say that a continuous map $f: X \to Y$ is a graph ε -approximation of $\varphi: X \to Y$ if $f(x) \in B_{\varepsilon}(\varphi(B_{\varepsilon}(x)))$ for every $x \in X$. The following is a version of a classical result of A. Cellina [2] combined with the previous observation.

²Recall that a continuous map $f: X \to Y$ is proper if, for each compact $K \subset Y$, the preimage $f^{-1}(K)$ is compact; it is worth reminding that f is proper if and only if it is perfect, i.e. continuous, closed and such that, for any $y \in Y$, $f^{-1}(y)$ is compact. Observe that a continuous surjection $f: X \to Y$ is perfect if and only if the multivalued map $Y \ni y \multimap f^{-1}(y) \subset X$ is upper semicontinuous and has compact values.

Theorem 1.3 Let $\varphi : X \multimap E$ be use with convex values, where X is a metric space and E is a Banach space. Then, for every $\varepsilon > 0$, there exists a locally Lipschitz graph ε -approximation f of φ such that $f(x) \in \operatorname{conv} \varphi(B_{\varepsilon}(x))$ for every $x \in X$.

Proof. Let $\varepsilon > 0$. From upper semicontinuity of φ it follows that for every $x \in X$ there exists $0 < \delta(x) < \frac{\varepsilon}{2}$ such that $\varphi(B_{\delta(x)}(x)) \subset B_{\varepsilon}(\varphi(x))$. Consider a locally finite covering $\{V_s\}_{s \in S}$ of X which is a star-refinement of the covering $\{B_{\delta(x)}(x)\}_{x \in X}$, i.e., stars $\operatorname{st}(V_t) = \bigcup \{V_s : V_s \cap V_t \neq \emptyset\}$ refine the covering $\{B_{\delta(x)}(x)\}_{x \in X}$. Let $\{\lambda_s\}_{s \in S}$ be a locally Lipschitz partition of unity subordinated to the covering $\{V_s\}$. For each $s \in S$ we choose a point $x_s \in V_s$ and some $y_s \in \varphi(x_s)$.

Define

$$f(x) := \sum_{s \in S} \lambda_s(x) y_s.$$

Let $S_x = \{s \in S | \lambda_s(x) \neq 0\}$ and let $s \in S_x$. Then $x \in V_s$. It implies that $d(x_s, x) < \delta(x_s) < \varepsilon$ and hence $x_s \in B_{\varepsilon}(x)$. Therefore

$$f(x) = \sum_{s \in S_x} \lambda_s(x) y_s \in \operatorname{conv} \varphi(B_\varepsilon(x)).$$

Moreover, since $x \in \bigcap_{s \in S_x} V_s$, there exists x' such that $\bigcup_{s \in S_x} V_s \subset B_{\delta(x')}(x')$. Thus both $x, x_s \in V_s$, and thus $d(x, x_s) < 2\delta(x') < \varepsilon$. By our choice of $\delta(x')$ we have $y_s \in B_{\varepsilon}(\varphi(x'))$. But the latter set is convex, thus $f(x) = \sum \lambda_s(x)y_s \in B_{\varepsilon}(\varphi(x')) \subset B_{\varepsilon}(\varphi(B_{\varepsilon}(x)))$ and the proof is complete.

Corollary 1.4 If φ is completely continuous, then the approximation f in Theorem 1.3 is also completely continuous.

Proof. For every bounded set $U \subset X$ we have $f(U) \subset \overline{conv}\varphi(B_{\varepsilon}(U))$, and the latter set is relatively compact.

2 Multivalued flows

Let X be a metric space.

Definition 2.1 By a multivalued flow on X we mean an upper semicontinuous mapping $\varphi : X \times \mathbb{R} \longrightarrow X$ with nonempty and compact values such that, for every $s, t \in \mathbb{R}$ and $x, y \in X$,

(i) $\varphi(x,0) = \{x\};$

(ii) if
$$s \cdot t \ge 0$$
, then $\varphi(x, t+s) = \varphi(\varphi(x, t) \times \{s\})$;
(iii) $y \in \varphi(x, t)$ if and only if $x \in \varphi(y, -t)$.

Let $\Delta \subseteq \mathbb{R}$. A map $\sigma : \Delta \to X$ is a Δ -trajectory of φ if, for every $t, s \in \Delta$, $\sigma(t) \in \varphi(\sigma(s), t-s)$. It is an easy exercise to prove that every trajectory is continuous. Indeed, let us consider a sequence t_n converging to t_0 . Let $U \ni \sigma(t_0)$ be open. Since φ is upper semicontinuous, $\varphi^{-1}(U)$ is open and $(\sigma(t_0), 0) \in \varphi^{-1}(U)$, because $\sigma(t_0) \in \varphi(\sigma(t_0), 0)$. There exist $\delta > 0$ and an open set $V \subset X$ such that $(\sigma(t_0), 0) \in V \times (-\delta, \delta) \subset \varphi^{-1}(U)$. Therefore, for a large n, $|t_n - t_0| < \delta$ and then $\sigma(t_n) \in \varphi(\sigma(t_0), t_n - t_0) \subset U$.

Let $x \in N \subseteq X$. The set of all Δ -trajectories in N originating in x (i.e., such that $0 \in \Delta$, $\sigma(0) = x$ and $\sigma(t) \in N$ for $t \in \Delta$) is denoted by $\operatorname{Tr}_N(\varphi; \Delta, x)$.

Define the *invariant*, *right-invariant*, *left-invariant* (with respect to φ) part of N by:

$$\operatorname{Inv}(N,\varphi) := \{ x \in N \mid Tr_N(\varphi; \mathbb{R}, x) \neq \emptyset \},\$$
$$\operatorname{Inv}^+(N,\varphi) := \{ x \in N \mid Tr_N(\varphi; \mathbb{R}_+, x) \neq \emptyset \},\$$
$$\operatorname{Inv}^-(N,\varphi) := \{ x \in A \mid Tr_N(\varphi; \mathbb{R}_-, x) \neq \emptyset \},\$$

respectively.

Definition 2.2 A subset $K \subset X$ is *invariant* (resp. *positively (negatively) invariant*) with respect to φ if $\text{Inv}(K, \varphi) = K$ (resp. $\text{Inv}^+(K, \varphi) = K$ ($\text{Inv}^-(K, \varphi) = K$)).

Note that, given $N \subset X$, the set $K := \text{Inv}(N, \varphi)$ is invariant with respect to φ and it is the maximal invariant subset of N.

Proposition 2.3 ([6], Proposition 3.9) Let Λ be a metric space, $N \subset X$ be closed and let $\eta: X \times \mathbb{R} \times \Lambda \longrightarrow X$ be a family of multivalued flows (i.e., η is upper semicontinuous and, for each $\lambda \in \Lambda$, $\eta(\cdot, \lambda): X \times \mathbb{R} \longrightarrow X$ is a multivalued flow). Then the graph of the set-valued map

 $\Lambda \ni \lambda \mapsto \operatorname{Inv}(N, \eta(\cdot, \lambda))$

is closed, i.e. for any sequence $(x_n, \lambda_n) \in N \times \Lambda$ such that $x_n \in \text{Inv}(N, \eta(\cdot, \lambda_n))$, if $(x, \lambda) = \lim_{n \to \infty} (x_n, \lambda_n)$, then $x \in \text{Inv}(N, \eta(\cdot, \lambda))$.

Definition 2.4 A closed and bounded set $N \subset X$ is an *isolating neighborhood* for φ if $Inv(N,\varphi) \subset int N$. We say that a set K invariant with respect to φ is *isolated* if there is an isolating neighborhood N for φ such that $K = Inv(N,\varphi)$.

In particular, if $X = \mathbb{R}^n$, then each isolating neighborhood N for φ is compact and, by Proposition 2.3, $K = \text{Inv}(N, \varphi)$ is closed in N, hence compact.

3 Conley index in Hilbert spaces

We shall assume the following:

Let $\mathbb{H} = (\mathbb{H}, \langle \cdot, \cdot \rangle)$ be a real Hilbert space and $L : \mathbb{H} \to \mathbb{H}$ a linear bounded operator with spectrum $\sigma(L)$. We assume the following

- $\mathbb{H} = \bigoplus_{k=0}^{\infty} \mathbb{H}_k$ with all subspaces \mathbb{H}_k being mutually orthogonal and of finite dimension;
- $L(\mathbb{H}_0) \subset \mathbb{H}_0$ where \mathbb{H}_0 is the invariant subspace of L corresponding to the part of spectrum $\sigma_0(L) = i\mathbb{R} \cap \sigma(L)$ lying on the imaginary axis,
- $L(\mathbb{H}_k) = \mathbb{H}_k$ for all k > 0,
- $\sigma_0(L)$ is isolated in $\sigma(L)$, i.e. $\sigma_0(L) \cap \operatorname{cl}(\sigma(L) \setminus \sigma_0(L)) = \emptyset$.

Definition 3.1 A multivalued flow $\varphi : \mathbb{H} \times \mathbb{R} \longrightarrow \mathbb{H}$ is called an *L*-flow, if it has the form

$$\varphi(x,t) = e^{tL}x + U(t,x),$$

where $U: \mathbb{H} \times \mathbb{R} \longrightarrow \mathbb{H}$ is an admissible map which is completely continuous.

Let Λ be a metric space. By a *family of L-flows* we understand a set-valued map η : $\mathbb{H} \times \mathbb{R} \times \Lambda \longrightarrow \mathbb{H}$ of the form $\eta(x, t, \lambda) = e^{tL}x + U(x, t, \lambda)$, where $U : \mathbb{H} \times \mathbb{R} \times \Lambda \longrightarrow \mathbb{H}$ is an admissible completely continuous mapping, such that, for each $\lambda \in \Lambda$, $\eta(\cdot, \lambda) : \mathbb{H} \times \mathbb{R} \longrightarrow \mathbb{H}$ is a multivalued flow.

It is clear that, if $\eta : \mathbb{H} \times \mathbb{R} \times \Lambda \longrightarrow \mathbb{H}$ is a family of *L*-flows, then, for each $\lambda \in \Lambda$, $\eta(\cdot, \lambda) : \mathbb{H} \times \mathbb{R} \longrightarrow \mathbb{H}$ is an *L*-flow. Moreover, each *L*-flow is an admissible flow.

Proposition 3.2 ([6], Prop.3.15) If $X \subset \mathbb{H}$ is closed and bounded, then the set-valued map $\Lambda \ni \lambda \mapsto \operatorname{Inv}(X, \eta(\cdot, \lambda)) \subset X$ is use and it has compact (possibly empty) values.

Definition 3.3 An use mapping $f : \mathbb{H} \to \mathbb{H}$ is an *L*-vector field if it is of the form f(x) = Lx + K(x), where $K : \mathbb{H} \to \mathbb{H}$ is completely continuous with compact convex values, and if f induces an *L*-flow π on *H*.

Given an L-vector field $f := L + F : \mathbb{H} \to \mathbb{H}$, F having a sublinear growth (i.e., there is a constant C > 0 such that, for each $u \in \mathbb{H}$ and $y \in F(u)$, $||y|| \leq C(1 + ||u||)$), the standard fixed point argument (see, e.g., [11], Theorem 5.2.2) implies that, for each $x \in \mathbb{H}$, there is a mild solution to the Cauchy problem

(1)
$$\begin{cases} u' \in f(u) \text{ a.e. on } \mathbb{R}; \\ u(0) = x, \end{cases}$$

i.e., a continuous function $u : \mathbb{R} \to \mathbb{H}$ and a locally (Bochner) integrable function $w : \mathbb{R} \to \mathbb{H}$ such that $w(t) \in F(u(t))$ and $u(t) = e^{tL}x + \int_0^t e^{(t-s)L}w(s) \, ds$ for all $t \in \mathbb{R}$.

Let $S(x) \subset C(\mathbb{R}, \mathbb{H})$ (³) be the set of all solutions to (1), $x \in \mathbb{H}$.

Consider a map $\varphi : \mathbb{H} \times \mathbb{R} \longrightarrow \mathbb{H}$ given by the formula

(2)
$$\varphi(x,t) := \{u(t) \mid u \in S(x)\}, \ x \in \mathbb{H}, \ t \in \mathbb{R}$$

It is shown in [6], (Ex. 3.3) that φ is an admissible multivalued flow on \mathbb{H} (we say that φ is generated by f).

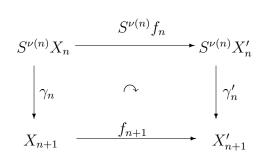
We consider here only flows generated by L-vector fields. In particular, if F is single-valued and locally Lipschitz, then f generates a usual (single-valued) flow.

Recall that a suspension of a pointed space (X, x_0) is the quotient space $(SX, *) := (S^1 \times X)/(S^1 \times \{x_0\} \cup \{s_0\} \times X)$, where S^1 denotes a circle.

Let $\nu : \mathbb{N} \to \mathbb{N}$ be a given map.

Definition 3.4 A pair of sequences $X = ((X_n, x_n)_{n=n(X)}^{\infty}, (\gamma_n))$ is a spectrum provided the maps $\gamma_n : S^{\nu(n)}X_n \to X_{n+1}$ are homotopy equivalences for some $n_1 \ge n(X)$ and each $n \ge n_1$.

We can define a natural notion of a map of spectra $f : X \to X'$ as a sequence of maps $f_n : X_n \to X'_n; n \ge n_0 = \max\{n(X), n(X')\}$ such that the diagrams



are homotopy commutative for all $n \ge n_0$.

Two spectra are homotopy equivalent if there is $n_1 \ge n_0$ such that f_n are homotopy equivalences for $n \ge n_1$. The equivalence class of this relation is called the homotopy type of a spectrum X and is denoted by [X]. One observes that the homotopy type of a spectrum X is determined by the homotopy type of the pointed space (X_n, x_n) with n sufficiently large.

We denote by $\underline{0}$ the spectrum such that for each $n \geq 0$ the space X_n consists only of a base point with the only maps $\epsilon_n : X_n \to X_{n+1}$. This is called a *trivial spectrum*.

 $^{{}^{3}}C(\mathbb{R},\mathbb{H})$ stands for the Fréchet space (i.e., locally convex metrizable and complete) of all continuous maps $\mathbb{R} \to \mathbb{H}$ with the topology of the almost uniform convergence.

One can also define usual topological operations like a "wedge sum" and smash product of spectra and on their homotopy types (see [10], Sec.2 for details).

Let now $f = L + K : \mathbb{H} \to \mathbb{H}$ be a single-valued *L*-vector field and let $\varphi : \mathbb{H} \times \mathbb{R} \to \mathbb{H}$ be an *L*-flow generated by f.

Denote by $\mathbb{H}^n := \bigoplus_{i=0}^n \mathbb{H}_i$ and by $P_n : \mathbb{H} \to \mathbb{H}$ an orthogonal projection onto \mathbb{H}^n .

Let $\mathbb{H}_n^{\pm} := \mathbb{H}_n \cap \mathbb{H}^{\pm}, n \geq 1$, where \mathbb{H}^+ and \mathbb{H}^- denote *L*-invariant subspaces of *H* corresponding to parts of the spectrum of *L* with positive and negative real parts, respectively. Define $\nu : \mathbb{N} \cup \{0\} \to \mathbb{N} \cup \{0\}$ by $\nu(n) = \dim \mathbb{H}_{n+1}^+$.

Define $f_n : \mathbb{H}^n \to \mathbb{H}^n$ by $f_n(x) := Lx + P_n(K(x))$ and let $\varphi_n : \mathbb{H}^n \times \mathbb{R} \to \mathbb{H}^n$ be a flow generated by f_n .

Lemma 3.5 ([8], Lemma 4.1) Let $N \subset \mathbb{H}$ be an isolating neighborhood for φ . Then there exists n_0 such that, for all $n \geq n_0$, the set $N^n = N \cap \mathbb{H}^n$ is an isolating neighborhood for φ_n .

Thus the isolated invariant set $S_n = \text{Inv}(N^n, \varphi_n)$ admits an index pair (P_1, P_2) , (see [17]), i.e. a compact pair (P_1, P_2) such that

- (i) the set $\overline{P_1 \setminus P_2}$ is an isolating neighborhood for S_n in N^n ;
- (ii) (positive invariance of P_2 in P_1) if $x \in P_2$ with $\varphi_n(x,t) \in P_1$ for every $t \in [0,t_0]$, then $\varphi_n(x,t) \in P_2$ for every $t \in [0,t_0]$;
- (iii) if $x \in P_1$ and there is $t \ge 0$ with $\varphi_n(x,t) \notin P_1$, then there exists $0 \le t_0 < t$ such that $\varphi_n(x,t_0) \in P_2$.

The classical homotopy Conley index of S_n is the homotopy type of the pointed space $[P_1/P_2, *]$. By the use of the continuation property of the classical Conley index it was proved in [8], that the family of such index pairs (P_1^n, P_2^n) for $n \ge n_0$ forms a spectrum in the above sense. A homotopy type of this spectrum is called an \mathcal{LS} -index of the isolating neighborhood N.

Let us denote this index by $h_{\mathcal{LS}}(N,\varphi)$. The following two basic properties have been proved in [8].

Proposition 3.6 (Nontriviality) Let φ be an single-valued L-flow and $N \subset \mathbb{H}$ an isolating neighborhood. If $h_{\mathcal{LS}}(N,\varphi) \neq \underline{0}$, then $\operatorname{Inv}(N,\varphi) \neq \emptyset$.

Proposition 3.7 (Continuation) Let Λ be a compact, connected and locally contractible metric space. Assume that φ_{λ} is a family of single-valued L-flows and let $N \subset \mathbb{H}$ be an isolating neighborhood for the flow φ_{λ} for some $\lambda \in \Lambda$. Then there is a compact neighborhood $C \subset \Lambda$ of λ such that

$$h_{\mathcal{LS}}(N,\varphi_{\mu}) = h_{\mathcal{LS}}(N,\varphi_{\nu}) \quad for \ all \ \mu,\nu \in C.$$

Let us now consider a multivalued L-vector field $L + F : \mathbb{H} \to \mathbb{H}$. Denote by $a(F, \varepsilon)$ the set of all ε -approximations of F in the sense of Theorem 1.3.

Proposition 3.8 Let $N = \overline{U} \subset \mathbb{H}$ be an isolating neighborhood for a multivalued flow generated by L + F. There exists an $\varepsilon > 0$ such that for arbitrary $f_0, f_1 \in a(F, \varepsilon)$ N is an isolating neighborhood for a family of L-flows η_{λ} generated by the family of L-vector fields $\Psi_{\lambda} = L + (1 - \lambda)f_0 + \lambda f_1$.

Proof. Let r > 0 be such that $N \subset B_r(0)$, and find the Urysohn function $u : \mathbb{H} \to [0, 1]$ such that u(x) = 0 for $x \in \overline{B_r(0)}$ and u(x) = 1 for any $x \in \mathbb{H} \setminus B_{2r}(0)$.

Consider a homotopy $h : \mathbb{H} \times [0, 1] \multimap \mathbb{H}$,

$$h(x,s) := Lx + (1 - u(x)) \left(\overline{\operatorname{conv}}F(B_s(x)) + \overline{B_s(0)}\right) \cap \overline{\operatorname{conv}}F(\overline{B_{2r}(0)}).$$

Since $\overline{\operatorname{conv}}F(\overline{B_{2r}(0)})$ is compact, the map h generates a family η of multivalued L-flows on \mathbb{H} . Notice that $h(\cdot, 0) = L + F$ on $\overline{B_r(0)}$. From Proposition 3.2 it follows that the map $s \mapsto \operatorname{Inv}(N, \eta(\cdot, s))$ is use with compact values.

Now, suppose the contrary to our claim. Then, for a sequence $\varepsilon_n = \frac{1}{n}$, there are approximations $f_0^n, f_1^n \in a(F, \frac{1}{n})$ and numbers $\lambda_n \in [0, 1]$ with $\operatorname{Inv}(N, \gamma_{f_{\lambda_n}}) \not\subset U$, where $\gamma_{f_{\lambda_n}}$ is the flow generated by $L + (1 - \lambda_n) f_0 + \lambda_n f_1$. This implies that there are points $y_n \in \operatorname{Inv}(N, \gamma_{f_{\lambda_n}}) \cap (N \setminus U)$. Note that $f_{\lambda_n}(\cdot) \subset \overline{\operatorname{conv}} F(B_{\frac{1}{n}}(\cdot)) + \overline{B_{\frac{1}{n}}(0)}$ for every $n \geq 1$. Since the map $s \mapsto \operatorname{Inv}(N, \eta(\cdot, s))$ is use with compact values, there exists a subsequence (f_k) , where $f_k := f_{\lambda_{n_k}}$, such that $\operatorname{Inv}(N, \gamma_{f_k}) \subset \operatorname{Inv}(N, \varphi) + B_{\frac{1}{k}}(0)$ for every $k \geq 1$. Indeed, it is sufficient to notice that $\operatorname{Inv}(N, \gamma_{f_k}) \subset \operatorname{Inv}(N, \eta(\cdot, \frac{1}{n_k}))$.

Now, we can choose a sequence $(z_k) \subset \operatorname{Inv}(N, \varphi)$ such that $|z_k - y_{n_k}| < \frac{1}{k}$. Since the set $\operatorname{Inv}(N, \varphi)$ is compact, we can assume that $z_k \to z_0 \in \operatorname{Inv}(N, \varphi)$. So, $y_{n_k} \to z_0$. But then $z_0 \in \operatorname{Inv}(N, \varphi) \cap (N \setminus U)$; a contradiction.

The above proposition proves that the following crucial notion of this note does not depend on the approximation f.

Definition 3.9 If N is an isolating neighborhood for an L-flow φ generated by L + F, then we define a homotopy index

$$h(N,\varphi) := h_{\mathcal{LS}}(N,\varphi_f).$$

where φ_f is the flow generated by L + f; $f \in a(F, \varepsilon)$ with $\varepsilon > 0$ sufficiently small.

Now we establish some properties of the index. The first one is an obvious consequence of Proposition 3.6.

Proposition 3.10 If N is an isolating neighborhood for a multivalued L-flow φ and the homotopy index is nontrivial $h(N, \varphi) \neq \underline{0}$, then $\operatorname{Inv}(N, \varphi) \neq \emptyset$.

Proposition 3.11 If N_0, N_1 are two isolating neighborhoods for an L-flow φ such that $\operatorname{Inv}(N_0, \varphi) \subset \operatorname{int} N_1, \operatorname{Inv}(N_1, \varphi) \subset \operatorname{int} N_0$, then $h(N_0, \varphi) = h(N_1, \varphi)$.

Proposition 3.12 Let $\varphi : \mathbb{H} \times [0, 1] \times \mathbb{R} \longrightarrow \mathbb{H}$ be a family of multivalued L-flows and let $N \subset \mathbb{H}$ be an isolating neighborhood for all $\varphi(\cdot, \lambda), \lambda \in [0, 1]$. Then $h(N, \varphi(\cdot, 0)) = h(N, \varphi(\cdot, 1))$.

Proof. Consider the family of vector fields $\widetilde{F} : \mathbb{H} \times [0, 1] \longrightarrow \mathbb{H}$ such that for every $\lambda \in [0, 1]$ the multivalued flow $\varphi(\cdot, \lambda, \cdot)$ is generated by the *L*-vector field $L + \widetilde{F}(\cdot, \lambda) : \mathbb{H} \longrightarrow \mathbb{H}$. Applying Theorem 1.3 to the map \widetilde{F} we obtain, for every $\varepsilon > 0$, a locally Lipschitz compact single-valued map $\widetilde{f} : \mathbb{H} \times [0, 1] \to \mathbb{H}$ such that

(*)
$$\widetilde{f}(x,\lambda) \in \overline{\operatorname{conv}}\widetilde{F}(\overline{B_{\varepsilon}}(x) \times \overline{B_{\varepsilon}}(\lambda)) + B_{\varepsilon}(0))$$
 for all $x \in \mathbb{H}, \lambda \in [0,1].$

Let us fix $\lambda \in [0, 1]$. We shall show that N is an isolating neighborhood for the flows generated by $\widetilde{f}(\cdot, \lambda')$, where $\lambda' \in (\lambda - \varepsilon, \lambda + \varepsilon)$, if ε is small enough. Assume that $\overline{N} \subset B_r(0)$.

Let us define a homotopy $h: \mathbb{H} \times [0,1] \longrightarrow \mathbb{H}$ by the formula

$$h(x,s) = Lx + u(x)[(\overline{\operatorname{conv}}\widetilde{F}(\overline{B_s}(x) \times \overline{B_s}(\lambda)) + \overline{B_s}(0)] \cap \overline{\operatorname{conv}}\widetilde{F}(\overline{B_{2r}}(0) \times [0,1]),$$

where $u : \mathbb{H} \to \mathbb{R}$ is an Urysohn function such that u(x) = 1 for $|x| \leq r$ and u(x) = 0 for $|x| \geq 2r$.

Since h is a family of multivalued L-vector fields, it generates a family of multivalued L-flows $\eta(\cdot, s)$. Moreover, $h(\cdot, 0) = L + \tilde{F}(\cdot, \lambda)$. By Prop.3.2 the mapping $s \mapsto \operatorname{Inv}(N, \eta(\cdot, s))$ is use and $\operatorname{Inv}(N, \eta(\cdot, 0)) \subset \operatorname{int} N$. Therefore there exists s > 0 such that for all $s' \leq s$ we have $\operatorname{Inv}(N, \eta(\cdot, s')) \subset \operatorname{int} N$. If we choose $0 < \varepsilon_{\lambda} < \frac{s}{2}$, then for all $\lambda' \in [\lambda - \varepsilon_{\lambda}, \lambda + \varepsilon_{\lambda}]$ we obtain by Theorem 1.3 that for $\varepsilon < \varepsilon_{\lambda}$

$$\widetilde{f}(x,\lambda')\in \overline{\operatorname{conv}}\widetilde{F}(\overline{B}_{\varepsilon}(x)\times\overline{B}_{\varepsilon}(\lambda'))+\overline{B}_{\varepsilon}(0)\subset \overline{\operatorname{conv}}\widetilde{F}(\overline{B}_{s}(x)\times\overline{B}_{s}(\lambda))+\overline{B}_{s}(0).$$

We can assume that also $B_s(N) \subset B_r(N) \subset B_{2r}(0)$. It follows that the map $L + \tilde{f}(\cdot, \lambda')$ is a selection of $h(\cdot, s)$. Therefore for the L-flow $\psi(\cdot, \lambda')$ generated by the vector field $L + \tilde{f}(\cdot, \lambda')$ we have the inclusion $\operatorname{Inv}(N, \psi(\cdot, \lambda')) \subset \operatorname{int} N$, i.e., N is an isolating neighborhood.

Intervals $I_{\lambda} = (\lambda - \varepsilon_{\lambda}, \lambda + \varepsilon_{\lambda}) \cap [0, 1]$ form an open covering of [0, 1]. Choosing a finite subcovering $I_{\lambda_1}, ..., I_{\lambda_k}$ we find $\overline{\varepsilon} < \min\{\varepsilon_{\lambda_i}\}$ such that, for \widetilde{f} satisfying (*) with $\varepsilon = \overline{\varepsilon}$, the set

N is an isolating neighborhood for flows generated by $L + \tilde{f}(\cdot, \lambda)$ for all $\lambda \in [0, 1]$. Thus by Prop. 3.7 the homotopy index $h(N, \psi(\cdot, \lambda))$ does not depend on λ .

On the other hand, the approximation \widetilde{f} can be taken with an additional condition satisfied:

$$\widetilde{f}(\cdot,i) \in a(\widetilde{F}(\cdot,i),\varepsilon), \text{ for } i=0,1.$$

In order to assure this condition is satisfied, one repeats the proof of Theorem 1.3 with the following modification: For (x, λ) with $\lambda \notin \{0, 1\}$ we take $B_{\delta(x,\lambda)}(x, \lambda)$ such that $B_{\delta(x,\lambda)}(x, \lambda) \cap (\mathbb{H} \times \{0, 1\}) = \emptyset$, $B_{\delta(x,0)}(x, 0) \cap (\mathbb{H} \times \{1\}) = \emptyset$, $B_{\delta(x,1)}(x, 1) \cap (\mathbb{H} \times \{0\}) = \emptyset$ and for a locally finite covering $\{V_s\}$ of $\mathbb{H} \times [0, 1]$ we choose $(x_s, \lambda_s) \in V_s$ such that $\lambda_s = i, i \in \{0, 1\}$, if $V_s \cap (\mathbb{H} \times \{i\}) \neq \emptyset$.

This finishes the proof.

Proposition 3.13 Let $\varphi : \mathbb{H} \times \mathbb{R} \longrightarrow \mathbb{H}$ be an L-flow and let N_1, N_2, N be isolating neighborhoods for φ such that $N_1 \cap N_2 = \emptyset$, $N_1 \cup N_2 \subset N$ and $\operatorname{Inv}(N, \varphi) \subset N_1 \cup N_2$. Then $h(N, \varphi) = h(N_1, \varphi) \lor h(N_2, \varphi)$.

Proof. The property follows from the obvious observation that for each $n \mathbb{H}^n \cap N_1 \cap N_2 = \emptyset$ and thus the appropriate index pairs (P, Q) defining the classical Conley index for the isolating neighborhood $N \cap \mathbb{H}^n$ can be chosen in the form of disjoint sums $(P_1 \cup P_2, Q_1 \cup Q_2)$, where $(P_1, Q_1), (P_2, Q_2)$ are index pairs for N_1, N_2 , respectively. The rest is the definition of the wedge sum of spectra (see [10] for details).

In [6] a cohomological version of the Conley index for multivalued L-flows in a Hilbert space was established starting from the finite-dimensional case given in [16]. Instead of the homotopy type of index pairs the authors consider the Alexander-Spanier cohomology groups of these pairs. Since all the maps in the spectra are homotopy equivalences for n large enough, the inverse limit of the groups is well-defined

$$CH^{q}(N,\varphi) = \lim_{\longleftarrow} \{H^{q+\rho(n)}(Y_{n}, Z_{n}), \widetilde{\gamma_{n}}\}.$$

Similarly as in the single-valued case (see [10]) we obtain

Proposition 3.14 Let N be an isolating neighbourhood for a multivalued L-flow φ . Then the cohomology index from [6] is equal to the cohomology of our spectrum: $CH^q(N,\varphi) = H^q(h(N,\varphi))$ for all $q \in \mathbb{Z}$.

As a by-product we obtain that the cohomology index of Mrozek ([16]) for a multivalued flow φ in \mathbb{R}^n generated by a differential inclusion is just a cohomology of the homotopy index considered by Kunze in [13].

An interesting question appears: can the homotopy index $h(N, \varphi)$ be described using a behavior of an *L*-vector field L + F on the boundary of a prescribed set of constraints? In [7] the author gave a positive answer for differential inclusions in a finite dimensional space. We show that an infinite-dimensional version of this result is possible.

We will need the following extension result on graph approximations. Recall that P_n : $\mathbb{H} \to \mathbb{H}^n$ denotes the ortogonal projection.

Lemma 3.15 Let $B = \overline{B(0,r)} \subset \mathbb{H}$ be a closed ball in \mathbb{H} and $B^n := P_n(B) \subset B$. Let $F: B \multimap \mathbb{H}$ be a compact upper semicontinuous map with convex values and $F_n := P_n \circ F$. Then, for every $\varepsilon > 0$ there exists $n_0 \ge 1$ such that for any $n \ge n_0$ there exists a $\delta_n > 0$ such that any continuous (locally Lipschitz) δ_n -approximation $f: B^n \to \mathbb{H}^n$ of F_n over B^n may be extended to a continuous (locally Lipschitz) ε -approximation $g: B \to E$ of F, i.e., $g|_{B^n} = f$.

Proof. Let $\varepsilon > 0$ be arbitrary. We will proceed in several steps.

Step 1. There exists a locally Lipschitz function $\eta : B \to (0, \infty)$ such that, for every $x \in \mathbb{H}$, there is $x' \in B(x, \varepsilon)$ such that $B_{\varepsilon/2}(F(B_{\eta(x)}(x))) \subset B_{\varepsilon}(F(x'))$.

Indeed, for each $x \in B$ we choose $0 < r_x < \varepsilon$ such that $F(B_{2r_x}(x)) \subset B_{\varepsilon/2}(F(x))$, since F is usc, and take a locally finite and locally Lipschitz partition of unity $\{\lambda\}_{s\in S}$ subordinated to the covering $\{B(x, r_x)\}_{x\in B}$. For each $s \in S$ denote $r_s := r_{x_s}$, where $\operatorname{supp} \lambda_s \subset B(x_s, r_{x_s})$ for some $x_s \in B$.

Define $\eta: B \to (0, \infty)$,

$$\eta(x) := \sum_{s \in S} \lambda_s(x) r_s, \ x \in B$$

Obviously, η is locally Lipschitz. Let $x \in B$, and let $S_x := \{s \in S; \lambda_s(x) > 0\}$. Since the partition of unity is locally finite, we can find $s \in S_x$ such that $\eta(x) \leq r_s$. Hence, $||x - x_s|| < r_s < \varepsilon$ and, for any $y \in B_{\eta(x)}(x)$, $||y - x_s|| \leq ||y - x|| + ||x - x_s|| < 2r_s$. Therefore $B_{\eta(x)}(x) \subset B_{2r_s}(x_s)$ and

$$F(B_{\eta(x)}(x)) \subset F(B_{2r_s}(x_s)) \subset B_{\varepsilon/2}(F(x_s)).$$

Hence, putting $x' := x_s$, we obtain

$$B_{\varepsilon/2}(F(B_{\eta(x)}(x))) \subset B_{\varepsilon}(F(x')).$$

Step 2. For any $(x, y) \in B \times B$ we define

$$U(x,y) := [\eta^{-1}((\eta(x)/2,\infty)) \cap B_{\eta(x)/2}(x)] \times B_{\varepsilon/2}(y)$$

and an open neighborhood of the graph of F

$$\mathcal{U} := \bigcup_{(x,y)\in \operatorname{Gr}(F)} U(x,y).$$

Notice that, if $W \subset B$ is any subset, and a continuous map $f: W \to \mathbb{H}$ satisfies $\operatorname{Gr}(f) \subset \mathcal{U}$, then, for each $x \in W$, there exists $(x', y') \in \operatorname{Gr}(F)$ such that $(x, f(x)) \in U(x, y)$. Hence, $f(x) \in B_{\varepsilon/2}(y')$ and $||x - x'|| < \eta(x')/2 < \eta(x)$. This implies that $f(x) \in B_{\varepsilon/2}(F(B_{\eta(x)}(x))) \subset B_{\varepsilon}(F(B_{\varepsilon}(x)))$.

Step 3. There is $n_0 \ge 1$ such that $||P_n(y) - y|| < \varepsilon/4$ for every $n \ge n_0$ and $y \in F(B)$. Fix $n \ge n_0$, and define

$$\widetilde{U}(x,y) := [\eta^{-1}((\eta(x)/2,\infty)) \cap B_{\eta(x)/2}(x)] \times B_{\varepsilon/4}(y)$$

and an open neighborhood of the graph of F_n in $B \times \mathbb{H}$

$$\mathcal{U}_n := \bigcup_{(x,y)\in \operatorname{Gr}(F_n)} \widetilde{U}(x,y)$$

Notice that, if $(u, v) \in \widetilde{U}(x, y)$, then $v \in B_{\varepsilon/4}(y)$ and $y = P_n(y')$ for some $y' \in F(x)$. Hence, $||v - y'|| \leq ||v - y|| + ||y - y'|| < \varepsilon/2$. It implies that $(u, v) \in U(x, y')$ and, consequently, $\mathcal{U}_n \subset \mathcal{U}$.

Using the partition of unity technique, as in Step 1, it is easy to find a continuous function $\rho' : \mathbb{H}^n \to (0, \varepsilon)$ such that, any $\rho'(\cdot)$ -approximation $f : B^n \to \mathbb{H}^n$ of F_n , i.e., $f(x) \in B_{\rho'(x)}(F_n(B_{\rho'(x)}(x)))$ for any $x \in B^n$, satisfies $\operatorname{Gr}(f) \subset \mathcal{U}_n$. Analogously, let $\theta : \mathbb{H} \to (0, \varepsilon)$ be a continuous function such that any $\theta(\cdot)$ -approximation $f : B \to \mathbb{H}$ of F, satisfies $\operatorname{Gr}(f) \subset \mathcal{U}$ (comp. [12], Prop. 1.2).

Since B^n is compact, there exists $0 < \delta = \delta_n < \min\{\rho'(x); x \in B^n\}.$

Step 4. Now, let $f : B^n \to \mathbb{H}^n$ be any locally Lipschitz δ -approximation of F_n over B^n . Then $\operatorname{Gr}(f) \subset \mathcal{U}_n$. Since B^n is a Lipschitz retract of B, there exists a locally Lipschitz extension $k : B \to \mathbb{H}$ of f. Since $\mathcal{U}_n \subset \mathcal{U}$ and \mathcal{U} is open in $B \times \mathbb{H}$, there is an open neighborhood Ω of B^n in B such that $(x, k(x)) \in \mathcal{U}$ for every $x \in \Omega$. Hence,

$$k(x) \in B_{\varepsilon/2}(F(B_{\eta(x)}(x)))$$
 for every $x \in \Omega$.

Take an open set $\Omega_0 \subset B$ with $B^n \subset \Omega_0 \subset \overline{\Omega_0} \subset \Omega$ and a locally Lipschitz Urysohn function $\beta : \mathbb{H} \to [0,1]$ with $\beta(\overline{\Omega_0}) = \{1\}$ and $\beta(\mathbb{H} \setminus \Omega) = \{0\}$. Take any locally Lipschitz $\theta(\cdot)$ -approximation $h : B \to \mathbb{H}$ of F, where $\theta(\cdot)$ is from Step 3. Then $\operatorname{Gr}(h) \subset \mathcal{U}$. Define $g: B \to \mathbb{H}, g(x) := \beta(x)k(x) + (1 - \beta(x))h(x)$ for every $x \in B$. Obviously, $g|_{B^n} = f$.

Take any x with $\beta(x) > 0$. Then $x \in \Omega$, and

$$\{k(x), h(x)\} \subset B_{\varepsilon/2}(F(B_{\eta(x)}(x))).$$

By Step 1, $\{k(x), h(x)\} \subset B_{\varepsilon}(F(x'))$ for some x' with $||x - x'|| < \varepsilon$. By the convexity of values of F,

$$g(x) \in B_{\varepsilon}(F(x')) \subset B_{\varepsilon}(F(B_{\varepsilon}(x))).$$

If $\beta(x) = 0$, then, since $\theta(x) < \varepsilon$ for every $x \in B$, $g(x) = h(x) \in B_{\varepsilon}(F(B_{\varepsilon}(x)))$, too. Hence, g is the required approximation.

In the sequel we will use the following

Theorem 3.16 (comp. [7], Theorem 4.1) Let $K = \overline{IntK}$ be a subset of a finite dimensional space E and $F : E \multimap E$ be an usc map with compact convex values and a sublinear growth and such that $K^-(F)$ is a closed strong deformation retract of some open neighborhood $V \subset K$ of $K^-(F)$ in K. Assume that int $T_K(x) \neq \emptyset$ for every $x \in K \setminus K^-(F)$, and $T_K(\cdot)$ is lsc outside $K^-(F)$.

Then

$$h(\operatorname{Inv}(K,\varphi),\varphi) = [K/K^{-}(F), [K^{-}(F)]],$$

where φ is a multivalued flow generated by F, and $h(\text{Inv}(K,\varphi),\varphi)$ is defined, if K is an isolating neighborhood, as the Conley index for any flow generated by a sufficiently close Lipschitz approximation of F.

Here $T_K(x)$ denotes the Bouligand tangent cone:

$$T_K(x) := \{ v \in \mathbb{R}^n | \liminf_{h \to 0^+} \frac{\operatorname{dist}(x + hv, K)}{h} = 0 \}$$

Let $L + F : \mathbb{H} \to \mathbb{H}$ be a multivalued L-vector field, and let φ be an L-flow generated by L + F. On the boundary of a set $K \subset \mathbb{H}$ of constraints we consider the following *exit set*:

$$K^{-}(L+F) := \{ x_0 \in \partial K \mid \forall x \in S(x_0) \forall t > 0 : x([0,t]) \not\subset K \}.$$

It means that all trajectories starting at points in $K^-(L+F)$ immediately leave the set K. Assume that K is an isolating neighborhood for φ .

Suppose that the pair $(K, K^-(L+F))$ generates a spectrum (K_n/K_n^-) , where K_n^- is the exit set for $K_n = K \cap \mathbb{H}^n$ with respect to $L + P_n F$. Moreover, for some $N \ge 1$ and each $n \ge N$, let the following regularity conditions be satisfied:

(H1) Each
$$K_n$$
 is *epi-Lipschitz* outside K_n^- , i.e., int $T_{K_n}(x) \neq \emptyset$ for every $x \in K_n \setminus K_n^-$.

(H2) K_n is sleek outside K_n^- , i.e., $T_{K_n}(\cdot)$ is lsc on $K_n \setminus K_n^-$.

(H3) K_n^- is a strong deformation retract of some open neighborhood V_n of K_n^- in K_n .

Denote by [K, L + F] the homotopy type of the spectrum (K_n/K_n^-) .

Theorem 3.17 Under the above assumptions,

$$h(K,\varphi) = [K, L+F].$$

Proof. Let $\varepsilon > 0$ be such that $h(K, \varphi) := h_{\mathcal{LS}}(K, \varphi_f)$, for any $f \in a(F, \varepsilon)$. Let $B = \overline{B(0, r)}$ be a ball in \mathbb{H} such that $K \subset \operatorname{int} B$, and let $n_0 \ge N$ be such that K_n is an isolating neighborhood for each $n \ge n_0$, and n_0 is as in Lemma 3.15. We want to find $f \in a(F, \varepsilon)$ such that $h_{\mathcal{LS}}(K, \varphi_f)$ is a homotopy type of a spectrum $(Y_n/Z_n)_{n\ge n_0}$, and $([Y_n/Z_n, [Z_n]]) = ([K_n/K_n^-, [K_n]])$.

From Theorem 3.16 it follows that there exists a δ_{n_0} -approximation $g_{n_0}: B^{n_0} \to \mathbb{H}^{n_0}$ of $P_{n_0}F|_{B^{n_0}}$ such that its Conley index $[Y_{n_0}/Z_{n_0}, [Z_{n_0}]]$ equals $[K_{n_0}/K_{n_0}^-, [K_{n_0}]]$. We extend g to an ε -approximation $f: B \to \mathbb{H}$ of F. Since the spectrum $(Y_n/Z_n)_{n \ge n_0}$ for L + f is uniquely determined up to a homotopy type by $(Y_{n_0}/Z_{n_0}, [Z_{n_0}])$, and $(Y_{n_0}/Z_{n_0}, [Z_{n_0}])$ is homotopy equivalent to $(K_{n_0}/K_{n_0}^-, [K_{n_0}])$, we obtain $h(K, \varphi) = [K, L + F]$.

4 Conley index for finite dimensional gradient differential inclusions

Let $L: \mathbb{R}^d \to \mathbb{R}^d$ be a linear operator, and let $f: \mathbb{R}^d \to \mathbb{R}$ be a locally Lipschitz function satisfying

(3)
$$\sup_{y \in \partial f(u)} |y| \le c(1+|u|) \text{ for some } c \ge 0 \text{ and every } u \in \mathbb{R}^d.$$

Then the function $\Phi : \mathbb{R}^d \to \mathbb{R}$,

(4)
$$\Phi(u) = \frac{1}{2} \langle Lu, u \rangle + f(u), \quad \text{for } u \in \mathbb{R}^d,$$

is locally Lipschitz, and the Clarke generalized gradient

$$F(u) := \partial \Phi(u) = Lu + \partial f(u)$$

is well defined (see [1], [4] for definitions and properties of the gradient). Moreover, $F : \mathbb{R}^d \to \mathbb{R}^d$ is use with compact convex values and of sublinear growth. Hence, the differential inclusion $\dot{x} \in F(x)$ generates a multivalued admissible flow (see Preliminaries). We say that $\dot{x} \in \partial \Phi(x)$ is a gradient differential inclusion.

Assume that $F : \mathbb{R}^d \to \mathbb{R}^d$ is of the form $F(u) = Lu + \varphi(u)$ for some usc map φ with compact convex values and sublinear growth. We say that F has a variational structure, if there exists a locally Lipschitz function $f : \mathbb{R}^d \to \mathbb{R}$ such that $\partial \Phi(u) \subset F(u)$, where Φ is defined in (4). As we will see in the sequel, multivalued maps with a variational structure plays an important role in our investigations. If \mathbb{E} is a Hilbert space, $P^d : \mathbb{H} \to \mathbb{H}^d$ is the ortogonal finite-dimensional projection, and $F : \mathbb{H} \to \mathbb{H}$ is of the form $F(u) = Lu + \partial f(u)$ for some linear bounded operator $L : \mathbb{H} \to \mathbb{H}$ with $L(\mathbb{H}^d) \subset \mathbb{H}^d$, and a locally Lipschitz map $f : \mathbb{H} \to \mathbb{R}$, then the map $F_d : \mathbb{H}^d \to \mathbb{H}^d$, $F_d(x) := Lx + P_d(\partial f(i_d(x)))$, where $i_d : \mathbb{H}^d \to \mathbb{H}$ is the inclusion map, has a variational structure, since $Lx + \partial (f \circ i_d)(x)) \subset Lx + P_d(\partial f(i_d(x)))$ (see [1],[4])). Moreover, F_d need not be a generalized gradient of any locally Lipschitz function.

Example 4.1 Consider a 1-Lipschitz function $f : \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \begin{cases} |x| & \text{for } |x| \le |y|, \\ |y| & \text{otherwise.} \end{cases}$$

Obviously, $\partial(f \circ i)(x) = \{0\}$, where i(x) := (x, 0), while $F_1(x) = P_1(\partial f(x, 0)) = \{0\}$ for $x \neq 0$ and $F_1(0) = P_1(\partial f(0, 0)) = [-1, 1]$. Hence, F_1 is not a generalized gradient of any locally Lipschitz function.

For multivalued flows generated by differential inclusions with compact convex valued right-hand sides a homotopy index has been constructed (see [13]). Below we repeat the construction and investigate the index in the context of gradient differential inclusions.

Let K be an isolated invariant set, and let N be its isolating neighborhood, i.e., $K = \text{Inv}(N, F) := \text{Inv}(N, \varphi)$, where φ is a multivalued flow generated by the inclusion $\dot{x} \in F(x)$. By Proposition 3.2 it follows that K is a compact subset of int N (see also [13], Lemma 5.2.3). Now it is easy to prove ([13], Lemmas 5.2.5 and 5.3.1) that for each $\varepsilon > 0$ there exists a smooth ε -approximation of F generating a global flow on \mathbb{R}^d , and there is $0\delta > 0$ such that for each two such smooth δ -approximations g_1, g_2 the set N is an isolating neighborhood and they generate global flows with the same Conley homotopy index $h(\text{Inv}(N, g_1), g_1) = h(\text{Inv}(N, g_2), g_2)$.

Definition 4.2 Let K be an isolated compact invariant set, and K = Inv(N, F). By the homotopy index of K we mean the homotopy type

$$H(K,F) := h(\operatorname{Inv}(N,g),g)$$

for sufficiently near smooth approximation g of F.

One can easily check that this definition does not depend on the choice of an isolating neighborhood N of K and the choice of g.

For $F = \partial \Phi$, where Φ is of the form (4), the index can be described using smooth approximations of the given locally Lipschitz map f, as we can see below.

We say that $\tilde{f}: U \to \mathbb{R}$ is a C_{ε}^{∞} -approximation of a locally Lipschitz function $f: U \to \mathbb{R}$, where $U \subset \mathbb{R}^d$ is open and $\varepsilon: U \to (0, +\infty)$ is a continuous map, if

(i)
$$|f(x) - \tilde{f}(x)| < \varepsilon(x)$$
, for every $x \in U$,

(ii)
$$\nabla \tilde{f}$$
 is an ε -approximation⁴ of ∂f .

In the sequel we will apply only a simplified version of the following result with a constant function $\varepsilon(x) = \varepsilon > 0$.

Proposition 4.3 ([3], Theorem 3.7) Suppose $f : U \to \mathbb{R}$, where $U \subset \mathbb{R}^d$ is open, is a locally Lipschitz function. Then for any continuous map $\varepsilon : U \to (0, +\infty)$ there exists a C_{ε}^{∞} -approximation of f.

Assume that $F : \mathbb{R}^d \longrightarrow \mathbb{R}^d$, $F(u) = Lu + \varphi(u)$ has a variational structure with a multivalued selection $\partial \Phi = L + \partial f$. If K = Inv(N, F), then

$$H(K, F) = H(\operatorname{Inv}(N, \partial \Phi), \partial \Phi) = h(\operatorname{Inv}(N, \nabla \tilde{f}), \tilde{f})$$

for every sufficiently near C_{ε}^{∞} -approximation \tilde{f} of f, since near approximations of $\partial \Phi$ are near approximations of F.

The index given in Definition 4.2 has standard important properties collected in the following proposition.

Proposition 4.4 comp. ([13], Theorems 5.3.1, 5.3.2, 5.3.4)

- (Pr1) (EXISTENCE)⁵ If $H(K, F) \neq \overline{0}$, then $K \neq \emptyset$, i.e., there is a full trajectory in N, where N is an isolating neighborhood of K.
- (Pr2) (ADDITIVITY) If K_1, K_2 are disjoint isolated invariant sets, then $K = K_1 \cup K_2$ is an isolated invariant set and

$$H(K,F) = H(K_1,F) \lor H(K_2,F).$$

(Pr3) (CONTINUATION) Let $F : [0,1] \times \mathbb{R}^d \longrightarrow \mathbb{R}^d$ be a compact convex valued usc map with $\sup_{y \in F(\lambda,u)} |y| \leq c(1+|u|)$ for some c > 0 and every $(\lambda, u) \in [0,1] \times \mathbb{R}^d$. If $K_{\lambda} =$ $\operatorname{Inv}(N, F(\cdot, \lambda)) \subset \operatorname{int} N$ for every $\lambda \in [0,1]$, then $H(K_{\lambda}, F(\cdot, \lambda))$ is independent of $\lambda \in [0,1]$.

Remark. In the continuation property Theorem 5.3.4 in [13] the author assume that $F(\lambda, \cdot)$ is use, and $F(\cdot, u)$ is continuous for every $u \in \mathbb{R}^d$ and use uniformly on bounded subsets of \mathbb{R}^d . As the author proves in Lemma 5.3.3, under these assumptions the map F is jointly

⁴It means that $d_{F(B(x,\varepsilon(x)))}(f(x)) < \varepsilon(x)$ for every $x \in U$.

⁵This is also called the Ważewski property.

usc in every (λ, u) , so the assumption in (Pr3) is weaker than in Theorem 5.3.4 in [13]. Our formulation is suitable for gradient inclusions. Indeed, if $\Phi : [0, 1] \times \mathbb{R}^d \to \mathbb{R}$ is of the form

(5)
$$\Phi(\lambda, u) = \frac{1}{2} \langle L_{\lambda} u, u \rangle + f(\lambda, u), \quad \text{for } u \in \mathbb{R}^d,$$

where $\lambda \mapsto L_{\lambda}(\cdot)$ and f are locally Lipschitz, then the generalized gradient of Φ with respect to the second variable satisfies

$$\partial_u \Phi(\lambda, u) = L_\lambda u + \partial_u f(\lambda, u),$$

and it is jointly use in every $(\lambda, u) \in [0, 1] \times \mathbb{R}^d$. Note also that the continuation property is true if an isolating neighborhood ranges during a homotopy.

Example 4.5 One can check that for a function $\Phi : [0, 1] \times \mathbb{R}$, $\Phi(\lambda, u) := f(\lambda, u) = |u|^{1+\lambda}$, i.e., with $L \equiv 0$, the generalized gradient $\partial_u \Phi$ is not continuous with respect to the first variable.

Proof of Proposition 4.4. For (Pr1) and (Pr2) see [13]. We prove (Pr3).

Let r > 0 be such that $N \subset B(0, r)$. By the Cellina approximation theorem and a standard mollifiers technique (see [13], Lemma 5.3.4) it follows that for every $\varepsilon > 0$ there exists a continuous bounded map $f : [0, 1] \times \mathbb{R}^d \to \mathbb{R}^d$ such that $f(\lambda, \cdot) \in C^{\infty}(\mathbb{R}^d, \mathbb{R}^d)$ and

$$f(\lambda, u) \in F\left(\left([\lambda - \varepsilon, \lambda + \varepsilon] \cap [0, 1]\right) \times B(u, \varepsilon)\right) + B(0, \varepsilon)$$

for every $(\lambda, u) \in [0, 1] \times \overline{B(0, r)}$. Moreover, using Lemma 2.1 in [7] we can choose an approximation f with

$$f(\lambda, u) \in F(\{\lambda\} \times B(u, \varepsilon)) + B(0, \varepsilon),$$

i.e., such that $f(\lambda, \cdot)$ is an ε -approximation of $F(\lambda, \cdot)$. Since $K_{\lambda} \subset \operatorname{int} N$ for every $\lambda \in [0, 1]$ and the set $K = \bigcup_{\lambda \in [0, 1]} K_{\lambda}$ is closed (see Proposition 3.2), K is a compact subset of $\operatorname{int} N$.

Hence, there is $\delta > 0$ such that for every δ -approximation f of F chosen as above one has $\operatorname{Inv}(N, f(\lambda, \cdot)) \subset \operatorname{int} N$ for every $\lambda \in [0, 1]$ (see [13], Lemma 5.3.5). Continuity of f implies that the corresponding flows π_{λ} continuously depend on λ . From the continuation property of the homotopy Conley index for flows one obtains

$$H(K_0, F(0, \cdot)) = h(\operatorname{Inv}(N, f(0, \cdot), f(0, \cdot))) = h(\operatorname{Inv}(N, f(1, \cdot), f(1, \cdot))) = H(K_1, F(1, \cdot)),$$

and the proof is finished.

Corollary 4.6 If K_1, K_2 are disjoint isolated invariant sets, $K_1 \cup K_2 \subset K$, and K = Inv(N, F). If $H(K, F) \neq H(K_1, F) \lor H(K_2, F)$, then there exists a full trajectory in K which is not contained in $K_1 \cup K_2$. In particular, it is the case if $H(K, F) = \overline{0}$ and $H(K_i, F) \neq \overline{0}$, for some $i \in \{1, 2\}$.

Corollary 4.7 Assume that $F : \mathbb{R}^d \to \mathbb{R}^d$, $F(u) = Lu + \varphi(u)$ has a variational structure with a multivalued selection $\partial \Phi = L + \partial f$. Let p_1, p_2 be critical points of Φ in an isolating neighborhood N for F, which are isolated invariant sets for F. Assume that $\langle \partial \Phi(u), \partial \Phi(u) \rangle^- >$ 0 for every $u \in N \setminus \{p_1, p_2\}$, where $\langle \partial \Phi(u), \partial \Phi(u) \rangle^- := \min\{\langle y, y' \rangle \mid y, y' \in \partial \Phi(u)\}$.

If $H(\text{Inv}(N, F), F) \neq H(\{p_1\}, F) \lor H(\{p_2\}, F)$, then there exists a heteroclinic or homoclinic nontrivial orbit in N. In particular, if $(\{p_1\}, \{p_2\})$ is an attractor-repeller pair, then there is a trajectory joining the equilibria.

Proof. Notice that p_1, p_2 are the only critical points of Φ in N. From Lemma 4.5 in [7] it follows that $\{p_1\}$ and $\{p_2\}$ are isolated invariant sets for $\partial \Phi$. Therefore $H(\{p_i\}, F) = H(\{p_i\}, \partial \Phi)$ for $i \in \{1, 2\}$. Since $\partial \Phi$ is a selection of F, we have

$$\begin{aligned} H(\operatorname{Inv}(N, \partial \Phi), \partial \Phi) &= H(\operatorname{Inv}(N, F), F) \neq \\ &\neq H(\{p_1\}, F) \lor H(\{p_2\}, F) = H(\{p_1\}, \partial \Phi) \lor H(\{p_2\}, \partial \Phi). \end{aligned}$$

Now, Corollary 4.6 applies, and there is a full trajectory $x(\cdot)$ for $\partial \Phi$ (so, for F) in N with $x(0) = x_0 \in N$. Lemma 4.4 in [7] shows that $\omega(x_0) \cup \alpha(x_0) \subset \{p_1, p_2\}$. The proof is finished.

Remark. Note that the only critical points p_1, p_2 of Φ need not be isolated sets for F. For example, we can examine the map $F : \mathbb{R} \to \mathbb{R}$,

$$F(x) = \begin{cases} 1 & \text{for } |x| > 1, \\ [-1,1] & \text{for } |x| \le 1, \end{cases}$$

with the selection $\partial \Phi$, where

$$\Phi(x) = \begin{cases} x+2 & \text{for } x < -1, \\ -x & \text{for } |x| \le 1, \\ x-2 & \text{for } x > 1. \end{cases}$$

Obviously, Φ has two critical points -1 and 1 which are not isolated sets for F. Notice that $H(\text{Inv}([-2,2],F),F) = \overline{0}$ and $H(\{-1\},F) \vee H(\{1\},F) = \Sigma^0 \vee \Sigma^1 \neq \overline{0}$. Moreover, $\langle \partial \Phi(x), \partial \Phi(x) \rangle^- = 1 > 0$ for $x \notin \{-1,1\}$. One can easily find a trajectory joining 1 with -1.

References

- [1] J.P. Aubin, Optima and Equilibria, Springer, Berlin/Heidelberg 1993.
- [2] A. Cellina, Approximation of set-valued mappings and fixed point theorems, Ann. Mat. Pura Appl. 82(1969), 17-24.
- [3] A. Ćwiszewski, W. Kryszewski, Approximate smoothings of locally Lipschitz functionals, Bolletino U.M.I. (8) 5-B (2002), 289-320.

- [4] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York 1983.
- [5] C. Conley, Isolated Invariant Sets and the Morse Index, CBMS 38 (1978), AMS Publ., Providence/RI.
- [6] Z. Dzedzej, W. Kryszewski, Conley type index applied to Hamiltonian inclusions, J. Math. Anal. Appl. 347(2008), 96-112.
- [7] G. Gabor, Homotopy index for multivalued flows on sleek sets, Set-Valued Anaysis 13(2005),125-149.
- [8] K. Gęba, M. Izydorek, A. Pruszko, The Conley index in Hilbert spaces and its applications, Studia Math. 134(1999), 217-233.
- [9] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Springer, Dordrecht/Boston/London 2006.
- [10] M. Izydorek, A cohomological Conley index in Hilbert spaces and applications to strongly idefinite problems, J. Diff. Equations 170(2001), 22-50.
- [11] M. Kamenski, V. Obukhovskii, P. Zecca, Condensing Multivalued Maps and Semilinear Inclusions in Banach Spaces, Walter de Gruyter, Berlin 2001.
- [12] W. Kryszewski, Graph-approximation of set-valued maps on noncompact domains, Topology Appl. 83(1998), 1-21.
- [13] M. Kunze, Non Smooth Dynamical Systems, Lecture Notes in Math. 1744, Springer 2000.
- [14] M. Kunze, T. Küpper, Y. Li, On Conley index theory for non-smooth dynamical systems, Differential Integral Equations 13(2000), 479-502.
- [15] K. Mischaikow, M. Mrozek, Conley Index, Handbook of Dynamical Systems, Vol 2, (ed. B. Fiedler), 393-460.
- [16] M. Mrozek, A cohomological index of Conley type for multivalued admissible flows, J. Differential Equations 84 (1990), 15-51.
- [17] D. Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc. 291 (1985), 1-41.