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b Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 July 2010
Received in revised form 8 June 2013
Accepted 18 June 2013
Communicated by G. Ausiello

Keywords:
Approximation algorithm
Graph searching
Minimum cost
Monotonicity
Search strategy

We consider the problem of finding edge search strategies of minimum cost. The cost of
a search strategy is the sum of searchers used in the clearing steps of the search. One
of the natural questions is whether it is possible to find a search strategy that minimizes
both the cost and the number of searchers used to clear a given graph G . We call such
a strategy ideal. We prove, by an example, that ideal search strategies do not exist in
general. On the other hand, we provide a formula for the cost of clearing complete graphs.
From our construction it follows that an ideal search strategy of a complete graph does
exist and can be calculated efficiently. For general graphs G we give a polynomial-time
O (log n)-approximation algorithm for finding minimum cost search strategies. We also
prove that recontamination does not help to obtain minimum cost edge search strategies.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Edge searching was first introduced by Parsons in [9]. This model involves moving a number of searchers through a
graph to find a fast, invisible intruder. Searching has shown itself to be very versatile however, and has shown up in several
unlikely places. Edge searching is closely related to the graph parameter pathwidth, and hence to the broad theory of graph
minors developed by Robertson and Seymour [11]. Edge searching has also been linked to applications in memory allocation
(through pebbling [7]), to VLSI theory [3], and, at its most rudimentary, to finding children lost in a cave [2].

In Parsons’ original paper, the graphs considered were embedded in R3 and the movement of the searchers and intruders
were described by continuous functions. However, this is not the form in which this model is normally considered; instead,
we describe the movement of the searchers by discrete actions. For formal definitions see Section 2.

The classical measure for the quality of a search strategy is the number of searchers it uses. This naturally follows
from the need to minimize the size of a team in applications, as well as from the connections between search numbers
and width-like graph parameters, including the cutwidth, bandwidth, pathwidth and treewidth. However, other optimality
criteria for search strategies are also interesting. One such criterion is the maximum occupation time introduced in [5],
which is related to computing elimination trees of a graph and to the graph parameter treespan. Another is the cost of node
searching [4]. As proved in [4], the cost is related to the interval completion problem, that is, finding the minimum number
of edges required to add to a given graph G to obtain an interval supergraph of G , or the profile of G . The aim of this paper
is to adopt the concept of the cost to the edge searching problem.

This paper is organized as follows. In Section 2 we recall the edge and node searching problems. In Section 3 we
investigate the problem of monotonicity, which is a basic question for any model of graph searching: we prove that
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recontamination does not help while constructing minimum cost search strategies. Then, in Section 4, we transform the
problem of finding edge search strategies of minimum cost to the problem of minimizing the cost of node-searching, which
is related to finding the profile of a graph [4]. The best known approximation algorithm for the two latter problems has
the ratio O (log n) and, due to our transformation, we obtain an O (logn)-approximation algorithm for finding minimum cost
edge search strategies. Section 5 provides a formula for the cost of edge searching complete graphs. The proof is construc-
tive, i.e., we also give an algorithm that finds an edge search strategy of minimum cost (the strategy also uses the minimum
number of searchers). Section 6 shows that minimizing the number of searchers and minimizing the cost are ‘orthogonal’
in the sense that there exist graphs G such that each search strategy of minimum cost does not use the minimum number
of searchers.

2. Preliminaries

In this section we formally define the edge and node searching problems, together with the two optimization criteria
considered in this work. In both of these graph searching models we assume that the searchers have complete knowledge of
the graph and each other’s locations. The intruder is assumed to be invisible to the searchers, and may stop on vertices or
edges. The intruder may move from its current position along any path that is not occupied by a searcher, at any time. Also,
the intruder is omniscient, i.e., it has the complete knowledge about the locations and the future moves of the searchers,
and hence it will avoid being captured as long as possible.

For any graph G , V (G) and E(G) denote its vertex and edge sets, respectively. Given any graph G = (V (G), E(G)) and a
vertex v ∈ V (G), E v denotes the set of edges incident to v .

We say that S is an edge search strategy (or search strategy for short) of a graph G if S is a sequence of moves of the
searchers that guarantee capture of the intruder, i.e., the intruder and some searcher will share their locations at some point
as a result of the execution of S , regardless of the actions of the intruder. There are three possible moves in S:

(i) a single searcher is placed on an arbitrary vertex of G ,
(ii) a single searcher is removed from an arbitrary vertex of G ,

(iii) a single searcher σ present on a vertex u slides along an edge uv ∈ E(G), ending at v (in such case we also say that σ
slides from u to v). We call such a move a clearing move.

(By combining the first and second moves, a searcher may “jump” from one vertex to a non-adjacent vertex.) By the
definition, the searchers only stop on vertices. The symbol s(S) denotes the number of searchers that S uses. The (edge)
search number of a graph G is

s(G) = min
{
s(S): S is a search strategy of G

}
.

An edge uv is cleared, or guaranteed to be free of the intruder, in one of two ways: two searchers σ1 and σ2 are located
on u, and σ1 slides along uv; or, a single searcher σ1 is located on u, and all edges in Eu other than uv are already cleared,
and σ1 slides along uv . Initially, all edges are contaminated; they may hold the intruder. At the end of a search strategy, all
edges are clear, and thus the intruder’s capture has been guaranteed.

A cleared edge uv in a graph G reverts to being contaminated if there is ever a path from u (or correspondingly, v) to a
vertex x of a contaminated edge xy such that the path contains no searchers. Then we say the edge has been recontaminated.
A search strategy is monotone if no edge ever becomes recontaminated. If we insist on monotonicity in our search strategy,
we may similarly define the monotone (edge) search number ms(G) of a graph G as the minimum number of searchers needed
for a monotone search strategy of G . It is well known that ms(G) = s(G) [1,8].

Given an edge search strategy, we use the symbol |S| to denote the number of moves in S . Then, Si denotes its i-th
move, while |Si | is the number of searchers used in this move, i = 1, . . . , |S|. For each i = 1, . . . , |S| define a(Si) to be
|Si| if Si is a clearing move, and to be 0 otherwise, i.e., when Si places or removes a searcher. The cost of an edge search
strategy S is

cost(S) =
|S|∑
i=1

a(Si). (1)

Then, the edge search cost of a graph G is

cost(G) = min
{

cost(S): S is a search strategy of G
}
. (2)

We may also define the monotone edge search cost of edge searching a graph G as

costm(G) = min
{

cost(S): S is a monotone search strategy of G
}
. (3)

Some graphs G may be such that there exists a search strategy S that simultaneously minimizes cost(G) and s(G),
i.e., cost(S) = cost(G) and s(S) = s(G). Such a strategy S is called ideal. We will exhibit an ideal search strategy for the

http://mostwiedzy.pl


D. Dereniowski, D. Dyer / Theoretical Computer Science 495 (2013) 37–49 39

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

complete graph. However, in general, graphs do not have ideal search strategies. We construct an infinite family of graphs
for which no search strategy using s(G) searchers will simultaneous minimize the cost of cleaning G .

Now we recall the node searching problem and its cost measure as defined in [4]. We say that N is a node search strategy
if it is a sequence of moves of the searchers that guarantees the capture of the intruder, which occurs when a searcher and
the intruder are on the same vertex of G , or the intruder is on an edge whose two endpoints are occupied by searchers. In
a node search strategy each move is the following sequence of actions:

(i) first, a single searcher is placed on a vertex v ∈ V (G) that may contain the intruder;
(ii) second, any subset of searchers is removed from the vertices of G .

Then s(N ) is the number of searchers used by N . The node search number of a graph G is

ns(G) = min
{
s(N ): N is a node search strategy of G

}
.

As for edge search, we say that a node search strategy is monotone if the intruder is unable to reach any edge that has
been previously cleared.

For a node search strategy N , |N | denotes its length, Ni is its i-th move, and |Ni | denotes the number of searchers
in use at the end of the move Ni (i.e., after performing both actions (i) and (ii)), i = 1, . . . , |N |. Following the notation
in [4], we use the symbol γ (N ) to denote the cost of a node search strategy N clearing a graph G , defined as γ (N ) =∑

1�i�|N | |Ni |. We define the node search cost of a graph G as

γ (G) = min
{
γ (N ): N is a node search of G

}
.

We finish this section by introducing the three ‘states’ of a vertex during the execution of an edge or a node search
strategy. A vertex of a graph is contaminated if no searcher is located at v and some edge in E v is contaminated (in which
case all edges incident to the vertex are contaminated). We say that a vertex v is guarded if a searcher is located at v . If all
edges adjacent to a vertex v have been cleared, then v is clear. Note that once a vertex is clear, no searcher should guard
v in an optimal monotone minimum cost (node or edge) search strategy. In other words, in the case of edge search, if a
searcher σ slides from v to u and uv is the only contaminated edge in E v at the beginning of this move, then no additional
searcher guards v while σ performs the clearing of uv . Moreover, in each monotone search strategy each vertex v ∈ V (G)

is initially contaminated, then becomes guarded and finally it becomes clear once all the edges in E v are cleared.

3. Monotonicity

In this section we prove that the edge search cost equals the monotone edge search cost for any graph G , cost(G) =
costm(G).

Before we describe the details of our proof, we sketch our method. The ‘standard’ method of proving monotonicity
for graph searching models is the concept of crusades introduced by Bienstock and Seymour in [1]. This method turned
out to be successful in proving that recontamination does not help for minimum cost node searching [4]. We prove the
monotonicity for minimum cost edge searching by a ‘reduction’ to the node search problem. In particular, we define a
graph G p for a given graph G by replacing each edge by a path on p edges. If the integer p is sufficiently large, then node
and edge searching programs ‘behave’ in a very similar way for G p , that is, the difference between node and edge costs
is very small compared to the additional cost introduced by a possible recontamination. Since recontamination does not
help for minimum cost node searching of G p , we will obtain that recontamination does not help for minimum cost edge
searching in the class of graphs G p . Moreover, we prove that cost(G p) = p · cost(G) and finally we obtain our main result by
a contradiction: cost(G) < costm(G) would imply that recontamination helps for minimum cost (node and edge) searching
of G p as well.

Given a simple graph G , construct a graph G p by replacing each edge uv of G by a path on p edges with endpoints u
and v , or alternatively, by subdividing the edge uv p − 1 times. Note that in particular G1 = G . Informally, Lemmas 1 and 2
allow us to assume that, in a node or edge search strategy for graphs G p , if a search strategy starts clearing a path of G p cor-
responding to an edge of G , then the strategy continues by clearing the path completely. To give the formal statements we
introduce some more notation. We say that the edges of a path P with vertices v1, . . . , vn and edges v1 v2, v2 v3, . . . , vn−1 vn

are cleared consecutively in an edge search strategy S if, for some j ∈ {1, . . . , |S| − n + 2}, S j clears v1 v2, S j+1 clears v2 v3,
and so on, until S j+n−2 clears vn−1 vn . Analogously, the vertices of P are guarded consecutively in a node search strategy N
if for some j ∈ {1, . . . , |N | − n + 1}, N j guards vertex v1, N j+1 guards v2, and so on, until N j+n−1 guards vn .

Lemma 1. If G is a graph, p � 1 is an integer, and N is a monotone node search strategy of G p , then there exists a monotone node
search strategy N ′ of G p such that γ (N ′) � γ (N ), s(N ′) = s(N ) and the internal vertices of each path P corresponding to an edge
of G are guarded consecutively by N ′ .
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Proof. Let Ñ be a monotone node search strategy of G p whose sum
∑

v∈V (G) t(v) is minimum and such that γ (Ñ ) � γ (N ),

s(Ñ ) � s(N ), where Ñt(v) is the move of placing a searcher on v , v ∈ V (G). If Ñ �=N , then replace N by Ñ .
Let the path P connecting two vertices u, v of G p and corresponding to an edge uv ∈ E(G) be selected arbitrarily, and

let P ′ be its subpath on the internal vertices of P . (Note that V (P ′) = V (P ) \ {u, v}.) Since the lemma trivially holds when
p � 2, let p � 3 in the following. Let u′ and v ′ be the endpoints of P ′ adjacent to u and v , respectively. Further, without
loss of generality, assume that u is guarded before v in N . Note that any node search strategy of G p consists of n moves,
where n is the number of vertices of G p .

We first prove that there exists a node search strategy N ′′ of G p such that for each i = 1, . . . ,n it holds:

(i) at the end of N ′′
i either no vertex of P ′ is guarded, or the cleared edges and guarded vertices of P ′ form a connected

subpath that contains u′ . (Essentially, the path P ′ of internal vertices of P is cleared from one side to the other in N ′′ ,
and not by starting in the middle.)

(ii) B(N ′′
i ) \ V (P ) = B(Ni) \ V (P ), where B(Ni) and B(N ′′

i ) are the sets of vertices guarded at the end of the moves Ni
and N ′′

i , respectively.
(iii) |N ′′

i | � |Ni |.

Observe that (iii) implies γ (N ′′) � γ (N ).
We construct N ′′ by defining each of its moves. Suppose that N ′′

1 , . . . ,N ′′
i−1 have been constructed, where i ∈ {1, . . . ,n},

and we define N ′′
i . If Ni places a searcher on a vertex not in V (P ′) then so does N ′′

i . One can check that N ′′
i satisfies

conditions (i)–(iii).
Suppose now that Ni places a searcher on a vertex x of P ′ . If none of N1, . . . ,Ni−1 placed a searcher on a vertex of P ′ ,

then N ′′
i places a searcher on u′ . Clearly, (i)–(iii) hold because x needs to be guarded at the end of Ni .

Hence suppose that at least one of N1, . . . ,Ni−1 placed a searcher on a vertex of P ′ . Let P ′′ be the subpath of P ′
consisting of all vertices guarded by N ′′

1 , . . . ,N ′′
i−1. By construction, u′ is an endpoint of P ′′ , and let v ′′ be the vertex in

V (P ′) \ V (P ′′) adjacent to an endpoint of P ′′ . We define N ′′
i as a move that places a searcher on v ′′ . Note that (i) holds,

and (ii) follows from (ii) for i − 1. It remains to prove (iii). Note that, by construction,

u ∈ B
(
N ′′

i

) ⇒ u ∈ B(Ni). (4)

We consider two cases: v ∈ B(Ni) and v /∈ B(Ni). If v ∈ B(Ni), then v ∈ B(N ′′
i ) and hence∣∣B

(
N ′′

i

) ∩ (
V (P ) \ {u})∣∣ = 2 �

∣∣B(Ni) ∩ (
V (P ) \ {u})∣∣

and (iii) follows from (ii) and (4). If v /∈ B(Ni), then suppose first that v is not clear at the end of Ni . If u is guarded or clear
at the end of Ni , then, by (4), B(N ′′

i )∩ (V (P ) \ {u}) = {v ′′} and, since B(Ni)∩ (V (P ) \ {u}) �= ∅, (iii) follows from (ii) and (4).
If u is not guarded and not clear at the end of Ni , then B(N ′′

i )∩ V (P ) = {u′, v ′′} and hence |B(N ′′
i )∩ V (P )| > 1 and (ii) also

imply (iii). It remains to consider the case when v /∈ B(Ni) and v is clear at the end of Ni . Let y ∈ B(Ni) be the endpoint of
the maximal subpath of P ′ consisting of cleared edges and guarded vertices at the end of Ni and having v ′ as an endpoint.
Note that B(N ′′

i ) ∩ (V (P ) \ {u}) ⊆ {v, v ′′} because u is guarded or clear at the end of N ′′
i . If |B(Ni) ∩ (V (P ) \ {u})| > 1, then

(iii) follows from (ii) and (4). Thus, suppose that |B(Ni) ∩ (V (P ) \ {u})| = 1 (or equivalently, B(Ni) ∩ (V (P ) \ {u}) = {y}) and
B(N ′′

i ) ∩ (V (P ) \ {u}) = {v, v ′′}. Since u is guarded prior to v in N , we obtain that some subpath of P ′ with and endpoint
v ′ has been cleared by N before a searcher has been placed on v in N , which contradicts the choice of N (this subpath
could be selected in such a way that v , not v ′ , is its endpoint).

Now we prove the lemma. Let N ′′
i , i ∈ {1, . . . ,n}, be a move placing a searcher on an internal vertex x of P , which results

in clearing an edge of P and guarding at least one vertex of P at the end of N ′′
i . Moreover, select i so that the number of

searchers used for guarding at the end of N ′′
i is minimum over all such moves in N ′′ . Note that i is well defined because

p � 3. Let N ′′
j and N ′′

k be the moves that place a searcher on a vertex of P ′ and, as a result, no edge of P becomes cleared
and all edges become cleared, respectively. (Note that N ′′

j and/or N ′′
k may not exist, as the first and last clearing moves

may be caused by placing a searcher on the endpoints of P and not in P ′; in such case we say that they are undefined.)
Let q(N ′′

i ) = 0, q(N ′′
j ) = 1 and let q(N ′′

k ) = 2. Let l ∈ {i, j,k} be selected in such a way that N ′′
l is not undefined and

|N ′′
l | + q(N ′′

l ) = min{|N ′′
t | + q(N ′′

t ): t = i, j,k and N ′′
t is not undefined}. To obtain N ′ , reorder the moves in N ′′ so that all

moves of clearing the vertices of P replace the move N ′′
l and the vertices of P are guarded consecutively. By the choice of l,

the total cost of clearing and guarding the vertices of P is not greater in the new strategy than in the initial one. Hence,
γ (N ′) � γ (N ′′) � γ (N ).

The above modification can be repeated independently for each path corresponding to an edge of G . This completes the
proof. �

Note that Lemma 1 specifies a way of clearing the internal vertices of the paths in G p that correspond to the edges of G ,
though a move that places a searcher on an endpoint of such path (i.e., on a vertex of G) does not have to be followed
immediately by clearing the path since the endpoint may be shared by several such paths. A similar result holds for edge
searching of G p .
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Lemma 2. If G is a graph, p � 1, and S is an edge search strategy of G p , then there exists an edge search strategy S ′ of G p such that
cost(S ′) � cost(S), s(S ′) = s(S) and, in S ′ , when any edge in a path corresponding to an edge in G is cleared, the rest of the edges
in that path are consecutively cleared, and when any edge in a path corresponding to an edge in G is recontaminated, all edges in that
path are recontaminated.

Lemma 3. If G is a graph and p � 1 is an integer, then there exists a (monotone) edge search strategy S of G with cost(S) = k if and
only if there exists a (monotone) edge search strategy S̃ of G p with cost(S̃) = pk.

Proof. Given an edge search strategy S that clears G , we construct an edge search strategy S̃ of G p as follows. If Si clears
an edge uv by sliding σ from u to v , then add to S̃ the p moves that clear the path with p edges corresponding to uv
by having σ slide from u to v through successive moves along the edges of P . Alternatively, if S places/removes a searcher
σ at/from a vertex u, then S̃ places/removes σ at/from u, respectively. Clearly, cost(S̃) = p · cost(S). Moreover, if S is
monotone, then S̃ is monotone as well.

Suppose now that a search strategy S ′ that clears G p is given. By Lemma 2, there exists a search strategy S̃ with
s(S̃) = s(S ′) and cost(S̃) � cost(S ′) and such that S̃ can be divided into sequences of moves, such that each such sequence
is either a single move that places or removes a searcher on/from a vertex in V (G), or it consists of clearing moves that
slide a searcher from a vertex u to a vertex v (both in V (G)) along a path P in G p . Construct S as follows; if S̃i is a move
that places/removes a searcher σ at/from a vertex u, then add a move to S that places/removes σ at/from u. If S̃i is the
beginning of a sequence of clearing moves from u to v along a path P , then add to S the single clearing move from u to
v along the edge that corresponds to this path P . Then, each clearing move in S corresponds to a segment of p clearing
moves in S̃ , each of which uses the same set of searchers. Moreover, an edge of G gets recontaminated during S if and
only if the corresponding path in G p gets recontaminated in S̃ . Thus, p · cost(S) = cost(S̃). �

We will prove in Lemma 5 that we can convert an edge search strategy of G p into a node search strategy of G p and the
cost of the new strategy differs additively by a factor independent of p. In order to give this result for non-monotone search
strategies we first give an upper bound on the number of sliding moves in a minimum cost edge search.

Lemma 4. If G is a graph on n vertices, then each minimum cost edge search strategy of G contains at most n3 clearing moves.

Proof. First observe, that n3 is an upper bound on the edge search cost of G . Indeed, one can construct a ‘trivial’ edge
search strategy that first places a searcher on each vertex of G , and an additional (n + 1)-st searcher clears all the edges
while each vertex is guarded. The number of clearing moves is m � n(n − 1)/2, which proves the bound.

Each clearing move of any minimum cost edge search strategy S contributes at least one unit to the overall cost of S ,
because at least one searcher is used in the clearing move. Therefore, if there are more than n3 clearing moves in S , then
cost(S) > n3 – a contradiction. �
Lemma 5. If G is a graph on n vertices, p � 1 is an integer, and S is a (monotone) edge search strategy of G p , then there exists a
(monotone) node search strategy N of G p such that

γ (N ) � cost(S) + 2n3(n + 1).

Proof. We begin by placing more structure on the edge search strategy S . First, without loss of generality, we may assume
that whenever S slides a searcher σ from u to v along an edge uv , the edge uv is cleared. (Otherwise, we could replace the
sliding move by two moves: first, removing σ from u, then placing σ at v , which would give a lower cost search strategy.)
Second, by Lemma 2, we may without loss of generality assume that the edges of each path in G p that corresponds to an
edge of G are cleared consecutively in S .

Given such an edge search strategy S of G p , we define a node search strategy N of G p . Initially no vertex of G p is
occupied both in S and in N . Suppose that the first j − 1 moves of N have been obtained from the first i − 1 moves
of S , for some i, j � 1. Now we define the moves of N that correspond to Si . If Si places a searcher on a vertex, N does
nothing. If Si removes a searcher and this does not cause recontamination, then N does nothing. If Si removes a searcher
which results in recontamination, then in N we remove the searchers occupying all vertices v such that all of the edges
that became recontaminated in S now become recontaminated in N . If Si slides a searcher σ along an edge from u to v ,
and both u and v are already occupied by searchers at the end of N j−1, then N does nothing (i.e., no moves are added to
N while ‘processing’ Si ; this edge has been already cleared in N ). On the other hand, if either u or v (or both) are not
guarded at the end of N j−1, then in subsequent moves in N (i.e., in the move N j , or in the moves N j,N j+1 if none of u
and v are guarded), place searchers on each of u and v that are unoccupied. (This may clear other edges, but will certainly
clear uv .) Also, at the end of each move of N the searchers that are not necessary for guarding are removed, and therefore
have no influence on the cost of the node search strategy.

Note that the above in particular implies that if a searcher reaches in S a vertex v for the first time by sliding the only
searcher located at u along the edge uv ∈ E(G p), then a second searcher is placed on v in N , and subsequently the single
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searcher at u is immediately removed. It follows from this construction that if one move N j in N corresponds to Si , then
|N j | � |Si |. Therefore, clearing the subpaths induced by the internal vertices of the path of G p corresponding to an edge of
G gives the same cost both in S and in N .

We now consider the cost of clearing those edges in G p incident to the vertices of G , which are the only edges we have
not yet considered. Note that the edges of paths of G p that correspond to the edges of G are cleared consecutively by S ,
and if a recontamination occurs, then all edges of such a path either remain cleared or become recontaminated. The number
of times such a path in G p is cleared, by Lemmas 3 and 4, is bounded by n3. Moreover, to clear each edge of G p incident to
a vertex in V (G), there exist at most two corresponding moves in N , each using at most n + 1 searchers. (There could be a
searcher on each vertex in V (G), as well as on one vertex not in V (G).) Thus, each of these 2n3 moves uses at most n + 1
searchers. �
Lemma 6. If G is a graph with n vertices and m edges, p � 1 is an integer, and N is a monotone node search strategy of G p , then there
exists a monotone edge search strategy S of G p such that

cost(S) � γ (N ) + 2m(n + 1).

Proof. By Lemma 1, there exists a node search strategy N of G p such that the internal vertices of each path corresponding
to an edge of G are guarded consecutively in N . We construct an edge search strategy S of G p . To this end we describe how
a sequence of moves in N , starting with Ni , i ∈ {1, . . . , |N |}, and clearing the internal vertices of a path P that corresponds
to an edge of G , is translated into the moves of S .

Let uv be an edge in G with corresponding path P . Let x and y be adjacent to u and v , respectively, in P . If xu becomes
clear in Ni and u is guarded at the end of Ni , then first append to S a move that places a searcher on u, if only one
searcher is at u in S , and then append to S a move that slides a searcher along ux from u to x. If xu does not become
cleared as a result of the move Ni then we place searchers on x in S to ensure that two searchers are present on x
in S , which introduces no cost in S as these are not clearing moves. By our choice of N , the moves following Ni clear
the remaining internal vertices of P . The corresponding moves of S slide a searcher from x to y. Note that as either the
edge ux is cleared, or there are two searchers on x, these sliding moves clear the internal edges of P , and certainly no
recontamination will occur, independently of whether ux is cleared. If, as a result of placing a searcher on y in N , the edge
yv becomes clear, then we slide the searcher occupying y from y to v in S . Clearing the internal edges in E(P ) \ {ux, v y}
gives the same cost both in S and in N .

This leaves only the edges of G p incident with a vertex of G to consider. In the worst case, there is an additional cost
of n + 1 in S for each edge of G p adjacent to a vertex in V (G). Since there are 2m such edges, we obtain cost(S) �
γ (N ) + 2m(n + 1). �
Theorem 7. For each graph G it holds costm(G) = cost(G).

Proof. Let p = 5n3(n + 1), and G be a graph with n vertices and m edges. Construct the graph G p . Let Sm(G) and S(G) be
minimum cost monotone and non-monotone edge search strategies of G , respectively.

By Lemma 3, there exist the corresponding monotone and non-monotone edge search strategies Sm(G p) and S(G p) of
G p such that

cost
(
Sm(G p)

) = p · cost
(
Sm(G)

)
and cost

(
S(G p)

) = p · cost
(
S(G)

)
. (5)

Moreover, Sm(G p) is a minimum cost monotone search strategy of G p .
By Lemma 5, there exists a (possibly non-monotone) node search strategy N (G p) of G p with cost

γ
(
N (G p)

)
� cost

(
S(G p)

) + 2n3(n + 1). (6)

Let Nm(G p) be a minimum cost monotone node search strategy of G p . By the monotonicity property for the node search
problem [4] we obtain that

γ
(
Nm(G p)

)
� γ

(
N (G p)

)
. (7)

By Lemma 6, there exists a monotone edge search strategy S̃m(G p) of G p with cost

cost
(
S̃m(G p)

)
� γ

(
Nm(G p)

) + 2m(n + 1). (8)

Since m < n3, by (6), (7) and (8)

cost
(
S̃m(G p)

)
< cost

(
S(G p)

) + 5n3(n + 1). (9)

Assume, by way of contradiction, that cost(S(G)) � cost(Sm(G)) − 1. Then, by (5), cost(S(G p)) � cost(Sm(G p)) − p,
or cost(S(G p)) + p � cost(Sm(G p)). Since p = 5n3(n + 1), by (9), cost(S̃m(G p)) < cost(Sm(G p)), which contradicts the
minimality of Sm(G). Thus, cost(S(G)) � cost(Sm(G)), and hence cost(S(G)) = cost(Sm(G)) = costm(G), as required. �
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4. Approximation algorithm for general graphs

In this section we provide an approximation algorithm for calculating a minimum cost search strategy of an arbitrary
graph G = (V (G), E(G)). For a node and edge search strategy S we define Bb(Si) (Be(Si)) to be the set of vertices that are
guarded at the beginning (at the end, respectively) of a move Si , i = 1, . . . , |S|.

Lemma 8. Let G be any graph. For each monotone node search strategy N of G2 there exists an edge search strategy S of G such that
cost(S) � 4γ (N ).

Proof. For each uv ∈ E(G) denote by xuv the node adjacent both to u and v in G2. Given a monotone node search strategy
N of G2 we construct an edge search strategy S of G . To that end we perform the following for each i = 1, . . . , |N |.

Case 1. If Ni places a searcher on xuv , uv ∈ E(G), then we translate it into the moves in S:
(1a) if u or v has only one neighbor in G , then place a searcher σ on u or v , respectively, and slide σ along uv ,
(1b) if |Eu | > 1, |E v | > 1 and the only contaminated edge in Eu is uxuv or the only contaminated edge in E v is

vxuv , then slide in S the searcher present at u or v , respectively, along uv ,
(1c) if at least two edges in Eu and at least two edges in E v are contaminated in N , then place two searchers on u,

respectively, and slide one of them from u to v .
Case 2. if Ni places a searcher on v ∈ V (G), then in S we do nothing.

Then, before proceeding to i + 1, repeat the following as long as possible: if a searcher σ is present on a clear vertex or if
another searcher is at v , then add to S a move that removes σ from v .

One can prove by an induction on i ∈ {1, . . . , |N |} that a searcher is placed on xuv in one of the moves N1, . . . ,Ni if and
only if uv has been cleared by the corresponding moves of S . This implies that S is a valid edge search strategy of G .

We prove by induction on the number of moves in N , that if S ji is the last move among the moves of S corresponding
to Ni , i ∈ {1, . . . , |N |}, then for each u′ ∈ V (G) it holds

u′ ∈ Be(S ji ) ⇒ (
u′ ∈ Be(Ni) or xu′v ′ ∈ Be(Ni)

)
(10)

for some neighbor v ′ of u′ in G . Suppose that (10) holds for each i ∈ {1, . . . , |N | − 1} and we consider the move Ni+1. It is
enough to analyze the case when Ni+1 places a searcher on xuv for some uv ∈ E(G). Observe that

Be(Ni+1) \ {u, v, xuv} = Be(Ni) \ {u, v, xuv} (11)

and

Be(S ji+1) \ {u, v} = Be(S ji ) \ {u, v}. (12)

Hence, if step (1c) has been performed for Ni+1, then (10) holds for i + 1. Suppose for a contradiction that (10) does not
hold when step (1a) or (1b) has been performed. By (11) and (12), it fails for u′ = u or u′ = v . We consider the former case,
as the other one is symmetric. Hence, u ∈ Be(S ji+1 ) and u /∈ Be(Ni) and xuv ′ /∈ Be(Ni+1) for each neighbor v ′ of u in G .
The fact that u ∈ Be(S ji+1 ) implies that an edge uv ′ ∈ Eu is not cleared at the end of S ji+1 for some neighbor v ′ of u in G .
Hence, xuv ′ is contaminated at the end of Ni+1. This gives the desired contradiction and proves the claim.

Eq. (10) implies∣∣Be(S ji )
∣∣ � 2

∣∣Be(Ni)
∣∣ for each i = 1, . . . , |N |. (13)

By construction, for each i = 1, . . . , |N | there exists exactly one integer ti ∈ { ji−1 + 1, . . . , ji} (take j0 = 0) such that Sti is a
clearing move. Note that

|Sti | � 2
∣∣Be(Ni)

∣∣ + 2 for each i = 1, . . . , |N |. (14)

Indeed, at most two searchers are removed from u and v after clearing uv , which implies |Sti | � |Be(S ji )| + 2 and there-
fore (14) follows from (13). Eq. (14) completes the proof. �

For the analysis of our approximation algorithm we will need a lower bound for the edge search cost a graph.

Lemma 9. For each graph G we have cost(G) � γ (G)/3.

Proof. Given an edge search strategy S of G we construct a node search strategy N of G by translating each move Si
that clears an edge uv of G into two moves in N of placing the searchers on u and v , respectively (if u and/or v is
already guarded, then we do not place a second searcher on the vertex). If at the end of Si , i ∈ {1, . . . , |S|}, the vertex v
(respectively u) is not guarded, then we remove the corresponding searcher from v (respectively u) in the corresponding
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move of N . In this way after the corresponding moves of S and N , the sets of guarded vertices are equal. Note that the
searchers are removed from the vertices of G by N not necessarily immediately when they are not needed to guard them,
which implies that in this node search strategy N we do include those searchers while calculating its cost. Hence, the cost
of N is an upper bound on γ (G).

Assume that Si slides a searcher from u to v to clear uv and uses s searchers in this move. Let N j , N j+1 be the two
corresponding clearing moves in N (placing searchers at u and v , respectively), which result in clearing uv as well. (If less
than two moves of N correspond to Si , then the analysis is simpler and we omit it.) We have that N j uses s searchers and
N j+1 uses s + 1 searchers. This implies that (|N j | + |N j+1|)/|Si| � 3. �

Recall that the profile of a graph G , p(G), is the minimum number of edges in an interval supergraph of G , i.e.

p(G) = min
{∣∣E(H)

∣∣: H is an interval supergraph of G
}
.

Theorem 10. (See [4].) For each simple graph G it holds p(G) = γ (G). �
The problem of deciding whether p(G) � k for given G and k is NP-complete [4,6]. We also have the following.

Theorem 11. (See [10].) There exists an O (log n)-approximation polynomial-time algorithm for profile minimization, where n =
|V (G)|.

Our approximation algorithm for finding minimum cost edge search strategy can be described as follows:

Step 1: Given G , compute the graph G2.
Step 2: Find a node search strategy N of G2. To this end we use the O (log |V (G2)|)-approximation algorithm for minimizing

the profile of G2. By Theorems 10 and 11, this gives a O (log |V (G2)|)-approximate solution N to the minimum cost
node searching problem for G2.

Step 3: Translate N into edge search strategy S of G as described in the proof of Lemma 8. (Note that cost(S) � 4γ (N ).)

By the discussion above, γ (N ) � cp(G2) log |V (G2)| = cγ (G2) log |V (G2)|, where c is a constant. Since |V (G2)| = |V (G)|+
|E(G)| � |V (G)|2, we obtain by Lemma 8 that cost(S) � 4γ (N ) � 8cγ (G2) log |V (G)|. By Lemma 9 (applied for G2),

cost(S)

cost(G)
� 8c

γ (G2)

cost(G)
log

∣∣V (G)
∣∣ � 24c

cost(G2)

cost(G)
log |V (G)|.

By Lemma 3, cost(G2) = 2cost(G). This gives the following.

Theorem 12. There exists a polynomial-time O (log n)-approximation algorithm for finding minimum cost edge search strategy for
any graph G, where n is the number of vertices in G.

5. Minimum cost search for complete graphs

In this section we give a formula for the edge search cost of an n-vertex complete graph, denoted by Kn . Our proof
is constructive, i.e., we provide an algorithm for computing a minimum cost search strategy. Let V (Kn) = {v1, . . . , vn}. In
the following we assume that vertices are labelled in the order they are first visited; that is, without loss of generality,
that in each search strategy of the complete graph when a searcher reaches a vertex vi for the first time (i.e. vi becomes
guarded), then all searchers currently in the graph are on vertices with index at most i, and all other vertices (vi+1, . . . , vn)
are contaminated.

Naively, two strategies present themselves as methods for clearing Kn in an attempt to minimize the cost. The first would
be to clear Kn “clique by clique”, where the graph induced by cleared edges induces a complete graph on v1 and v2, then
v1, v2, and v3, then v1, v2, v3, v4, and so on, until the graph is cleared. While this allows many edges to be cleared cheaply
early in the strategy, it later becomes expensive. Alternatively, Kn may be cleared “vertex by vertex”, where searchers are
placed on all vertices, and then v1 is cleared, then v2, then v3, and so on. In such a strategy, clearing early vertices is
expensive, but later vertices are cheap. In general, it turns out that neither of these search strategies minimizes the cost.
In fact, a minimum cost search strategy that we present in this section combines these two ideas, first clearing clique by
clique, and eventually ending vertex by vertex.

Lemma 13. There exists a minimum cost monotone search strategy S of Kn, n � 4, such that the vertices of Kn become clear in the
same order as they become guarded.
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Proof. Since we know by Theorem 7 that recontamination does not reduce cost, we assume without loss of generality that
all search strategies we consider are monotone. For any search strategy S let r(S) be the minimum index i such that vi

is not clear at the end of a move Sp for some p ∈ {1, . . . , |S|} and v j , for some j > i, becomes clear in the move Sp , and
let r(S) = n if no such index i exists. Note that we need to prove that there exists a minimum cost search strategy S with
r(S) = n. Suppose for a contradiction that such a search strategy does not exist and let S be a minimum cost search strategy
with the maximum value of r(S). Denote for brevity r(S) = i, and let j > i be such that v j becomes cleared in S prior
to vi . We construct a search strategy S ′ with the same cost as S and r(S ′) > r(S), which will give a desired contradiction.

Let p be the smallest integer such that at the end of move Sp all edges in E v j are clear. Then all moves in S ′ are
the same as in S with the following exceptions. If Sl , where l � p, clears an edge v j vk (for 1 � k � n, k �= i), then let S ′

l
clear vi vk . Similarly, if Sl , where l > p, clears an edge vi vk , then let S ′

l clear v j vk . Further, to ensure that these moves
are possible, any moves in S before p that place a searcher on v j that is subsequently used to clear an edge v j vk will
be replaced in S ′ by moves that place a searcher on vi , and any move in S after p that places a searcher on vi that is
subsequently used to clear an edge vi vk is replaced in S ′ by a move that places a searcher on v j . A similar adjustment is
made for removing searchers from vi and v j , again depending on their occurrence before or after p.

Now we prove that S ′ is a valid search strategy of Kn . Since we only change the order of moves in S to obtain S ′ ,
|S ′| = |S| and it is enough to prove that no recontamination occurs in S ′ . Suppose, by way of contradiction, that an edge
in E vk , k ∈ {1, . . . ,n}, becomes recontaminated. Since the vertices in V (Kn)\ {vi, v j} become guarded and then the searchers
guarding them are removed in the same order in S and in S ′ , we know that a recontamination in S ′ occurs by removing a
searcher from vk while either vk v j or vk vi is contaminated. However, if vk v j (vk vi ) is the edge that causes recontamination
in S ′ , then by the definition of S ′ , vk vi (respectively, vk v j ) will cause recontamination in S , a contradiction, since S is
monotone.

Thus, since we have changed the order in which vertices become cleared, but introduced no new searchers in each move
of S ′ , we know that |S ′| = |S|, and hence that cost(S) = cost(S ′). Further, r(S) = i and r(S ′) � i + 1. This last statement
follows from the fact that vi is clear at the end of the move S ′

p , while some edges in E v j are contaminated at the end of
S ′

p because there are contaminated edges in E vi in S at the end of Sp . �
In order to simplify the analysis we define

g(Si) =
{

1 + |Bb(Si) ∪ Be(Si)|, if Si is a clearing move,

0, otherwise,
(15)

i = 1, . . . , |S|. We obtain the following.

Lemma 14. If S is a monotone search strategy for Kn, then

cost(S) �
∑

1�i�|S|
g(Si) − 2(n − 1).

Proof. We distinguish three (not necessarily distinct) types of clearing moves Si that may occur in a search strategy S:

Type 1: a searcher σ slides along an edge vi v j while two additional searchers guard vi and v j ,
Type 2: a searcher σ slides from vi to v j while vi is not guarded,
Type 3: a searcher σ slides from vi to v j while v j is not guarded.

The number of searchers used in a move Sk of Type 1 is at least g(Sk), because the vertices in Bb = Be are guarded
while an additional searcher clears an edge. A move of Type 2 occurs when all edges in E vi except vi v j are cleared at the
beginning of Sk . Thus, at the end of this move vi is clear. This happens at most once for each i = 1, . . . ,n − 1, and does
not happen for vn , the vertex that becomes clear last. Moreover, for a move of Type 2, the number of searchers used is at
least g(Sk)− 1 if the particular move is not of Type 3 simultaneously. Analogously, a move Sk of Type 3 is an event when a
searcher reaches v j for the first time. Each vertex, except for v1, may get guarded as a result of such move, and the number
of searchers used in Sk is g(Sk) − 1 if, again, the move is not of Type 2 simultaneously. Finally, a move can be of Type 2
and 3 and, by the definition, such a case may happen once during a search strategy, and the number of searchers in use
is then g(Sk) − 2. This proves that the number of clearing moves Sk that use g(Sk) − 1 searchers is at most 2(n − 2), and
there may exist at most one clearing move using g(Sk) − 2 searchers. �

The consequence of Lemma 14 is that if we are able to find a search strategy S such that s = ∑
1�i�|S| g(Si) is minimum

and cost(S) = s − 2(n − 1), then the cost of S is minimum, i.e., cost(S) = cost(G).
Consider a minimum cost monotone search strategy S of Kn that satisfies the condition of Lemma 13. Assume that vi

is guarded for the first time at the end of move Sl , i = 1, . . . ,n. By assumption, li < li+1 for each i = 1, . . . ,n − 1. Similarly,
i
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let Sti be the first move at the end of which vi is clear, i = 1, . . . ,n. By the choice of S , ti < ti+1 for each i = 1, . . . ,n − 1.
Since the earliest the first vertex can be cleared is when the same moment a searcher may first enter vn , ln � t1. For brevity
denote ln+1 = t1.

Given a monotone search strategy S of Kn , define Xi(S) to be the set of edges v j vi , j < i, cleared while none of the
vertices vi+1, . . . , vn is guarded, i = 1, . . . ,n. Let Yi(S), i = 1, . . . ,n, be the set of edges in E vi still contaminated when the
vertex vi−1 becomes clear, and the vertices v1, v2, . . . , vi−2 remain clear and unoccupied. In the latter case, by Lemma 13,
the vertices vi+1, . . . , vn are guarded while clearing the edges in Yi(S).

Lemma 15. There exists a minimum cost monotone search strategy S of Kn, n � 2, such that for all 2 � i � n and 1 � k � i − 1,

vk vi ∈ Xi(S) ∪ Yk(S).

Proof. Let S be a minimum cost monotone search strategy of Kn in which the vertices become clear in the same order
as they become guarded. By Lemma 13, such a search strategy exists. We prove that an edge vk vi , k < i, is cleared in a
move S j , where

S j ∈ {Sli , . . . ,Sli+1−1} ∪ {Stk−1+1, . . . ,Stk } for each i = 2, . . . ,n,

where t0 = t1 − 1.
By the definition, j � li . Since k < i, j �= li+1. If j ∈ {li+1, . . . , t1 − 1}, then g(S j) > i + 1. Instead, we alter S , so that

clearing vk vi follows the move Sli . This results in g(Sli+1) = i + 1, and gives a strategy of lesser cost, which contradicts the
minimality of S . If k = 1, then j � t1 = tk−1 + 1. If k > 1, then, by definition, j �= t1. Hence, if k > 1 and j ∈ {t1 + 1, . . . ,

tk−1 − 1}, then g(S j) > n −k + 2. But if we alter S so that vk vi is cleared as move Stk−1+1, this gives g(Stk−1+1) = n −k + 2,
again contradicting the minimality of S . Since we know that vk vi must be cleared when vk becomes clear, j � tk , and the
result follows. �
Lemma 16. There exists a minimum cost monotone search strategy S of Kn, n � 2, such that X1(S) = Y1(S) = Yn(S) = ∅, and

Xi(S) = {v1 vi, . . . , vi−1 vi}, i = 2, . . . ,
⌊
(n + 1)/2

⌋
, (16)

Xi(S) = {v1 vi, . . . , vn−i+1 vi}, i = ⌊
(n + 1)/2

⌋ + 1, . . . ,n, (17)

Yi(S) = {vn−i+2 vi, . . . , vn vi}, i = 2, . . . ,
⌊
(n + 1)/2

⌋
, (18)

Yi(S) = {vi+1 vi, . . . , vn vi}, i = ⌊
(n + 1)/2

⌋ + 1, . . . ,n − 1. (19)

Proof. Let S be a monotone minimum cost search strategy of Kn . By Lemmas 13 and 15, for k < i, vk vi ∈ Xi(S) or
vk vi ∈ Yk(S). That is, either vk vi is cleared in one of the moves Sli , . . . ,Sli+1−1, or vk vi is cleared in one of the moves
Stk−1+1, . . . ,Stk . Let S j be the move in which vk vi is cleared.

Let first i < n. If vk vi ∈ Xi(S), then S j uses i + 1 searchers, and if vk vi ∈ Yk(S), then S j uses n − k + 2 searchers, as in
the proof of Lemma 15. Since S is a minimum cost search strategy of Kn , vk vi ∈ Xi(S) if and only if i + 1 � n − k + 2. This
implies that

Xi(S) = {vk vi: k < i, i + 1 � n − k + 2}. (20)

Hence, (16) and (17) follow from (20). Since, by Lemma 15,
⋃

1�i�n Yi(S) = E(Kn) \ ⋃
1�i�n Xi(S), we obtain

Yi(S) = {vk vi: k > i, i > n − k + 1}, (21)

which leads to (18) and (19).
Finally note that Yn(S) �= ∅ by definition, and Xn(S) = E vn \ ⋃

k<n Yk(S) = {v1 vn}. �
Now we define a search strategy S that satisfies the conditions from Lemma 16. Hence, we conclude that S is of

minimum cost. In the pseudo-code below the instruction clear(a,b), 1 � a < b � n, stands for the sequence of three actions:

1. If more than one edge in E va is contaminated, then place a searcher σ on va . Otherwise let σ be the only searcher
present at va .

2. Slide σ from va to vb .
3. If vb is clear, then remove all searchers from vb . If vb is not clear and two searchers occupy vb , then remove σ from vb .

http://mostwiedzy.pl


D. Dereniowski, D. Dyer / Theoretical Computer Science 495 (2013) 37–49 47

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

The minimum cost search strategy S for Kn , n � 4, is constructed as follows:

Place a searcher on v1.
for i = 2 to �(n + 1)/2� do

for j = 1 to i − 1 do
clear( j, i)

for i = �(n + 1)/2� + 1 to n do
for j = 1 to n − i + 1 do

clear( j, i)
for i = 2 to �(n + 1)/2� do

for j = n − i + 2 to n do
clear(i, j)

for i = �(n + 1)/2� + 1 to n − 1 do
for j = i + 1 to n do

clear(i, j)

We finish this section by calculating cost(S) which, due to the optimality of S , leads to a formula for cost(Kn). By
Lemma 15, we know that every edge is in either Xi(S) or Yi(S) for some i. Again, we consider the move S j where an edge
vi vk (k < i) is cleared.

If S j clears vi vk ∈ Xi(S), k < i, then, as in the proof of Lemma 15, g(S j) = i + 1 and if S j clears vi vk ∈ Yi(S), k > i, then
g(S j) = n − i + 2. Thus, by Lemma 16,

∑
j=1,...,|S|

g(S j) =
�(n+1)/2�∑

i=1

(i − 1)(i + 1) +
n∑

i=� n+1
2 �+1

(n − i + 1)(i + 1)

+
�(n+1)/2�∑

i=2

(i − 1)(n − i + 2) +
n−1∑

i=� n+1
2 �+1

(n − i)(n − i + 2).

Note that in this strategy, the move that clears the edge v1 vn ∈ X(S) leaves all edges in E v1 cleared and a searcher
reaches vn for the first time during the search strategy. That is, Sln = St1 . Moreover, g(Sln ) = n + 1 and the number of
searchers used in Sln is n − 1. Since the moves Sl j , j = 2, . . . ,n − 1 and St j , j = 2, . . . ,n − 1 use g(S j) − 1 searchers,
we obtain that there are exactly 2(n − 2) clearing moves S j using g(S j) − 1 searchers and one move (clearing the edge
v1 vn) using g(S j) − 2 searchers. The remaining clearing moves for other edges use g(S j) searchers. Therefore, cost(S) =∑

j=1,...,|S| g(S j) − 2(n − 1), and, by Lemma 14, we obtain the following for the graph Kn .

Theorem 17. If n � 4, then

cost(Kn) =
{

1
4 n3 + 5

8 n2 − 11
4 n + 15

8 , if n is odd,
1
4 n3 + 5

8 n2 − 11
4 n + 2, if n is even.

Moreover, there exists a minimum cost monotone search strategy of Kn that uses s(Kn) = n searchers. That is, an ideal search strategy
for Kn exists.

6. Ideal search strategies do not exist for all graphs

Having proved that ideal search strategies do exist for complete graphs, we prove in this section that not all graphs have
this property.

In the following, the vertices of each clique Ki , i > 0, are numbered 0, . . . , i − 1. We say that two cliques K j , Kl , j � l, are
connected if there exist l edges between their vertices placed as follows. The i-th of those edges connects the vertex number
((i − 1) mod j) in K j with the (i − 1)-st vertex of Kl . We fix integers k � 1 and p � 1, though the construction is valid for
each k � 1 and for each p � 1. However, to obtain Theorem 20 we will later be interested in considering “sufficiently large”
values for p.

Construct a graph B by taking p copies of K3k , which we will refer to as the medium cliques of B , and connect them in
series so that the i-th clique is connected to the (i + 1)-st clique, i = 1, . . . , p − 1. In addition, connect the p-th clique of the
chain to a clique Kk , which we call the small clique of B , and finally connect the small clique with a copy of K4k , the large
clique of B . We call such a subgraph B a branch. Define G(k, p) to be a graph consisting of four branches B1, B2, B3, and B4
and an additional clique K2k , called the central clique of G(k, p), where the first medium clique in each branch is connected
to the central clique. Fig. 1 depicts G(2,3).

Lemma 18. If k � 1 and p � 1 are any integers, then s(G(k, p)) � 5k + 1.
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Fig. 1. The graph G(k, p) with k = 2 and p = 3.

Proof. We sketch a search strategy that uses 5k + 1 searchers. In this strategy, we will clear each branch “clique by clique”,
in that, for a given clique, after obtaining a single searcher on each vertex of the clique, then use an additional searcher to
clear all edges of that clique, before proceeding to the next clique.

Specifically, when a clique K j is clear and the strategy proceeds to clear the only uncleared clique K j′ connected to K j ,
then either j′ � j or j′ > j. In the former case, the searcher on vertex i in K j slides along the (contaminated) edge to vertex
i in K j′ , for 0 � i � j′ − 1. Then, those searchers remaining on K j are removed. This ends with all of the vertices of K j′
occupied, and all edges between K j and K j′ cleared.

If j′ > j we first place j′ − j searchers on the vertices of K j so that there is one searcher on each vertex of K j for
each contaminated edge between that vertex and the vertices of K j′ . Then, slide each of the j′ searchers on K j along a
contaminated edge incident with its vertex to K j′ , clearing that edge in the process. Again, this ends with all of the vertices
of K j′ occupied, and all of the edges between K j and K j′ cleared.

First we clear the large clique of B1 and then the small clique of B1. While the k vertices of the small clique of B1
are guarded, clear the branch B2 by clearing its cliques consecutively, starting with the large clique, then the small clique,
then the medium cliques, finally ending with the medium clique connected to the central clique of G(k, p). Then, clear the
central clique. At this point, the branch B2 is clear.

Leaving 2k searchers guarding the vertices of the central clique, clear the medium cliques of B1, starting at the small
clique and progressing sequentially along the medium cliques until the central clique is reached. This results in both
branches B1 and B2 being cleared, and the only clique that is guarded now is the central clique. To clear B3 and B4
we reverse the procedure of clearing B1 and B2.

It is straightforward to verify that this search strategy is valid and uses 5k + 1 searchers. �
Lemma 19. For all q � 0 there exist integers k, p, and a search strategy S of G(k, p) using 6k + 1 searchers such that for each search
strategy S ′ of G(k, p) using s(G(k, p)) searchers it holds cost(S ′) − cost(S) � q.

Proof. Set k to be any integer greater than 1, and let p be any integer that satisfies

p � 2
(
q + (6k + 1)3)/(k(k − 1)

)
. (22)

Let S ′ be of minimum cost among all search strategies using s(G(k, p)) searchers. By Lemma 18, s(G(k, p)) � 5k + 1. Also,
s(Kn) = n for each n � 4 [12]. Hence, while clearing the edges of a large clique, at most k + 1 searchers can be used for
guarding the vertices of other cliques. Thus, at most two large cliques can be cleared before clearing a medium clique or
the central clique.

By symmetry, S ′ must clear the two remaining large cliques after clearing all medium cliques and the central clique,
which means that S ′ clears two chains of medium cliques, say in branches B3 and B4 before clearing the large cliques
in those branches. Since two medium cliques cannot be guarded simultaneously, without loss of generality let S ′

a be the
move after which the small clique of B3 is guarded and all the medium cliques in B3 are clear, but none of the cliques of
branch B4 are clear. Then, S ′ clears the remaining part of the graph. In particular, note that all the medium cliques of B4
are cleared while the small clique of B3 remains guarded.

Now we define a search strategy S of G(k, p) that uses (6k +1) searchers, and then we argue that cost(S ′)−cost(S) � q.
Let Si = S ′

i for each i = 1, . . . ,a. Following the move Sa , S clears the contaminated edges of the small clique of B3, if any,
and then the edges of the large clique of B3. This uses 4k + 1 searchers, as well as the additional 2k searchers that remain
guarding the central clique. Then, S clears the remaining edges of G(k, p) in the same order as they are cleared by S ′ .

The additional cost introduced in S is the cost of clearing the edges of the small and large cliques of B3, together with
edges between them, while guarding the central clique, where each move requires at most 6k + 1 searchers. The number of
such moves is the number of edges cleared, i.e., the edges in Kk , K4k and the edges connecting the large and small cliques,
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that is, 4k(4k −1)/2+k(k −1)/2+4k. Each of the remaining moves of S requires no more searchers than the corresponding
move of S ′ . Thus, the additional cost introduced in S is at most

(6k + 1)
(
4k(4k − 1)/2 + k(k − 1)/2 + 4k

)
� (6k + 1)3. (23)

On the other hand, the additional cost of S ′ with respect to S is the cost of guarding the small clique of branch B3
while clearing the medium cliques of branch B4, which is at least

pk(k − 1)/2. (24)

Then the difference in the costs of these strategies is at least the difference in expressions (23) and (24),

cost
(
S ′) − cost(S) � pk(k − 1)/2 − (6k + 1)3.

Thus, by (22), cost(S ′) − cost(S) � q, as required. �
By choosing sufficiently large p relative to q and k, Lemma 19 gives us Theorem 20.

Theorem 20. For each constant q � 0 there exists a graph G such that cost(S) − cost(G) � q for each search strategy of G that uses
s(G) searchers.

7. Conclusions

The most obvious open question with regard to the edge search cost of a graph involves its complexity. For a given
graph G , is determining cost(G) � k NP-complete? We have laid the groundwork for this problem by showing that cost is
monotone. Intuitively, since determining if γ (G) � k is NP-complete (as is computing the edge and node search numbers)
this parameter should also be NP-complete. Of particular interest would be to determine families of graphs for which the
edge search cost can be computed efficiently; trees are of particular interest.

We have shown that an O (log n)-approximation algorithm exists, but it similarly remains open as to whether this is best
possible. A strongly related question is whether there is a known graph parameter that is the same as (or close to) cost, as
profile is to node search cost.

Movement in edge searching consists of two dissimilar modes. A searcher either slides or jumps. The cost function we
have examined deals with a subset of the sliding moves; particularly, those moves that clear an edge. Obviously, these
moves are fundamental to any search strategy, while jumping is not. In any “real world scenario” however, jumping would
be very expensive. This motivates two related problems: first, what can be said about the minimum cost of a monotone
internal search (in which jumping is not allowed), and second, what is the minimum costs of a search in which there was
a (proportionally higher?) cost for jumping?

The result of Theorem 20 tells us that in general, we may minimize the edge search number or the edge search cost, but
not both. However, for complete graphs in particular Theorem 17 tells us that ideal search strategies exist. More generally,
we wonder for which graphs ideal strategies exist. Moreover, we know that for complete graphs, the edge search cost is
O (n3), but the node search cost is O (n2). However, in our discussion of monotonicity, we introduce graphs G p for which
the both of these costs are quite close for large enough p. For what graphs are these two costs essentially the same?
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