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A B S T R A C T

We discuss the classic rotary inertia notion and extend it for microstructured beams introducing new
microinertia parameters as an additional dynamic response to microstructure changes. Slender structures made
of beam- or platelet-lattice metamaterials may exhibit not only large translations and rotations but also general
deformations of inner structure. Here we considered a few examples of beam-like structures and derive their
inertia properties which include effective mass density, rotary inertia and microinertia. Extended dynamic
characteristics related to enhanced kinematics may be crucial for description of origami-like structures or
other beam-lattice metamaterials.
0. Introduction

After works by Bresse [1], Rayleigh [2], Timoshenko [3], and
Mindlin [4] the notion of rotary inertia became common in structural
mechanics, see also [5–7] for more detail. By definition, the rotary
inertia determines a part of kinetic energy related to rotational motions.
From the mathematical point of view rotary inertia can be defined as
the second moment of mass density distribution in a cross-sectional
area. Restricting to beams with solid cross-sectional area one can see
that rotary inertia has an order of ℎ3 where ℎ is a thickness. As a
result, in some cases it could be neglected. On the other hand, new
microstructured material such as beam-lattice composites and meta-
materials [8–10], origami/kirigami structures [11–14] may essentially
extend dynamic properties of slender structures including mass density
distribution moments of higher order as well as dynamic response to
additional kinematic variables such as warping or microdeformations.

In addition to classic and nonclassic beam models it is worth to
mention other one-dimensional and quasi one-dimensional discrete and
continuum models such as chains and lattice-like structures with short-
and long-range interactions, see e.g. [15–24] and the references therein.
They may exhibit a rather complex dynamics. For example, mass-in-
mass chains [25] possesses to tune band gaps due to relative motions of
additional masses. In [26] it was shown that the presence of torsional
springs in an origami-like structure may essentially affect dispersion
relations. Discussing rotary inertia it worth to mention here gyroscopic
systems, where dynamics of spinners plays a crucial role [27–30].

The main aim of the paper is to bring attention to non-classical
kinetic constitutive relations, that is to possible forms of kinetic energy
of microstructured materials. The paper is organized as follows. First,
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we briefly recall equations of dynamics and possible forms of kinetic
energy for systems with finite number of degrees of freedom, beams,
plates and shells in Section 1. Then in Section 2 we give an example
of a system with one degree of freedom with essential non-linearity
in inertia. Section 3 presents an example of a beam-like structure
with dominant rotary inertia proportional to ℎ2. Both discrete and
continuum models were presented. In Section 4 we combine models
introduced previously and discuss a motion of a pantographic beam
using again both discrete and continuum models. The last example
shows an importance of microinertia. Finally, in conclusions we briefly
discussed other models of continua which involves rotary inertia and
their extensions with their similarities to beam models.

1. Overview of rotary inertia

1.1. Discrete systems

Dynamics of a discrete conservative system can be described using
the Euler–Lagrange equation, see [31,32],

d
d𝑡
𝜕𝐿
𝜕𝑞̇𝑖

− 𝜕𝐿
𝜕𝑞𝑖

= 0, 𝑖 = 1, 2,… , 𝑛, (1)

where 𝐿 = 𝐿(𝑞𝑖, 𝑞̇𝑖) is a Lagrangian given as a function of generalized
coordinates 𝑞𝑖 = 𝑞𝑖(𝑡) and its velocities 𝑞̇𝑖 = 𝑞̇𝑖(𝑡), and the overdot stands
for the derivative with respect to time 𝑡.

At this level of generality it is difficult to extract a part related to
rotations or to other non-translational motions. Moreover, even kinetic
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energy is not defined yet. For many mechanical systems 𝐿 can be
represented as

𝐿 = 𝐾(𝑞𝑖, 𝑞̇𝑖) −𝑊 (𝑞𝑖),

where 𝐾 and 𝑊 are kinetic and potential energies, respectively.
In particular, in rigid body dynamics [31] we first meet tensors of

inertia as a measure of rotary inertia. Indeed, here a kinetic energy is
given by

𝐾 = 1
2
𝑀𝐯 ⋅ 𝐯 + 1

2
𝝎 ⋅ 𝐉 ⋅ 𝝎 + 𝐯 ⋅ 𝐉1 ⋅ 𝝎, (2)

here 𝐯 and 𝝎 are linear and angular velocities, respectively, 𝑀 is the
otal mass, 𝐉 and 𝐉1 are second-order tensors of inertia, and ⋅ is the dot
roduct. By definition 𝐉 is positive definite, whereas 𝐉1 vanishes if we
hoose the center of mass as an origin of the frame. Both inertia tensors
re responsible for the rotational part of the kinetic energy and play a
rucial role in rigid body dynamics. In fact, with 𝑀 they characterize
mass distribution in the considered rigid body. In the case of finite

otations 𝐉 and 𝐉1 depend on rotations as follows

= 𝐐 ⋅ 𝐉̄ ⋅𝐐𝑇 , 𝐉1 = 𝐐 ⋅ 𝐉̄1 ⋅𝐐𝑇 , (3)

here 𝐐 = 𝐐(𝑡) is a tensor of rotations, and 𝐉̄ and 𝐉̄1 are constant
eferential tensors of inertia. Eq. (3) brings an essential nonlinearity
n the equations of motion of a rigid body.

.2. Beams, plates and shells

The classical Bernoulli–Euler beam model is based on the equation

𝐼 𝜕
4𝑤
𝜕𝑥4

+ 𝜌𝐴𝑤̈ = 0, (4)

here 𝑤 = 𝑤(𝑥, 𝑡) is the deflection, 𝑥 is the axial coordinate, 𝐸 is
oung’s modulus, 𝐼 is the moment of inertia, 𝐴 is the cross-sectional
rea, and 𝜌 is the mass density. The Bernoulli–Euler model does not
ake into account rotary inertia.

In order to take it into account, Bresse and Rayleigh modified this
odel as follows

𝐼 𝜕
4𝑤
𝜕𝑥4

+ 𝜌𝐴𝑤̈ − 𝜌𝐼 𝜕
2𝑤̈
𝜕𝑥2

= 0. (5)

iscrete flexural structure considered in [21] results in this model
nder the long-wave regime, i.e. a Rayleigh beam resting on a Winkler
oundation.

Finally, Timoshenko and Ehrenfest [7] extended the previous model
aking into account shear deformations. Vibrations of the Timoshenko
eam are described through two equations

𝐼
𝜕2𝜓
𝜕𝑥2

+ 𝜅𝜇𝐴
( 𝜕𝑤
𝜕𝑥

− 𝜓
)

= 𝜌𝐼𝜓̈, (6)

𝜇𝐴
(

𝜕2𝑤
𝜕𝑥2

−
𝜕𝜓
𝜕𝑥

)

= 𝜌𝐴𝑤̈, (7)

here 𝜓 is the angle of rotation of the beam cross-section, 𝜇 is the shear
odulus and 𝜅 is the shear correction factor. Excluding 𝜓 from (6) and

7) we get the following equation

𝐼 𝜕
4𝑤
𝜕𝑥4

+ 𝜌𝐴𝑤̈ − 𝜌
(

𝐼 + 𝐸𝐼
𝜅𝜇

)

𝜕2𝑤̈
𝜕𝑥2

+
𝜌2𝐼
𝜅𝜇

𝑤 = 0. (8)

ote that in all differential equations presented above we assume that
xternal loads are absent.

Kinetic energies for these models have the form

𝐵𝐸 =1
2 ∫

𝓁

0
𝜌𝐴𝑤̇2 𝑑𝑥, (9)

𝐾𝑅 =1 𝓁

𝜌
[

𝐴𝑤̇2 + 𝐼
( 𝜕𝑤̇)2]

𝑑𝑥, (10)
2

2 ∫0 𝜕𝑥
𝐾𝑇 =1
2 ∫

𝓁

0
𝜌
[

𝐴𝑤̇2 + 𝐼𝜓̇2] 𝑑𝑥, (11)

where 𝓁 is the beam length.
Considering homogeneous beams we see that the rotary inertia has

an order ℎ3 where ℎ is the thickness of the beam. For example, for
a beam with a rectangular cross-section of width 𝑏 and thickness ℎ
we have that 𝐴 = 𝑏ℎ and 𝐼 = 𝑏ℎ3∕12. This observation may lead to
the conclusion that rotary inertia may be negligible at least in some
cases. For example, discussions of these cases can be found in [5–7,33],
see also [34]. On the other hand, this is not the case for thin-walled
beams, see e.g [35]. For example, in [36] it was shown that under some
conditions the neglecting of rotary inertia leads to about 170% of the
relative error in natural frequencies.

Considering microstructured materials it is worth to mention here
space-fractional non-local models of beams based on fractional deriva-
tives [37,38], the foundations of the theory could be found in [39,
40]. Here the classic form of kinetic energy as (10) or(11) was used,
see e.g. [41,42]. It is interesting that here instead of (8) we have a
similar equation but with mixed time- and space-fractional derivatives,
see [42] for more details.

For spatial motions of beams instead of scalar measure of rotary
inertia 𝐼 we have to consider one or a few tensors of inertia, see
e.g. [34,43–46]. Let briefly recall the Cosserat curve model (directed
curve) which is often used for modeling of beams, see e.g. [43,44,47].
Within the model two independent kinematical fields are introduced
that are the vector of displacements 𝐮 = 𝐮(𝑥, 𝑡) and orthogonal tensor
𝐐 = 𝐐(𝑥, 𝑡), where 𝑥 is the Lagrangian axial coordinate. 𝐐 describes
rotations of beam cross-section. As a result, kinetic energy is a quadratic
form which depends on linear 𝐯 = 𝐮̇ and angular 𝝎 velocities

𝐾𝐶 = 1
2 ∫

𝓁

0

(

𝜌𝐯 ⋅ 𝐯 + 𝝎 ⋅ 𝐉 ⋅ 𝝎 + 2𝐯 ⋅ 𝐉1 ⋅ 𝝎
)

𝑑𝑥. (12)

Here 𝜌 is the referential linear mass density (mass per unit length in a
reference placement), 𝝎 follows from the formula 𝐐̇ = 𝐐 × 𝝎 where ×
s the cross product. Inertia tensors 𝐉 and 𝐉1 depend on 𝐐 as in Eq. (3).
or identification of inertia tensors we refer to [48–50].

It is worth also to mention the higher-order theories of beams such
s discussed in [51] where the three-dimensional field of displacements
as represented in series with respect to cross-sectional coordinates.
ere equations of motions includes of higher moments such as

(𝑚,𝑛) = ∬𝐴
𝜌𝑦𝑚𝑧𝑛 𝑑𝐴,

here 𝑦 and 𝑧 are Lagrangian coordinates in the cross-sectional area
, 𝑚 and 𝑛 are integers. Note that with these notations 𝐴 = 𝐼 (0,0) and
= 𝐼 (0,1).

In the case of plates and shells we have situation with rotary inertia
imilar to beams. For example, equation of motion of a Kirchhoff plate
ith rotary inertia takes the form [34]

𝛥2𝑤 + 𝜌ℎ𝑤̈ − 𝜌ℎ
3

12
𝛥𝑤̈ = 0, (13)

here 𝑤 = 𝑤(𝑥, 𝑦, 𝑡) is the deflection, 𝐷 is the bending stiffness, 𝛥 is the
wo-dimensional Laplace operator, and ℎ is the plate thickness. Eq. (13)
s 2D counterpart of (5), whereas Mindlin’s equations of motion [4,34]
re analogous to Timoshenko and Ehrenfest model (6), (7). For higher
rder theories of plates one should also consider higher-order moments,
ee [52].

Within nonlinear resultant six-parametric theory of shells the rotary
nertia were discussed in [53], see also [54,55]. The most general form
f a kinetic energy density was proposed in [56]. It is introduced as a
ositive quadratic form of linear 𝐯 and angular 𝝎 velocities

𝑠 =
1
2 ∬𝐴

(

𝐯 ⋅ 𝐉0 ⋅ 𝐯 + 𝐯 ⋅ 𝐉1 ⋅ 𝝎 + 𝝎 ⋅ 𝐉2 ⋅ 𝐯

+𝝎 ⋅ 𝐉 ⋅ 𝝎) 𝑑𝐴, (14)
𝐉0 =𝐉𝑇0 , 𝐉𝑇1 = 𝐉2, 𝐉𝑇 = 𝐉,

http://mostwiedzy.pl
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Fig. 1. Pantographic bar.

Fig. 2. Deformation of a pantographic cell: initial and current placements.

here 𝐴 is a base shell surface in a reference placement, 𝐉0, 𝐉1, 𝐉2,
nd 𝐉 are tensors of inertia which maybe a rather complex functions
f rotations, strains, gradient of strains, and strain rates. Obviously,
ny enhancement of shell kinematics requires additional terms in the
inetic energy, in general.

. Dynamics of pantographic bar

First, let us consider motions of a pantographic bar shown in Fig. 1.
he bar consists of 𝑛 cells, whereas each cell consists of two rigid bars
f length 2𝑎 connected to each other through a hinge with a rotational
pring of stiffness 𝑘. At the ends of the bars masses 𝑚 are attached.
ithout loss of generality we assume that mass of bars is negligible.
bviously, as bars are rigid the pantographic bar has one degree of

reedom. For deformable pantographic materials we refer to [9] where
lso some applications are considered. As a kinematical descriptor we
se the current angle 𝛼 = 𝛼(𝑡) with initial angle 𝛼0, see Fig. 2. So we
ave formulae

𝑢𝑖 =2𝑎𝑖(cos 𝛼 − cos 𝛼0), 𝑖 = 1, 2,… , 𝑛, (15)
±
𝑖 =(2𝑖 − 1)𝑎(cos 𝛼 − cos 𝛼0)𝐢1

± 𝑎(sin 𝛼 − sin 𝛼0)𝐢2, (16)

here 𝑢𝑖 is a displacement of 𝑖th hinge, 𝐯±𝑖 are vectors of displacements
f upper and lower masses, respectively, and 𝐢1 and 𝐢2 are Cartesian unit
ase vectors. The corresponding velocities are given by the formulae

𝑢̇𝑖 = − 2𝑎𝑖 sin 𝛼𝛼̇, (17)

̇ ±𝑖 = − (2𝑖 − 1)𝑎 sin 𝛼𝛼̇𝐢1 ± 𝑎 cos 𝛼𝛼̇𝐢2. (18)

Elastic energy is given by the equation

= 1
2
𝑘𝑛(𝛼 − 𝛼0)2, (19)

hich corresponds to the energy of 𝑛 rotational springs.
Kinetic energy has more complex form

=
𝑛
∑

𝑖=1
𝑚|𝐯±𝑖 |

2

=
𝑛
∑

𝑖=1
𝑚𝑎2

[

(2𝑖 − 1)2 sin2 𝛼 + cos2 𝛼
]

𝛼̇2

=𝑚𝑛𝑎2
[ 4
3
(𝑛2 − 1) sin2 𝛼 + 1

]

𝜔2

=𝑀
2
𝑎2

[ 4
3
(𝑛2 − 1) sin2 𝛼 + 1

]

𝜔2, (20)
3

Fig. 3. Inertia parameter vs. 𝛼. Here 𝐽 ≡ 𝐽∕𝑀𝑎2𝑛2 and dashed curve relates to 𝑛→ ∞.

Fig. 4. Cross-beam.

where 𝑀 = 2𝑚𝑛 is the total mass of the bar and 𝜔 = 𝛼̇. It is natural to
call the factor

𝐽 =𝑀𝑎2
[ 4
3
(𝑛2 − 1) sin2 𝛼 + 1

]

(21)

he rotary inertia as it relates to rotations of the bars. Obviously, as 𝐽
epends nonlinearly on 𝛼 we have a dependence of the rotary inertia
n deformations.

Equation of motion with respect to 𝛼 follows from (1) with 𝐿 =
𝐾 −𝑊 .

In the case of large number of cells, i.e. at 𝑛 → ∞, we have an
asymptotic formula

𝐽∞ = 4
3
𝑀𝑎2𝑛2 sin2 𝛼. (22)

Graphs of normalized inertia 𝐽 ≡ 𝐽∕𝑀𝑎2𝑛2 are given in Fig. 3 for
various values of 𝑛. Here the dashed curve relates to 𝐽∞, it almost
oincides with 𝐽 at 𝑛 = 50 (orange line).

So one can see that inertia properties may essentially depend on
icrostructure, i.e. on the number of cells, and on kinematical descrip-

or itself. Let us note that we cannot say that the pantographic bar
ossesses rotary inertia as it is one-dimensional system which does not
xhibit any rotation at the macroscale. Nevertheless the rather complex
orm of inertia corresponds to relative rotations of masses about the cell
enter of mass. We can call 𝐽 microinertia parameter.

. Cross-beam structure

In order to demonstrate a beam-like elastic system with dominant
otary inertia, let us consider a structure as shown in Fig. 4. It again
onsists of 𝑛 cells connected through rotational springs of stiffness 𝑘.
ach cell has a shape of a cross made of two rigid and rigidly connected
ars of length 2𝑎 and 2ℎ, respectively. In addition, there are two masses
ttached to the ends of the vertical bar.

As kinematical descriptors we again choose angles 𝜙𝑖 = 𝜙𝑖(𝑡), 𝑖 =
, 2,… , 𝑛 + 1, see Fig. 5. Motion of the 𝑖th cell can be described as a

http://mostwiedzy.pl
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Fig. 5. Deformation of the cross-beam.

otion of its center of mass and relative rotation about it. We have the
ollowing relations

𝑖 =(2𝑖 − 1)𝑎𝐢1, (23)

𝐫𝑖 =
( 𝑖−1
∑

𝑗=1
2𝑎 cos𝜙𝑗 + 𝑎 cos𝜙𝑖

)

𝐢1

+

( 𝑖−1
∑

𝑗=1
2𝑎 sin𝜙𝑗 + 𝑎 sin𝜙𝑖

)

𝐢2, (24)

where 𝐑𝑖 and 𝐫𝑖 are the position vectors of center of mass in initial
and current placements, respectively. As a result, the 𝑖th cell has the
translational velocity

𝐯𝑖 = 𝐫̇𝑖 = −

( 𝑖−1
∑

𝑗=1
2𝑎 sin 𝜙̇𝑗 + 𝑎 sin𝜙𝑖𝜙̇𝑖

)

𝐢1

+

( 𝑖−1
∑

𝑗=1
2𝑎 cos𝜙𝑗 𝜙̇𝑗 + 𝑎 cos𝜙𝑖𝜙̇𝑖

)

𝐢2, (25)

and the angular velocity 𝜔𝑖 ≡ 𝜙̇𝑖.
Elastic energy is a sum of energies stored in springs. So it is given

y the formula

= 1
2

𝑛−1
∑

𝑖=2
𝑘(𝜙𝑖 − 𝜙𝑖−1)2. (26)

inetic energy has the form

= 1
2

𝑛−1
∑

𝑖=2
(𝑀𝑐𝐯𝑖 ⋅ 𝐯𝑖 + 𝐽𝜔2

𝑖 ), (27)

where 𝑀𝑐 is the total mass of the cell and 𝐽 is the moment of inertia
given by the formulae

𝑀𝑐 =𝑚𝑣 + 𝑚ℎ + 2 𝑚,

𝐽 =1
3
𝑚𝑣ℎ

2 + 1
3
𝑚ℎ𝑎

2 + 2𝑚ℎ2.

ere 𝑚𝑣 and 𝑚ℎ are masses of vertical and horizontal bars, respectively.
bviously, under assumptions that 𝑎 ≪ ℎ and 𝑚𝑣, 𝑚ℎ ≪ 𝑚 the influence
f attached masses becomes dominant. In what follows for simplicity
et as consider the case 𝑚𝑣 = 𝑚ℎ = 0. In other words, we assume that
he mass is concentrated in attached masses.

Discrete model discussed above has a continuum limit at 𝑛→ ∞ (or
t 𝑎 → 0). Let 𝑀 be the total mass of the beam and 𝓁 be its length. In
rder to keep the total mass and length constant we assume that

𝑐 =
𝑀
𝑛
, 𝑎 = 𝐿

2𝑛
.

e introduce the linear mass density 𝜌̄ = 𝑀∕𝐿 and the angle 𝜙 as a
differentiable function of 𝑥 and 𝑡. So 𝜙𝑖 can be identified as follows

𝜙 = 𝜙(𝑥 , 𝑡), 𝑥 = 𝑎, 𝑥 = 𝑥 + 2𝑎, 𝑖 = 0,… , 𝑛 − 1.
4

𝑖 𝑖 0 𝑖+1 𝑖
Fig. 6. Pantographic beam.

Instead of Eqs. (23), (24), and (25) we have their continuum counter-
parts

𝐑 =𝑥𝐢1, 𝐫 = ∫

𝑥

0
cos𝜙𝑑𝑥𝐢1 + ∫

𝑥

0
sin𝜙𝑑𝑥𝐢2 (28)

𝐯 =𝐫̇ = −∫

𝑥

0
𝜔 sin𝜙𝑑𝑥𝐢1 + ∫

𝑥

0
𝜔 cos𝜙𝑑𝑥𝐢2, (29)

where 𝜔 = 𝜙̇(𝑥, 𝑡). Potential and kinetic energies take the form

𝑊 =1
2 ∫

𝓁

0
𝑘
(

𝜕𝜙
𝜕𝑥

)2
𝑑𝑥, (30)

𝐾 =1
2 ∫

𝓁

0

(

𝜌̄𝐯 ⋅ 𝐯 + 𝐽𝜔2) 𝑑𝑥, (31)

here we keep the same notation for the bending stiffness 𝑘 and the
otary inertia 𝐽 is given by 𝐽 = 𝜌̄ℎ2. For small rotations (30) has
he same up to notations form as (10), i.e coincides with the Bresse–
ayleigh model. The difference in values of inertia parameters as here
ass is concentrated far for the center of the beam. So the cross-beam

eturns us to rotary inertia as in was introduced by Bresse and Rayleigh.

. Pantographic-beam

In order to demonstrate a beam-like structure having both rotary
nd microinertia or higher order inertia let us consider a pantographic
eam as shown in Fig. 6. In the following we use the models introduced
n the previous sections and modify a previously considered panto-
raphic bar as follows. Now the beam consists of 𝑛 cells, whereas each
ell consists of four rigid bars of length 𝑎 connected to each other with
erfect hinges and one rotational spring of stiffness 𝑘. Between cells
e introduce a rotational springs of stiffness 𝑐, so cells can exhibit

elative rotations. In fact, this model can be treated as a relaxed pan-
ographic bar which can be bended or as a cross-beam with additional
ass dynamics. Dynamics of more complex pantographic beams were

tudied in [57–60]. Here for our purposes we essentially simplified
hem to extract exactly essential inertia terms. In [61] dynamics of
nother pantographic beam-like structure was analyzed where terms
igher than third order have been neglected.

Deformation of a pantographic beam can be modeled through two
ngles, 𝜙𝑖 and 𝛼𝑖, 𝑖 = 1,… , 𝑛, see Fig. 7. 𝜙𝑖 describes a rotation of the
th cell whereas 𝛼𝑖 relates to the change of shape of the same cell. Initial
ositions of the center of mass of the 𝑖th cell and the attached masses
an be described using vectors 𝐑𝑖 and 𝐗±

𝑖 , respectively. These vectors
re given by the formulae

𝑖 = (2𝑖 − 1)𝑎 cos 𝛼0𝐢1, 𝐗±
𝑖 = 𝐑𝑖 ± 𝑎 sin 𝛼0𝐢2. (32)

n the current placement at time 𝑡 they become

𝐫𝑖 =
( 𝑖−1
∑

𝑗=1
2𝑎 cos 𝛼𝑗 cos𝜙𝑗 + 𝑎 cos 𝛼𝑖 cos𝜙𝑖

)

𝐢1

+

( 𝑖−1
∑

𝑗=1
2𝑎 sin 𝛼𝑗 sin𝜙𝑗 + 𝑎 sin 𝛼𝑖 sin𝜙𝑖

)

𝐢2, (33)

±
𝑖 =𝐫𝑖 ± 𝐲𝑖, 𝐲𝑖 = 𝑎 sin 𝛼𝑖

[

sin𝜙𝑖𝐢1 + cos𝜙𝑖𝐢2
]

. (34)
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Fig. 7. Deformation of two pantographic cells: initial (above) and current (below)
placements.

With this kinematics the potential and kinetic energies of the beam
take the form

𝑊 =1
2

𝑛
∑

𝑖=1
𝑘(𝛼𝑖 − 𝛼0)2 +

1
2
𝑐(𝛼1 + 𝜙1 − 𝛼0)2

+ 1
2

𝑛
∑

𝑖=2
𝑐(𝛼𝑖 + 𝛼𝑖−1 + 𝜙𝑖 − 𝜙𝑖−1 − 2𝛼0)2, (35)

=1
2

𝑛
∑

𝑖=1
𝑚
(

𝐱̇𝑖+ ⋅ 𝐱̇𝑖+ + 𝐱̇𝑖− ⋅ 𝐱̇𝑖−
)

=
𝑛
∑

𝑖=1
𝑚
(

𝐫̇𝑖 ⋅ 𝐫̇𝑖 + 𝐲̇𝑖 ⋅ 𝐲̇𝑖
)

=
𝑛
∑

𝑖=1
𝑚𝐯𝑖 ⋅ 𝐯𝑖

+
𝑛
∑

𝑖=1
𝑚
(

sin2 𝛼𝑖𝜙̇2
𝑖 + cos2 𝛼𝑖𝛼̇2𝑖

)

. (36)

For derivation of a continuum model of the pantographic beam
at 𝑛 → ∞ we again introduce differentiable functions, 𝐫 = 𝐫(𝑥, 𝑡),
𝛼 = 𝛼(𝑥, 𝑡), and 𝜙 = 𝜙(𝑥, 𝑡), the total mass 𝑀 = 2𝑚𝑛, and the initial
ength 𝓁 = 2𝑎𝑛 cos 𝛼0. So we get that 𝑚 = 𝑀∕2𝑛 and 𝑎 = 𝓁∕(2𝑛 cos 𝛼0).

The continuum limit of the kinetic energy is given by the formula

𝐾 =1
2 ∫

𝓁

0
𝜌̄𝐯 ⋅ 𝐯 𝑑𝑥

+ 1
2 ∫

𝓁

0
𝜌̄
(

sin2 𝛼 𝜙̇2 + cos2 𝛼 𝛼̇2
)

, (37)

where 𝜌̄ = 𝑀∕𝓁 = 𝑚∕(𝑎 cos 𝛼0) is the linear mass density. Underlined
erms in (37) can be interpreted as parts of the kinetic energy related
o rotations and microdeformations, respectively. So we can call factors
𝜌̄ sin2 𝛼 and 𝜌̄ cos2 𝛼 rotary inertia and microinertia, respectively. Both
nertia parameters essentially depend on 𝛼, i.e on deformations.

onclusions and discussion

In our paper we discuss rotary inertia and more general microin-
rtia considering one-dimensional models of microstructured bars and
eams. Three examples are considered. The first one about a panto-
raphic bar demonstrated a possible non-linearity in inertia. The second
hows a beam-like structure with dominant rotary inertia. Finally,
onsidering pantographic beam we see that the structure has two
nertia parameters, that are rotary inertia and microinertia. Additional
icroinertia relates to changes of cross-sectional area and also bases on

elative rotations of masses about a center of mass.
5

Let us note that similar extension towards more complex kinetic
onstitutive equations can be expected in the case of microstructured
ontinua. As the first example we should mention the Cosserat con-
inuum model (micropolar medium) [62–64]. Indeed, introduced by
osserat brothers more than one hundred years ago this model de-
cribes translational and rotational (orientational) interactions. As a
esult, rotations play a role of an additional kinematical descriptor inde-
endent on translations. So a kinetic energy in the Cosserat continuum
aturally contains a part related to rotations. Moreover, the Cosserat
urve and six-parameter shell models can be treated as an one- and two-
imensional Cosserat continua embedded into the three-dimensional
pace. The simplest form of the kinetic energy function is given by the
ormula

𝑚 = 1
2
𝜌𝐯 ⋅ 𝐯 + 1

2
𝜌𝑗𝝎 ⋅ 𝝎,

where again 𝐯 and 𝝎 are the linear and angular velocities, respectively,
𝜌 is the current mass density, and 𝑗 is a scalar measure of rotary
inertia. In general, this form relates to material particles of spherical
shape that is obviously a serious simplification. Eringen [65] introduce
the tensor of microinertia 𝐣 for micropolar fluids as an additional
constitutive parameter with own balance law. Moreover, he used this
approach to model liquid crystals [66] and suspensions [67]. Recently,
some generalizations were proposed in [68] and in [69] where two
microinertia tensors were identified through a homogenization of an
elastic network, see also [70,71] and the references therein. The most
general form of the kinetic energy within micropolar theory is almost
coincides with (14), see [64].

Another enhanced model of continua with non-trivial kinetic consti-
tutive relation called micromorphic continuum was introduced in [72,
73]. Instead of rotation tensor here we faced a second-order tensor of
microdeformation 𝐏 as an additional kinematical variable. So a simple
form of a kinetic energy density has the form

𝐾𝑚𝑚 = 1
2
𝜌𝐯 ⋅ 𝐯 + 1

2
𝜌𝑗 𝐏̇ ∶ 𝐏̇,

ith a scalar microinertia 𝑗. Hereinafter ∶ is the double dot product.
Balance law for the microinertia tensor was later discussed by Erin-
gen [74]. In general, for a micromorphic medium one can consider a
general quadratic form of 𝐯 and 𝐏̇ as a kinetic equation. In this case we
get

𝐾𝑚𝑚 = 1
2
𝐯 ⋅ 𝐈0 ⋅ 𝐯 + 𝐯 ⋅ 𝐈1 ∶ 𝐏̇ + 1

2
𝐏̇ ∶ 𝐈2 ∶ 𝐏̇,

where 𝐈0, 𝐈1, and 𝐈2 are tensors of microinertia of second-, third-,
and fourth-order, respectively. Obviously, the latter formula requires
a lot of microinertia parameters which should be identified. Relaxed
micromorphic model was proposed in [75] that requires less number
of parameters.

Considering media with additional degrees of freedom we also men-
tion nematic liquid crystals [76,77] and their solid counterparts [78].
Here we have an unit vector 𝐧 called director as an additional kinematic
variable. As a result, the kinetic energy density takes the form

𝐾𝑛 =
1
2
𝜌𝐯 ⋅ 𝐯 + 1

2
𝑗𝐧̇ ⋅ 𝐧̇,

here 𝑗 is an orientational inertia. Liquid crystals, solid liquid crystals,
icropolar and micromorphic media and their variations can be treated

s further generalizations of the Timoshenko beam model. Indeed, for
oth models we have vector equations of motions that are analogous
o (6) and (7).

Finally, we conclude our brief review of continua with non-trivial
inetic constitutive equations considering strain gradient elasticity [72,
9–81]. In addition to extension of a deformation energy density to a
unction of strains and its gradients, here we have an extension of a
inetic energy. For example, in the case of the Toupin–Mindlin strain
radient elasticity the kinetic energy takes the form

= 1𝜌𝐯 ⋅ 𝐯 + 1∇𝐯 ∶ 𝐉 ∶ ∇𝐯,
𝑠𝑔 2 2
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where 𝐉 is a fourth-order tensor of microinertia and ∇ is the nabla-
perator. For isotropic solids 𝐉 contains three independent inertia
arameters. The corresponding equation of motion is similar to (5)
s it contain mixed spatial–temporal derivatives of displacements. For
nalysis of dynamic properties within strain gradient elasticity we also
efer to [82].

Analysis provided in this paper shows that microstructured mate-
ials may demonstrate an essentially extension of rotary inertia and
icroinertia properties also for continua models. In particular, one may

xpect a rather complex dependence of microinertia on deformations as
ell as a dominant role of inertia related to other micromotions.
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