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Theoretical values of two correction factors as = 5/6 and at = 7/10 are established for the respective trans-
verse shear stress resultants and stress couples within the general, dynamically and kinematically exact,
six-field theory of elastic shells. These values do not depend on the shell material symmetry, geometry of
the base surface, the shell thickness, or any kind of kinematic and/or dynamic constraints. The analysis is
based on the complementary energy density following from the transverse shear stresses acting only on
the shell cross section. The appropriate quadratic and cubic distributions of the stresses across the thick-
ness allow one to derive the consistent constitutive equations for the transverse shear stress resultants
and stress couples with as and at as the respective correction factors. Four numerical examples of highly
non-linear shell structures illustrate the influence of different values of as and at on the results. In par-
ticular, some influence of at is noticed on the placement of bifurcation points. In dynamic problem of
flight of three intersecting plates analysed with Newmark-type temporal algorithm, the value of at influ-
ences the moment at which the relative error of total energy of the system begins to grow indefinitely
leading to the solution failure.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The general non-linear theory of shells proposed by Reissner
(1974) was developed in a number of papers, for example by Libai
and Simmonds (1983), Chróścielewski et al. (1992, 1997, 2002),
Ibrahimbegović (1997) and Eremeyev and Pietraszkiewicz (2006,
2009), and partly summarised in the books by Libai and Simmonds
(1998), Chróścielewski et al. (2004) and Eremeyev and Zubov
(2008), where many additional references are given. This dynami-
cally exact and kinematically unique two-dimensional (2D) shell
model does not require any kind of kinematic or dynamic con-
straints. It naturally includes the so-called drilling rotation and
two transverse shear stress couples with corresponding work-
conjugate transverse shear bendings. These fields become of
primary importance in analyses of irregular shells with kinks,
branchings and intersections (Chróścielewski et al., 1997, 2004),
when connecting shell elements with beams, columns and stiffen-
ers, as well as in two-dimensional formulation of singular phenom-
ena such as phase transitions (Eremeyev and Pietraszkiewicz,
2004, 2009), crack propagations, dislocations (Eremeyev and
Zubov, 2008), wave motion etc.

Within the general 6-field shell model used here it is also rea-
sonable (Chróścielewski et al., 1997) to introduce explicitly the
shear correction factors as and at into the constitutive equations
ll rights reserved.

: +48 58 374 16 70.
.

for the respective transverse shear stress resultants and stress cou-
ples. Yet, the numerical values of as and at are not established
within the general shell model, although one expects that the re-
sults should be analogous to those available for simplified shell
and plate models of the Timoshenko–Reissner (T–R) type formu-
lated using kinematic and/or dynamic constraints. Please note that
various T–R shell models developed in many works and summa-
rized for example by Naghdi (1972), Pietraszkiewicz (1979),
Altenbach and Zhilin (1988), Simo and Fox (1989), Kleiber and
Woźniak (1991), Antman (1995), Rubin (2000), Bischoff et al.
(2004), and used by Vu-Quoc et al. (2000, 2001) and Vu-Quoc
and Ebcioglu (2000, 2005) in multilayered shells, is based on kine-
matic constraints: ‘‘shell material fibres, which are initially normal to
the undeformed shell base surface, are constrained to remain straight
(and possibly inextensible) during shell deformation”. This leads to
only two rotational dofs available in such shell models. The
absence of the third drilling rotational dof makes the kinematically
constrained shell models insufficient for proper analyses of the
irregular shell problems mentioned above.

The aim of this paper is to establish theoretical values of the two
shear correction factors within the general 6-fields geometrically
non-linear theory of elastic shells, and to test their influence on
numerical results of static and dynamic behaviour of some highly
non-linear regular and irregular shell structures.

After reminding some general shell relations, we discuss in
Section 3 an effective part of 3D complementary energy density
of the geometrically non-linear elasticity. This part is associated

http://dx.doi.org/10.1016/j.ijsolstr.2010.09.002
mailto:wojwit@pg.gda.pl
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with the transverse shear stress components acting only on the
shell cross section. Then 3D distribution of the transverse shear
stresses are represented in (1.10) through the transverse shear
stress resultants and stress couples. The corresponding distribu-
tion functions (1.12) are constructed by requiring four conditions
(1.11) to be satisfied. The 3D stress distribution is then intro-
duced into the effective 3D density and the through-the-thick-
ness integration is performed. This leads to appropriate forms
of the constitutive equations (1.15) and their inverse (1.17). As
a result, the uniquely defined theoretical values of the correction
factors as = 5/6 and at = 7/10 for the respective transverse shear
stress resultants and stress couples are established. We refer in
Section 4 to some review papers, in which various attempts to
calculate as within the simplified shell models based on kine-
matic constraints are summarised, and review few earlier at-
tempts to derive the correction factor at within the simplified
shell models.

In Section 5, we present four numerical examples of highly
non-linear behaviour of elastic shell structures. In two first ones
the influence of as and at on static, stability and post-buckling
behaviour of the structures are analysed. In the third example
we discuss how three different values of at influence the total,
potential and kinetic energies of the irregular three-plate struc-
ture in its free flight in space. The fourth example shows the
influence of values of as and at on numerical results for the shell
of variable thickness.

2. Some shell relations

Let P �M and P ¼ vðPÞ � M with corresponding edges oP and oP
be connected parts of the shell base surface in the undeformed M
and deformed M ¼ vðMÞ configurations defined by the position
vectors x and y, respectively, where v means the deformation.
According to Libai and Simmonds (1998) and Chróścielewski
et al. (2004) in the referential description the 2D internal stress
resultant nm and stress couple mm vectors acting along oP, but mea-
sured per unit length of oP with the surface outward unit normal
vector m, are defined by

nm ¼
Z þ

�
Tldn ¼ nama; mm ¼

Z þ

�
z � Tldn ¼ mama;

Z þ

�
�
Z þhþ

�h�
;

ð1:1Þ

where T is the 1st Piola–Kirchhoff stress tensor in the shell space, l
the unit normal to the reference shell cross section, ma = m � aa, a = 1,
2, aa the surface base vectors of the curvilinear coordinates (n1,n2)
on M, n the distance from M along the unit normal vector n orient-
ing M such that n 2 [�h�,h+], h = h� + h+ the shell thickness, and z a
deviation vector of the shell material particle in the deformed con-
figuration from M.

The unique 2D shell kinematics induced by the resultants na

and ma consists of the translation vector u and the proper orthog-
onal (rotation) tensor Q, both describing the gross deformation
(work-averaged through the thickness) of the shell cross section
such that:

y ¼ xþ u; ta ¼ Qaa; t ¼ Qn; ð1:2Þ

where ta, t are three directors attached to any point of M. As a re-
sult, the 2D vectorial stress measures na, ma and the corresponding
work-conjugate 2D vectorial strain measures ea, ja are naturally ex-
pressed in components relative to the rotated base ta, t. However, it
is usually more convenient to use the material representation of
these 2D measures in the form:

na ¼ Q T na ¼ Q TðNabtb þ QatÞ ¼ Nabab þ Qan;

ma ¼ Q T ma ¼ Q Tðt �Mabtb þMatÞ ¼ n�Mabab þMan;
ð1:3Þ
ea ¼ Q Tea ¼ Q Tðy;a � taÞ ¼ Q T u;a þ ðQ T � 1Þaa ¼ Eabab þ Ean;

ja ¼ Q Tja ¼ Q T axðQ ;aQ TÞ ¼ axðQ T Q ;aÞ ¼ n� Kabab þ Kan:

ð1:4Þ

Here 1 is the metric tensor of the 3D space and ax (�) denotes the
axial vector of the skew tensor (�). In particular, in (1.3) and (1.4)
the 2D material components Qa = na�n and Ma = ma�n are the trans-
verse shear stress resultants and couples, while the corresponding
work-conjugate 2D material components Ea = ea�n and Ka = ja�n
are the transverse shear strains and bendings, respectively.

3. Constitutive equations for 2D transverse shear measures

In the general six-field theory of shells the strain measures
(1.4) are defined only on the shell base surface, without any
relations to 3D strain measures in the shell space. Hence, the
idea of Pietraszkiewicz (1979) to use the 3D strain energy den-
sity for establishing the constitutive equations cannot be applied
here.

Let Sij, i = 1, 2, 3, be 3D components of the 2nd Piola–Kirchhoff
stress tensor S = F�1T, where F = Grad v is the 3D deformation gra-
dient tensor in the shell space. Since in 3D convected coordinates
(na,n), see Pietraszkiewicz and Badur (1983), F�1 ¼ gi � �gi; T ¼
Tij�gi � gj, and S = Sijgi � gj, with gi, gj and �gi; �gj the 3D base vectors
of the undeformed and deformed shell space, respectively, we also
have Sij = Tij, although S – T. Thus, in terms of 3D components of S
the material 2D stress measures Qa and Ma are defined by

Qa ¼
Z þ

�
lSa3dn; Ma ¼

Z þ

�
lSa3ndn; ð1:5Þ

with l ¼ 1� 2nH þ n2K; H ¼ 1
2 ba

a the mean curvature, K ¼ det ba
b

� �
the Gaussian curvature, and ba

b the mixed components of the curva-
ture tensor of M.

The 2D shear stress resultants and moments (1.5) are not the
same as those defined in any Timoshenko–Reissner type shell
model based on kinematic constraints mentioned above. In our
definitions (1.5) the complete 3D distribution of shear stresses
Sa3 are integrated through the thickness, while in analogous defini-
tions of any constrained shell theory the stresses in analogous to
(1.5) definitions of shear resultants do not contain reactive stresses
which are required to maintain the assumed kinematic constraints,
see Kleiber and Woźniak (1991) and Antman (1995).

Within 3D geometrically non-linear, homogeneous elastic sol-
ids (Green and Zerna, 1968; Gurtin, 1972) the complementary en-
ergy density per unit volume of the reference configuration is given
by the quadratic expression:

W ¼ �1
2

KijklS
ijSkl; Kijkl ¼ Kjikl ¼ Kijlk ¼ Kklij; Sij ¼ Sji; ð1:6Þ

where Kijkl are components of the compliance 4th-order tensor. In
particular, for an isotropic elastic solid we have:

Kijkl ¼
1

2E
ð1þ mÞ gikgjl þ gilgjk

� �
� 2mgijgkl

� �
; ð1:7Þ

with E the Young modulus and m the Poisson ratio.
Taking into account symmetries of Kijkl and Sij, the quadratic

expression (1.6) can be written as the sum of four separate terms
each representing a part of 3D complementary energy density cal-
culated from the stresses Skl, Sk3(=S3l) and S33. Only the stress
components Skl, Sk3 act on the shell cross section. The stress com-
ponents S3l = Sl3, S33 act on shell surfaces n = const parallel to the
base surface M and, while contributing to the effective part of com-
plementary energy density Weff, they should not contribute to the
constitutive equations associated with the resultants (1.1). In par-
ticular, the part of Weff from the shear stresses Sa3 alone is given by

http://mostwiedzy.pl
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Weff
s ¼ �2Kk3l3Sk3Sl3 ¼ �2

1
l2 Aa3b3la

kl
b
l lSk3
� �

lSl3
� �

;

Aa3b3 ¼ Ka3b3jn¼0;

ð1:8Þ

where la
k ¼ da

k � nba
k are the geometric shifters, see Naghdi (1963).

The 2D representation of Weff
s can now be obtained by direct

through-the-thickness integration of (1.8):

Reff
s ¼

Z þ

�
lWeff

s dn: ð1:9Þ

Let us assume, for definiteness, the base surface M be the mid-
dle surface of the shell in the undeformed configuration, that is
h� = h+ = h/2. Assume also, for simplicity, that there are no surface
tangential forces applied at the upper and lower shell faces where
n = ±h/2, and no body forces applied in the shell space (otherwise
these loads would appear explicitly in the 2D constitutive equa-
tions, which we would not like). Then the reduction of 3D trans-
verse shear stress field to its 2D statically equivalent resultant
force and couple components according to (1.1) means that in
the general shell theory Sa3(n) can, in fact, be represented by

lSa3 ¼ 1
h

Qaf ðnÞ þ 6

h2 MagðnÞ; ð1:10Þ

where the functions f(n) and g(n) should satisfy the following condi-
tions (see Badur, 1984, p. 77):

f � h
2

� 	
¼ g � h

2

� 	
¼ 0 ðaÞ;

f ð�nÞ ¼ f ðnÞ; gð�nÞ ¼ �gðnÞ ðbÞ;
1
h

Z þ

�
f ðnÞdn ¼ 1;

6

h2

Z þ

�
gðnÞdn ¼ 0 ðcÞ;

1
h

Z þ

�
f ðnÞndn ¼ 0;

6

h2

Z þ

�
gðnÞndn ¼ 1 ðdÞ:

ð1:11Þ

The conditions (1.11) are satisfied, in particular, by the follow-
ing families of polynomials:

f1ðnÞ ¼
3
2

1� 4n

h2

2
 !

; f 2ðnÞ ¼
15
8

1� 4n

h2

2
 !2

;

f3ðnÞ ¼
35
16

1� 4n

h2

2
 !3

; . . .

g1ðnÞ ¼
5
h

n 1� 4n

h2

2
 !

; g2ðnÞ ¼
35
4h

n 1� 4n

h2

2
 !2

;

g3ðnÞ ¼
105
8h

n 1� 4n

h2

2
 !3

; . . . :

ð1:12Þ

Each pair of the polynomials fn(n) and gn(n), n = 1, 2, 3, . . . , assure, in
particular, that the representation (1.10) for lSa3(n) satisfy the tan-
gential force-free boundary conditions at n ¼ � h

2 .
When the shell is homogeneous in the transverse normal direc-

tion it is quite natural to choose the simplest functions f1(n) and g1

(n) in the representation (1.10), and we will use them in this paper
as well. In fact, the function f1(n) was first introduced in the linear
bending theory of plates by Reissner (1944), while the function
g1(n) was first used by Green et al. (1971) in the linear theory of
plates of variable thickness.

In case of multi-layer shells with odd number of layers of the
same thickness, higher-order functions (1.12) may become more
appropriate, for example f2(n) and g2(n) for three-layer shells,
f3(n) and g3(n) for five-layer shells, etc. When layers have differ-
ent thickness and/or their number is even, one has to use the
continuity conditions at the layer interfaces to define the global
shear correction factors for multi-layer shell through the shear
correction factors of individual layers. Such an approach can di-
rectly be used in the dynamically exact multi-layer shells pro-
posed recently by Chróscielewski et al. (in press). Its
approximate applicability to geometrically exact multi-layer
shell models of Vu-Quoc et al. (2000–2005) can be discussed
within the errors of the second approximation to the elastic
strain energy density of Pietraszkiewicz (1979), see also discus-
sion in Section 4.

The relations (1.8) and (1.12) for n = 1 indicate that the inte-
grand in (1.9) becomes an infinite series of the resultants Qa, Ma,
the curvatures H, K, the material parameters, and polynomials of
n. Thus, let us now assume that the shell is thin, h/R << 1, so that
l 	 1, and la

k 	 da
k . Introducing these approximations together

with (1.12), (1.8) and (1.10) into (1.9), and taking into account
that:Z þ

�
f 2
1 ðnÞdn ¼ 6

5
h;

Z þ

�
g2

1ðnÞdn ¼ 10
21

h; ð1:13Þ

we obtain the following result:

Reff
s ¼ �2Aa3b3

1
ash

QaQb þ 12

ath
3 MaMb

 !
; as ¼

5
6
; at ¼

7
10

:

ð1:14Þ

The constitutive equations for the 2D strain components Ea and
Ka can now be directly calculated differentiating (1.14):

Ea ¼ �
oReff

s

oQa ¼
4

ash
Aa3b3Qb; Ka ¼ �

oReff
s

oMa ¼
48

ath
3 Aa3b3Mb: ð1:15Þ

Let Lijkl be 2D components of the 4th-order elasticity tensor
which are dual to Aijkl such that:

LijklAklmn ¼
1
2

di
mdj

n þ di
nd

j
m

� �
; Lc3klAklb3 ¼

1
2

dc
b; Lc3a3Aa3b3 ¼

1
4

dc
b:

ð1:16Þ

Then we can invert the constitutive Eq. (1.15) for Qa and Ma and
obtain:

Qa ¼ ashLa3b3Eb; Ma ¼ at
h3

12
La3b3Kb: ð1:17Þ

The values as = 5/6 and at = 7/10 of the correction factors de-
rived here do not depend on the shell material symmetry, geome-
try of the base surface, the shell thickness, or any kind of kinematic
and/or dynamic constraints so popular in the literature.

In particular, for the homogeneous isotropic elastic material:

Aa3b3 ¼
1

4G
aab; La3b3 ¼ Gaab; G ¼ E

2ð1þ mÞ ; ð1:18Þ

so that the energy (1.14) reads:

Reff
s ¼ �

1
2Gh

aab
1
as

QaQb þ 12

h2

1
at

MaMb

� 	
; ð1:19Þ

and the corresponding constitutive equations are:

Ea ¼
1
as

1
Gh

aabQb; Ka ¼
1
at

12

Gh3 aabMb; ð1:20Þ

Qa ¼ asGhaabEb ¼
1
2
asCð1� mÞaabEb; C ¼ Eh

1� m2 ;

Ma ¼ at
Gh3

12
aabKb ¼

1
2
atDð1� mÞaabKb; D ¼ Eh3

12ð1� m2Þ :
ð1:21Þ

Please note some symmetry of so defined as and at with regard to
the shell stretching and bending stiffness C and D, respectively.

http://mostwiedzy.pl
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4. Discussion

Since the role of at was not understood within the general six-
field theory of elastic shells, Chróścielewski et al. (2004) and
Chróścielewski and Witkowski (2010a) performed extensive
numerical tests in order to analyse how values of at influence the
static and dynamic behaviour of several regular and irregular elas-
tic shell structures within the linear and geometrically non-linear
range of deformation. It was found, in particular, that when at < 1
the results were practically insensitive to its numerical value. This
corresponds well with quantitative estimates provided by John
(1965) that in thin shells the order of transverse shear stresses
Sa3 is lower by some small parameter than the order of stresses
Sab. Thus, the shell complementary energy density following from
terms involving Qa and Ma is of higher-order smallness than the
one following from those involving Nab and Mab.

In most plate and shell models available in the literature the
shell kinematics, not dynamics as in the present paper, is taken
as the primitive notion to which various simplifying kinematic
and/or dynamic constraints are applied. In most cases the 3D
translation field t(n) in the shell space is approximated by the lin-
ear expression, see for example Pietraszkiewicz (1979):

tðnÞ ffi uþ nb; b ¼ �a3 � n; �a3 ¼ Gn; G ¼ Fjn¼0: ð1:22Þ

In particular, the transverse shear strain components Ca3(n) of the
3D Green strain tensor C ¼ 1

2 ðF
T F � 1Þ are approximated by

Ca3ðnÞ ffi ca3 þ n
1
2
ja3; ca3 ¼

1
2

�aa � �a3; ja3 ¼ �a3;a � �a3; �aa ¼ Gaa:

ð1:23Þ

The linear approximations (1.22) and (1.23) are used, for example,
in the Timoshenko–Reissner type plate and shell models, geometri-
cally exact formulations, shell models obtained by degeneration of
3D relations, and the 2D models of Cosserat surface with one
deformable director. Frequently, in such 2D models the dynamic
constraint about the plane stress state in the shell space is addition-
ally assumed. However, the errors introduced into the 2D theory of
shells by such kinematic and/or dynamic constraints are not well
understood even today.

In all 2D plate and shell models based on such kinematic con-
straints deformation of the base surface is described only by 5 dis-
placemental degrees of freedoms (dof): three translations and two
rotational parameters. The third rotational dof – the so-called dril-
ling rotation – cannot be properly defined here, see extensive dis-
cussion of this issue in Chróścielewski et al. (2004), Section 2.7. In
order to apply such constrained 2D plate and shell models in anal-
yses of irregular shell problems mentioned in Section 1, one has to
additionally reintroduce the drilling dof into the shell relations.

The correction factor as = 5/6 in the constitutive equations for
Qa expressed in terms of ca3 was first proposed by Bolle (1947)
within the linear theory of isotropic elastic plates. He used the qua-
dratic distribution of transverse shear stresses across the plate
thickness similar to our (1.10) and (1.12)1. In many later papers re-
viewed by Grigoljuk and Selezov (1973), Noor and Burton (1989),
and Jemielita (2001) various static, kinematic and dynamic ap-
proaches were proposed to redefine this factor leading to its differ-
ent values from the range [0.73–1.0]. In those papers the influence
of existence of the transverse shear stress couples Ma on the value
of as was not taken into account.

The correction factor 7/20 in the constitutive equations for
Ma3 �Ma was first proposed by Green et al. (1971), see also Naghdi
(1972), within the linear theory of isotropic elastic plates of vari-
able thickness. Their work-conjugate bending measures q3a were
defined as linear combinations of the main ca3 and linear ja3 terms
of through-the-thickness expansion of 2Ca3(n).
Pietraszkiewicz (1979a) arrived at the correction factors
k2 � as = 5/6 and l2 � at = 7/10, with detailed derivation of these
values available in PhD dissertation of Badur (1984). The constitu-
tive equations for Na3 � Qa and Ma3 �Ma in terms of correspond-
ing ca3 and ja3 were derived by Pietraszkiewicz (1979a,b),
within the consistent second approximation to the elastic strain
energy density of the geometrically non-linear isotropic shells.
Comparing those constitutive equations with ours (1.17) we can
conclude that within the error indicated in Pietraszkiewicz
(1979a,b) the 2D strain measures 2ca3,ja3 defined by
Pietraszkiewicz (1979a) and in (1.23) can be interpreted as some
approximations to Ea, Ka defined in (1.4). However, the both 2D
transverse shear strains and bendings should not be identified, be-
cause they are introduced by entirely different approaches.

Yeh and Chen (1993) used the transverse shear correction factor
1/u with u = 1.2 in their micropolar elastic constant matrix of an
isotropic plane stress state for both the stress resultants Na3 and
stress couples Ma3. This corresponds to the assumption that both
as = at = 5/6, and such a choice was referred to Owen and Hinton
(1980).

Bischoff and Ramm (2000) and Bischoff et al. (2004) used the
correction factors a = 5/6 and b = 7/10 in their constitutive equa-
tions for na3 � Qa and ma3 �Ma within the 7-parameter shell mod-
el, while derivation of such factors was referred to Bischoff (1999).
The main term of through-the-thickness expansion of the 3D Green
strains Ea3 (n) was aa3 � ca3 while the linear term was denoted as
ba3, so that 2ba3 is identical to ja3 given in (1.23). Likewise, the
measures Ea and 2ea3 as well as Ka and 2ba3 may be seen as some
approximations of each other, but they should not be identified.

Altenbach and Eremeyev (2009) suggested that the constitutive
relations used in the general shell theory may be viewed as equiv-
alent to their material law proposed for the Cosserat plates. In par-
ticular, Chróścielewski and Witkowski (2010a) derived from
results of Altenbach and Eremeyev (2009) the analytic formula
for at valid in the case of non-polar material:

at ¼
2� m
1� m

: ð1:24Þ

Since such at P 2 for any 1 > m P 0, it seems that the constitutive
equations for Qa was derived by Altenbach and Eremeyev (2009)
using different 2D bending measure not compatible with our Ka.

This discussion explicitly indicates that at is the constitutive
coefficient which must not be confused with a ‘penalty multiplier’
as it was used in Eberlein and Wriggers (1999) and Tan and
Vu-Quoc (2005).

The discussion above also indicates that the values as = 5/6 and
at = 7/10 of the correction factors derived here can also be used
with good approximation in any geometrically non-linear versions
of homogeneous elastic plates and shells formulated by applying
various simplifying kinematic constraints of Timoshenko–Reissner
type leading to 5, 6 or 7-parameter models, geometrically exact
formulations, 2D models degenerated from 3D elasticity, Cosserat
surface models with one deformable director, etc. This is so, be-
cause according to John (1965) the stresses Sa3 in the shell space
are of lower order than those of Sab. Hence, the energy introduced
by Qa and Ma themselves into the 2D complementary energy den-
sity of the shell is small, and eventual additional errors of kine-
matic constraints on the values of shear correction factors is
expected to be of higher-order smallness.
5. Numerical examples

The remainder of this paper is concerned with numerical
examples that study influence of the values of as and at on the
response of shell structures in FEM analysis. In numerical results

http://mostwiedzy.pl
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to follow we use the 16-node displacement/rotation based ele-
ments CAMe16 with full integration of element matrices, see
Chróścielewski et al. (1992, 2004). Using dense meshes we avoid
discussions about locking phenomena and convergence. The
analysis is performed within small elastic strains but unlimited
translations and rotations.
Fig. 3. Cylindrical shell: load-deformation path of u(a).

Fig. 4. Cylindrical shell: vicinity of the first limit point, symmetry.
5.1. Static snap-through of cylindrical panel

Consider a cylindrical panel depicted in Fig. 1, where the geom-
etry and boundary conditions are shown. The material parameters
are E = 2 � 1011, v = 0.25, h = 0.01. This example was examined,
among others, in Botasso et al. (2002), Kuhl and Ramm (1996) to
study properties of time integration schemes. Here we are con-
cerned with the static version of this example.

In the first part we have studied one quarter of the panel due to
the double symmetry. At the first stage we have performed mesh
convergence analysis for two discretisations of the quarter with
8 � 8 and 12 � 12 CAMe16 elements. It turns out that there has
been no significant difference in the results, so we present only
the results obtained in the first mesh.

In the second part we have studied the influence of different
values of at. The overall response of the structure has been almost
indistinguishable for at = 0.01 and at = 2.33, with the latter value
obtained from (1.24). To show the complicated nature of the ana-
lyzed problem Fig. 2 depicts the non-linear load-deformation path
of translation w of the point (a), and Fig. 3 shows the path of trans-
lation u for the point (a). To conclude the study on symmetric
analysis, Fig. 4 portrays the load–displacements path in the vicinity
of the first limit point from Fig. 2. As it can be observed from Fig. 4,
the change of at = 0.01 into at = 2.33 does not practically change
the placement of the limit point.

However, the value of at has some influence on the non-
symmetric bifurcation point. Fig. 5 shows the placements of
Fig. 1. Cylindrical shell: geometry, load and boundary conditions.

Fig. 2. Cylindrical shell: load-deformation path of w(a).

Fig. 5. Non-linear deformation path, bifurcation point.
bifurcation points depending on at. While for at = 0.01 and at = 0.7
the response of the structure is almost the same, for at = 2.33 the
bifurcation occurs for slightly larger value of the control parameter k.

Finally, Figs. 6 and 7 depict placements of the upper and lower
limit points from Fig. 3, respectively.

The presented results show small influence of the value of at on
the obtained results. The only exception is the placement of the
bifurcation point in the case of asymmetric buckling.
5.2. Channel section cantilever

The problem analyzed in this subsection was originally
formulated by Lee and Haris (1979) as the simply supported beam
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Fig. 6. Upper bifurcation point on secondary path.

Fig. 7. Lower bifurcation point on secondary path.

Fig. 9. Channel section cantilever: non-linear deformation paths.

Fig. 10. Channel section cantilever: non-linear deformation paths, details.
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under action of uniformly distributed transverse load. Later,
Chróścielewski et al. (1992) analyzed another variant of this
example: the beam was considered as clamped at one end with
the point load applied at the free end. This version became the
popular benchmark problem and was analyzed among others by
Ibrahimbegović and Frey (1994), Betsh et al. (1996), Chróścielewski
et al. (2004), Eberlein and Wriggers (1999), Tan and Vu-Quoc
(2005). Wagner and Gruttmann (2005) studied another variant of
this example, see also Chróścielewski and Witkowski (2006).

The structure analysed here is depicted in Fig. 8. Geometry is
described by L = 36, a = 2, b = 6, h = 0.05 while the load is assumed
as proportional P(k) = kPref with Pref = 100. The material constants
are E = 107 and m = 0.333. The mesh used in this study consists of
4 elements for lower flange, 6 elements for the web, 4 elements
for the upper flange and 36 elements along the beam length.
Fig. 9 portrays non-linear load-deformation path of the horizontal
Fig. 8. Channel section cantilever: geometry and load.
translation w of the point (a) obtained using at = 0.01. As it can be
seen, the response of the structure is complex for values w > �6.
Fig. 10 shows the non-linear deformation paths of w obtained with
three different values of at = [0.01;0.7; 2.499]. The latter value is
obtained based on Eq. (1.24). It may be noted that all the solutions
are close to each other. This Figure also shows the complicated re-
sponse of the structure. Details of this response are shown in
Fig. 10.

Similarly to the previous example, numerical results show small
dependence on the values of at.
Fig. 11. Three intersecting plates: geometry and loads.
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Fig. 13. Three intersecting plates: kinetic energy for different values of at.

Fig. 14. Three intersecting plates: potential energy for different values of at.
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5.3. Free flight of three intersecting plates

This example is representative for the class of tumbling prob-
lems initiated by the works of Vu-Quoc and Simo, see Vu-Quoc
(1986), Simo and Vu-Quoc (1988). We analyze the flight of the
shell structure as shown in Fig. 11, where geometry, loads and
material parameters are given. This example was analyzed by Simo
and Tarnow (1994), Zhong and Crisfield (1998), Miehe and
Shroeder (2001). It is interesting to notice that Miehe and Shroeder
(2001) and Simo and Tarnow (1994) obtained different results
though the same material, loads and geometrical parameters
were used. This issue has recently been studied in detail by
Chróścielewski and Witkowski (2010a), where the internal, kinetic
and total energies, the kinetic constitutive equations and the time
integration schemes were described. The importance of this
example is that once the external load impulse dies out in free
motion the structure is the Hamiltonian system in which we
observe, conserved by definition, the total energy of the structure.

The material constants in used in this example are E = 2 � 107,
m = 0.25, h = 0.02.

Simulations carried out in this paper are based on the kinetic
constitutive relations for the linear p(x,t) = qmht and angular
j(x, t) = (qIh

3/12)x momentum vectors in which t ¼ _yðx; tÞ ¼
_uðx; tÞ and x ¼ axð _QQ TÞ are the translational and angular velocity
vectors, and coefficients are given by

qmh ¼ 1:0 � 0:02 ¼ 0:02; qI
h3

12
¼ 50 � 0:023

12
¼ 3:333� 10�5;

ð1:25Þ

where qm stands for the initial mass density of the translational mo-
tion, and qI is the initial mass density of the rotary motion.

In this example we have used two time integration schemes.
The first one belongs to the Newmark family and was described
in Chróścielewski et al. (2004), Lubowiecka and Chróścielewski
(2002). The second scheme falls into category of the energy-
conserving algorithms (ECA, this label is used in the figures to
designate the solutions) and its details were given by Lubowiecka
and Chróścielewski (2005).

The ECA algorithm has also been used in the paper by
Chróścielewski and Witkowski (2010b). To validate the correctness
of the scheme the authors run the example known as the toss rule
(see for example Kuhl and Ramm, 1996; Vu-Quoc and Tan, 2003). It
has been shown that the present ECA algorithm furnishes correct
results.

The time step used in the present calculations has been taken as
Dt = 0.002 s.

Fig. 12 shows preservation of the total energy of the structure
obtained for three different values of the correction factor
Fig. 12. Three intersecting plates: total energy for different values of at.
at = [0.01;0.7;2.33] by making use of the Newmark algorithm.
The value at = 2.33 is obtained through (1.24). These three results
are compared to the solution obtained for at = 0.01 with the ECA
method. When t 	 3.3 s we observe a sudden growth of the total
energy for all three values of at in the Newmark scheme. As it
can be observed, for at = 0.01 this convergence failure appears
slightly later than for the two remaining values. The same effect
is portrayed in Figs. 13 and 14 for the kinetic K and potential U
energies, respectively. To compare the results further we define
the relative energy error as

error ¼ 100% � U þ K � Gext

Gext
; ð1:26Þ
Fig. 15. Three intersecting plates: relative error of the total energy, Eq. (1.26).
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Fig. 16. Twisted beam, geometry and load.

Fig. 19. Twisted beam, results for h = 0.32.
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where the external work Gext is defined in Chróścielewski and
Witkowski (2010a). The error plotted against time t is shown in
Fig. 15.

5.4. Bending of twisted beam

We analyze the twisted beam shown in Fig. 16. This example
was used in the set of problems proposed by MacNeal and Harder
(1985). Originally, the thickness h = 0.32 was used. Belytschko
et al. (1989) reduced the thickness to h = 0.0032 to invoke the lock-
ing effect. This is the very popular example, see for instance
Wagner and Gruttmann (2005), Chróścielewski and Witkowski
(2006), Panasz and Wiśniewski (2008), Cardoso et al. (2008) and
the literature given there. In computations we use the following
data: L = 12, b = 1.1, angle of twist 90o, E = 29 � 106, m = 0.22. We
perform the analysis for three different values of thickness:
Fig. 17. Twisted beam, results for h = 0.0032.

Fig. 18. Twisted beam, results for h = 0.032.
h = 0.32, h = 0.032, h = 0.0032, using three different values of
at = [0.01;0.7;2.28]. Here the latter value at = 2.28 is obtained from
(1.24). The results are shown in Figs. 17–19. From the figures it is
seen that regardless of the value of at the overall response of the
structure has the same character. However, with the growth of
the shell thickness the influence of at becomes more clearly
pronounced.
6. Conclusions

We have established the theoretical values of two correction
factors as = 5/6 and at = 7/10 for the respective transverse shear
stress resultants and stress couples within the general, dynami-
cally exact and kinematically unique, six-field theory of elastic
shells. This values do not depend on the shell material symmetry,
geometry of the base surface, the shell thickness, or any kind of
kinematic and/or dynamic constraints.

We have formulated the 2D constitutive equations for the
transverse shear stress resultants and stress couples and compared
them with those known in the literature, which were obtained
using various simplifying kinematic and/or dynamic constraints.

The constitutive equations derived here have been used to ana-
lyse numerically four highly non-linear shell structures, in which
the influence of different values of at known in the literature on
the results are illustrated. In particular, little influence of different
values of at on limit points of the structures has been noted. How-
ever, for the placement of bifurcation points the influence of at is
noticeable indeed.

In case of shell dynamic problem, when the temporal New-
mark-type algorithm fails to converge, the value of at influences
the moment at which the relative error of total energy of the sys-
tem begins to grow indefinitely leading to the solution failure.
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Ibrahimbegović, A., Frey, F., 1994. Stress resultant geometrically nonlinear shell
theory with drilling rotations – part II: computational aspects. Comput. Meth.
Appl. Mech. Eng. 118, 285–308.

Jemielita, G., 2001. The shear correction factor k. In: Woźniak, C. (Ed.), Mechanics of
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