
On solvability of initial boundary-value
problems of micropolar elastic shells with
rigid inclusions

Victor A Eremeyev
Department of Civil and Environmental Engineering and Architecture (DICAAR), University of
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Abstract
The problem of dynamics of a linear micropolar shell with a finite set of rigid inclusions is considered. The equations of
motion consist of the system of partial differential equations (PDEs) describing small deformations of an elastic shell and
ordinary differential equations (ODEs) describing the motions of inclusions. Few types of the contact of the shell with
inclusions are considered. The weak setup of the problem is formulated and studied. It is proved a theorem of existence
and uniqueness of a weak solution for the problem under consideration.
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1. Introduction

Among various models of thin-walled structures, the six-parametric theory of shells, known also as the
micropolar shell theory, or the resultant shell theory, has an origin in Reissner’s works [1,2]; in more
detail, it is presented in previous works [3–7]. Within the model, the kinematics of a shell is described
through two surface fields, which are translations and rotations defined on the base surface of the shell.
In this way, we get six kinematical degrees of freedom of a shell particle as in the case of rigid body
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dynamics [8] or Cosserat continuum [6]. The counterparts of translations and rotations are stress resul-
tants and surface couple stresses including so-called drilling moment, that is, a moment related to the
rotation about the normal to the base surface. The equations of the six-parameter shell theory could be
derived using the through-the-thickness integration procedure [3–5] or within the direct approach as in
Eremeyev and his colleagues [6,7]; see also [9–11] and the references therein. As a result, on the bound-
ary of a micropolar shell, we have six load boundary conditions that give a possibility to describe the
kinematics of multifolded shells or interaction of a shell with rigid bodies. In particular, the kinematics
of multifolded (branching) shells was discussed in previous works [5,12]. In the design of spatial struc-
tures which include one-dimensional and two-dimensional structures, and three-dimensional solids and
their further numerical study [13–17], various joints play a significant role. It is worth to mention here
asymptotic techniques in the theory of shells and plates, which could be useful for the further analysis
of stress behaviour for high-frequency oscillations in the vicinity of inclusions [18–20]. The interest in
the modelling of joint behaviour of elastic shells and rigid inclusions is motivated by some applications
such as gyroscopic structures attached to a flexible elastic support, see, for example, the work by Carta
et al. and Awrejcewicz et al. [21,22]; for aerospace engineering, see the work by Qatu and Andreev et al.
[23,24]; for material processing, Wan et al. [25]; for design of elastic metamaterial plates, Miranda et al.,
Cai et al., and Ma et al. [26–28]; or for modelling of protein motions in biomembranes, Steigmann [29].
In the models, the inclusions possess their own dynamics which affects the deformation of an elastic
support. From the mathematical point of view, the model of an elastic shell with inclusions consists of a
system of partial differential equations (PDEs), which corresponds to the shell, and a system of ordinary
differential equations (ODEs), which describes the motion of inclusions. An interaction between the
shell and inclusions could be perfect or non-perfect. For a non-perfect contact, an inclusion can have
certain motions not affecting shell deformations. In other words, for the non-perfect contact, the inclu-
sion could exhibit some rigid body motions non-affecting the shell deformation. So the model of a shell
with such inclusions requires further study related to uniqueness and existence of solutions. The mathe-
matical analysis of boundary-value problems (BVPs) in the shell theory was performed in many works
[30,31]. Existence of solutions for Cosserat and micropolar shells was studied in a less number of papers
[9,32–34] and the reference therein. In particular, in Eremeev and Lebedev [34], static BVPs for shells
with rigid inclusions were studied, where only perfect contact conditions were considered. Here, we
extend the results [32,34] towards dynamic problems for linear micropolar shells with inclusions consid-
ering both perfect and non-perfect interface conditions.

The paper is organized as follows. First, we briefly introduce the basic equations of micropolar shells
in Section 2. Here, we also present the motion equations for rigid inclusions and discuss possible types
of the contact of the shell with inclusions. In Section 3 we introduce the least action principle and derive
the natural boundary conditions along shell-inclusion interfaces. Finally, in Section 4 we define a weak
solution using the virtual work principle. To study the weak setup of the dynamic problem, some energy
spaces are introduced and characterized through Sobolev’s spaces. For a mixed initial BVP, the exis-
tence and uniqueness of weak solutions on a finite time interval are proven.

2. Governing equations of dynamics

2.1. Kinematics and dynamics of a micropolar shell

In what follows, we restrict the theory to small deformations. A micropolar shell is considered as a mate-
rial surface, that is, a smooth enough base surface S with a contour L = ∂S, which possesses a mass den-
sity, energy, and other physical characteristics. The deformation of the shell is described through two
surface fields:

u= u(s1, s2, t), f = f(s1, s2, t), ð1Þ

where u and f are vectors of translations and rotations given as vector-valued functions of surface coor-
dinates sa, a = 1, 2, and time t.
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Let us introduce surface nabla-operator as follows [35]:

r= xa ∂

∂sa
, xa � xb = da

b, xa =
∂x

∂sa
, a,b = 1, 2, ð2Þ

where x= x(s1, s2) is a position vector of a point on S and da
b is the Kronecker symbol; Einstein’s sum-

mation rule is used throughout.
The equations of shell motion [32,35] are

r � T+ f= r€u+ rj1 � €f, ð3Þ

r �M+T× + c= rjT1 � €u+ rj2 � €f, ð4Þ

where T and M are stress resultant and surface couple stress tensors, respectively; f and c are external
forces and couples per unit area, respectively; r is a surface mass density; symbol T stands for the trans-
pose tensor; and j1 and j2 are tensors of rotatory inertia. Here, the overdot denotes the derivative with
respect to t. Expression ( . . . )× denotes the vectorial invariant (Gibbsian cross) of a second-order tensor
[35]. For example, for a dyad of two vectors a and b, we get (a� b)× = a× b. Hereafter, ‘‘�,’’ ‘‘�,’’ and
‘‘× ’’ stand for dot, dyadic, and cross products, respectively.

Equations (3) and (4) correspond to the following expression for the surface density of kinetic energy:

K =
1

2
r _u � _u+ r _u � j1 � _f +

1

2
r _f � j2 � _f, ð5Þ

which is assumed to be a positive quadratic form of the linear _u and angular _f velocities. So we have the
inequality

K ø CK( _u � _u+ _f � _f),

where CK is a positive constant independent of u and f: Let us note that hereafter we suppose all the
quantities and equations to be transformed to the dimensionless form.

For a hyperelastic shell, there exists a surface strain energy density W given as a function of two strain
measures:

W = W (e, k), e=ru+P×f, k=rf, ð6Þ

where P= I� n� n is the surface unit tensor, I is the three-dimensional unit tensor, and n is the unit
normal to S (see Figure 1).

The stress measures are expressed through W by the formulae

Figure 1. An elastic shell with three rigid inclusions.
From now on, we use types of arrow heads distinguishing geometrical vectors (position, normal, tangent vectors), force vectors, and couples. In

particular, for couples we use double arrows.
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T=
∂W

∂e
, M=

∂W

∂k
:

In what follows, we assume that W is a positive definite quadratic form of e and k, so

W (e,k) =
1

2
e : C : e+ e : B : k+

1

2
k : D : k, ð7Þ

W (e,k) ø C k ek2 + k kk2
� �

, ð8Þ

where C, B, and D are stiffness fourth-order tensors; ‘‘:’’ is the double dot product,
k ( . . . )k2 = ( . . . ) : ( . . . ); and C is a positive constant independent of e and k. For some material sym-
metries, the stiffness tensors were presented in Eremeyev and Pietraszkiewicz [36].

The equations of motion should be complemented by boundary conditions along L. Here, L
consists of an external contour ‘ and N interfaces ‘i between the shell and inclusions,
L = ‘ [ ‘1 [ . . . [ ‘N (Figure 1). We assume the mixed boundary conditions on ‘:

uj‘u
= 0, fj‘u

= 0, n � Tj‘t
= t, n �Mj‘t

=m: ð9Þ

So the part ‘u is fixed, whereas along the rest ‘t = ‘n‘u, the line forces t and couples m are given. Here,
n is the outward normal vector to ‘ lying in the tangent plane to S.

The boundary conditions on interfaces ‘i, i = 1, . . . N for various possible types of contact will be dis-
cussed in Section 2.3.

The motion equations and the boundary conditions should be complemented by the initial conditions

ujt = 0 = u8, fjt = 0 = f8, _ujt = 0 = v8, _fjt = 0 = v8, ð10Þ

where u8, f8, v8, and v8 are initial data, that is, the initial translations, rotations, linear velocity, and
angular velocity, respectively. Note that we assume that u8 and f8 are consistent with kinematic bound-
ary conditions, that is, u8j‘u

= 0, f8j‘u
= 0, v8j‘u

= 0, and v8j‘u
= 0.

2.2. Rigid body dynamics

Following previous works [6,8], let us briefly recall the equations of dynamics of a rigid body. Let a rigid
body B occupy volumes v and V in a reference and current placements (see Figure 2). The kinematics of
B could be described as a translation of an arbitrary point O of B called the pole and a rotation about
O. For simplicity, we use the centre of mass as the pole. In a reference placement, a position vector of an
arbitrary point P of B is given by

Figure 2. A motion of a rigid body.
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R=R0 + j,

where R0 is the position vector of O and j is the vector from O to P. In a current placement, we have a
similar representation:

r= r0 + h,

where r0 and h are the position vectors of O and from O to P, respectively. Introducing the rotation ten-
sor Q, we get the relation between j and h : h =Q � j. So the displacement u of P is

u[ r� R= u0 +Q � j � j, ð11Þ

where u0 = r0 � R0 is the translation of pole O. As a result, the velocity of P is given by

v= v0 + v×h, ð12Þ

where v0 = _u0 is a linear velocity of the pole and v is an angular velocity introduced as
v = � 1=2( _Q �QT )× .

The kinetic energy of B is given by

KB=
1

2
Mv0 � v0 +

1

2
v � J �v, ð13Þ

where M and J are the mass and the inertia tensor of B, respectively. The formulae for J are

J=

ððð
v

rh× I×hdv =Q � J0 �QT , J0 =

ððð

V

rj × I× j dV , ð14Þ

where r is the mass density of B and J0 is the referential tensor of inertia.
The motion equations for B follow from the balance of momentum and moment of momentum; they

take the form

M _v0 =F, (J �v)�=L, ð15Þ

where F and L are the total force and total torque vectors acting on B.
In case of small rotations, we can use the following replacements [6,37]:

Q= I+ I×q, J= J0, v = _q,

where q is the vector of infinitesimal rotations.
In addition to equation (15), we also pose the initial conditions

u0jt = 0 = u08, qjt = 0 = q8, _u0jt = 0 = v08, _qjt = 0 = v8 ð16Þ

with initial data u08, q8, v08, and v8.
Obviously, for N rigid bodies-inclusions, we have a system of 2N equations of motion and 4N initial

conditions in terms of ui and qi, i = 1, . . . N :

Mi _vi =Fi, Ji � €qi =Li, ð17Þ

uijt = 0 = ui8, qijt = 0 = qi8, _uijt = 0 = vi8, _qijt = 0 = vi8, ð18Þ

where Mi and Ji are the mass and the moment of inertia of the ith inclusion, respectively.

2.3. Interaction with rigid inclusions

In what follows, we consider the following contact conditions between the shell and rigid inclusions:

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


1. A perfect contact. Here the shell is rigidly connected to the body as shown in Figure 3(a). As a
result, the rigid body cannot move without deformation of the shell;

2. A contact with constraint-free rotations. In this case, there is an axis with an unit director l such
that rotations about this axis do not produce any deformation of the shell (Figure 3(b));

3. Free rotations. It is when the rigid body can rotate freely about any axis without deformations of
the shell (Figure 3(c)).

For the perfect contact, there is no sliding between the shell and inclusion, so the translations and
rotations have no jump of discontinuity across the interface:

uj‘i
= ui + qi × j(s)j‘i

, fj‘i
= qi, ð19Þ

where s is the arc-length parameter along ‘i. In other words, the points of ‘i may exhibit only infinitesi-
mal rigid body motions.

For the other types of contact, the inclusions can possess free rotation. In particular, Case 2 corre-
sponds to the free rotation about l�axis s, whereas Case 3 relates to entirely free rotations. The corre-
sponding kinematic conditions could be derived from the analysis of a velocity distribution in a rigid
body and shell; they take the form

uj‘i
= ui + q

k
i × j(s)j‘i

, fj‘i
= q

k
i , ð20Þ

uj‘i
= ui: ð21Þ

In equation (20), we decompose Ji as follows:

qi = q?i + q
k
i , q?i = (qi � l)l, q

k
i = (I� l� l) � qi:

To distinguish these three cases, we denote the interfaces as ‘
0

i, ‘
00

i , and ‘
000

i , respectively. In other words,
boundary conditions (19) are given along ‘

0

i, whereas equations (20) and (21) are assigned along ‘
00

i and
‘
000
i , respectively.
The dynamic counterparts of equations (19), (20), and (21), that is, dynamic boundary conditions,

can be derived within the variational approach.

3. The least action principle

So for small deformations of an elastic shell with N rigid inclusions, we have the following kinematic
descriptors:

� Two vector-valued surface fields u= u(x, t) and f = f(x, t), x 2 S;
� 2N vector-valued functions ui = ui(t) and qi = qi(t), which describe translations and rotations of

ith inclusion, i = 1, 2 . . . N .

In what follows, we consider three types of inclusions as described above. So depending on the type of
shell-inclusion interaction, ui and qi are subjected to one of the conditions (19), (20), or (21). As a result,

(c)(a) (b)

Figure 3. Interactions between a shell and rigid inclusion: (a) perfect contact, (b) constraint rotations, and (c) free rotations.
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u, f, ui, and qi are not kinematically independent, in general. Indeed, from equation (19), we see that ui

and fi are entirely determined by u and f. For equation (20), q?i is independent, that is, rotations about
l are independent of the shell deformations, whereas for equation (21) all the rotations qi are kinemati-
cally independent. Nevertheless, we consider the full set fu,f, ui,qig as primary variable subjected con-
straints (19), (20), and (21). Obviously, initial data introduced in equations (10) and (18) should be also
consistent with equation (19), (20), or (21).

Let us consider the variational statement of the problem under consideration using the least action
(Hamilton–Ostrogradski) principle. It has the form

dH= 0, dH=

ðt1

t0

(dK� dW)dt, ð22Þ

where

K=

ðð

S

K dS +
XN

i = 1

Ki, Ki =
1

2
Mi _ui � _ui +

1

2
_qi � Ji � _qi, ð23Þ

dW= d

ðð

S

W dS �
ðð

S

(f � du+ c � df)dS

�
ð

‘t

(t � du+m � df)ds�
XN

i = 1

(Fi � dui +Li � dqi):

ð24Þ

We introduce the kinematically admissible variations of translations and rotations: du, df, dui, and
dqi. On the external boundary ‘u, these new functions satisfy the boundary conditions

duj‘u
= 0, dfj‘u

= 0: ð25Þ

The compatibility conditions along interface ‘i (depending on the type of shell-inclusion interaction)
are

duj‘0
i
= dui + dqi × j(s)j‘0

i
, dfj‘0

i
= dqi, ð26Þ

duj‘00
i
= dui + dq

k
i × j(s)j‘00

i
, dfj‘00

i
= dq

k
i , ð27Þ

duj‘000
i

= dui: ð28Þ

We also assume the standard assumptions for the principle [38]:

dujt = t0
= dujt = t1

= 0, dfjt = t0
= dfjt = t1

= 0, ð29Þ

duijt = t0
= duijt = t1

= 0, dqijt = t0
= dqijt = t1

= 0, ð30Þ

where t0 and t1 are two time instants, t0\t1.
Calculating dH, we come to
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dH=

ðt1

t0

ðð

S

r _u � d _u+ d _u � rj1 � _f + _u � rj1 � d _f + d _f � rj2 � _f
� �

dS dt

+
XN

i = 1

ðt1

t0

Mi _ui � d _ui + _qi � Ji � d _qi

� �
dt

�
ðt1

t0

ðð

S

T(e, k) : de+M(e,k) : dk½ �dS dt

+

ðt1

t0

ðð

S

(f � du+ c � df)dS dt

+

ðt1

t0

ð

‘t

(t � du+m � df)dsdt

+

ðt1

t0

XN

i = 1

(Fi � dui +Li � dqi)dt:

Here by de and dk we denote the variations of strain measures:

de[ e(du, df) =rdu+P× df, dk[k(df) =rdf:

For brevity, we introduce the bilinear forms

BK( _u, _f; d _u, d _f) =

ðð

S

r _u � d _u+ d _u � rj1 � _f
�

+ _u � rj1 � d _f + d _f � rj2 � _f
�

dS,

BE(u,f; du, df) =

ðð

S

T(e, k) : de+M(e, k) : dk½ �dS,

BI ( _ui, _qi; d _ui, d _qi) =
XN

i = 1

ðMi _ui � d _ui + _qi � Ji � d _qiÞ,

and the linear forms

L(du, df) =

ðð

S

(f � du+ c � df)dS +

ð

‘t

(t � du+m � df)ds,

LI (dui, dqi) =
XN

i = 1

(Fi � dui +Li � dqi),

so dH takes the form
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dH=

ðt1

t0

½BK( _u, _f; d _u, d _f) + BI ( _ui, _qi; d _ui, d _qi)

� BE(u,f; du, df) + L(du, df) + LI (dui, dqi)�dt:

ð31Þ

Thus, the least action principle (22) takes the form

ðt1

t0

BE(u,f; du, df)dt

=

ðt1

t0

½BK( _u, _f; d _u, d _f) + BI ( _ui, _qi; d _ui, d _qi)

+ L(du, df) + LI (dui, dqi)�dt

ð32Þ

for all variations du, df, dui, and dqi satisfying equations (25)–(30). Integrating by parts, we get

dH=

ðt1

t0

ðð

S

r � T+ f� r€u� rj1 � €f
� �

� du
�

+ r �M+T× + c� rjT1 � €u� rj2 � €f
� �

� df
�

dS dt

+
XN

i = 1

ðt1

t0

�Mi€ui +Fið Þ � dui + �Ji � €qi +Li

� �
� dqi

h i
dt

+

ðt1

t0

ð

‘t

(t � du+m � df)dsdt

�
ðt1

t0

ð

∂S

(n � T � du+ n �M � df)dsdt = 0:

From this, by the standard procedure of the calculus of variations, we can obtain the equation of
motion (3) and (4), and the static boundary conditions (9)3 and (9)4. Using equations (26), (27), and
(28), we get also the dynamic conditions for rigid inclusions:

Mi€ui =Fi �
ð

‘
0
i

n � Tds, ð33Þ

Ji � €qi =Li �
ð

‘
0
i

n �M+ j(s)× (n � T)½ �ds, ð34Þ

Mi€ui =Fi �
ð

‘
00
i

n � Tds, ð35Þ
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Ji � €qi =Li �
ð

‘
00
i

n �M+ j(s)× (n � T)½ � � (I� l� l)ds, ð36Þ

Mi€ui =Fi �
ð

‘
000
i

n � Tds, Ji � €qi =Li, ð37Þ

which play a role of boundary conditions for the shell and simultaneously give us the motion equations
for the inclusions. Note that here Fi and Li are an external force and torque applied to ith inclusion,
whereas in equation (17) the same notation is used for resultant force and moments including interac-
tions with an environment.

4. The principle of virtual work and weak solutions

In order to introduce the weak setup for the dynamic problem under consideration, we introduce the
principle of virtual work as in Lebedev et al. [39] Let us note that we consider a Cauchy problem, that is,
the problem with initial data given at t = 0, whereas equation (32) is formulated for the BVP with condi-
tions given at two time instants, t = t0, t = t1. From now on, for simplicity we will use t0 = 0, t1 = T . The
expression of dH can be used as a basis for the weak setup, but we have to replace equations (29) and
(30) by conditions at a time instant t = T . 0:

dujt = T = 0, dfjt = T = 0, duijt = T = 0, dqijt = T = 0: ð38Þ

For initial BVPs, the principle of virtual work, and so the weak setup of the dynamic problem, for a
solution and arbitrary virtual quantities satisfying equation (38) is formulated as follows:

ðT

0

½BK( _u, _f; d _u, d _f) + BI ( _ui, _qi; d _ui, d _qi)

=

ðT

0

ðð
S

(T : de+M : dk)dS dt

+

ðT

0

L(du, df)� LI (dui, dqi)�dt

� BK v8,f8; dujt = 0, dfjt = 0

� �
+ BI vi8,vi8; duijt = 0, dqijt = 0

� �
,

ð39Þ

where du, df, dui, and dqi satisfy equations (25)–(28) and (38). Applying integration by parts similarly
to the previous section, from equation (39) we get the equations of motion (3) and (4), the natural
boundary conditions (9)3, (9)4, and (33)–(37), and the initial conditions (10)3, (10)4, (18)3, and (18)4.

The virtual work principle is a basis for introduction of weak solutions of the dynamic problem. Let
us note that here equation (39) includes a part of the initial conditions for the velocities, whereas the ini-
tial data for translations and rotations are treated as the ones which should be formulated explicitly.

Now for shortness, we introduce the notation as in Eremeev and Lebedev [34]: U= ((u,f),
u1, . . . , un,q1, . . . ,qN ) and, respectively, dU= ((du, df), du1, . . . , dun, dq1, . . . , dqN ). On the set of U
where (u, f ) are smooth functions satisfying boundary conditions (9)3 and (9)4, we introduce an inner
product defined by the energy terms for (u,f):

(U, dU)V =

ðð

S

(T : de+M : dk)dS: ð40Þ
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Definition 4.1. The completion of the set of elements U, where (u,f) are smooth vector functions satis-
fying geometric conditions (9)3 and (9)4, in the norm �k kV induced by the inner product (40) is called the
energy space V .

Note that for the perfect contacts, the deformation of the shell and the contact conditions define
uniquely all ui,qj.

In what follows, we use standard Sobolev’s W 1, 2 and Lebesgue’s L2 spaces; see the work by Adams
and Fournier, and Lions and Magenes [40,41] for more detail. In addition, for vector-valued functions
we use the notation u 2 (W 1, 2(S))3 iff each Cartesian component of u belongs to W 1, 2(S).

Clearly V is a Hilbert space. In Eremeyev and Lebedev [32,34], it is shown that if S is smooth,
Cartesian components of (u,f) pertain to space W 1, 2(S) and moreover the norm Uk kV is equivalent to
the norm of (u,f) in Sobolev’s space (W 1, 2(S))3 ×W 1, 2(S))3.

We also need the norm for U which is equivalent to the norm of space (L2(S))3 × (L2(S))3 × (R3)2n

related to the inertial terms of the problem. This norm is induced by the inner product

(U, dU)H = BK(u,f; du, df) + BI (ui,qi; dui, dqi):

By Sobolev’s theorem and the conditions on the boundary of inclusions and the shell, there is a con-
stant c0 independent of U 2 V such that

Uk kH ł c0 Uk kV :

In other words, the operator of imbedding of H to V is continuous that is appropriate for the theo-
rems in Lions and Magenes [41] for the equations of second order.

Now we can present the definition of the weak solution.

Definition 4.2. U 2 L2(½0, T �; V )
T

W 1, 2 (½0, T �; H) is called a weak solution of the dynamic problem for an
elastic micropolar shell with rigid inclusions if it satisfies equation (39) for any dU 2 L2(½0, T �; V ) such
that dUjt = T = 0 and it also satisfies the first initial conditions (10)1 and (10)2 in L2 sense, that is,

ðð

S

u(x, t)jt = 0 � u8(x)
� �2

dS = 0,

ðð

S

f(x, t)jt = 0 �f8(x)
� �2

dS = 0:

Let us suppose that

1. u8(x) and f8 2 W 1, 2(S) and satisfy (9)1 and (9)2, respectively;
2. v8(x), v8 2 L2(S);
3. f(x, t), c(x, t) 2 L2(QT ), t(s, t), m(s, t) 2 L2(BT ), where QT = S × ½0,T �, BT = ‘t × ½0, T �.

Under these assumptions and the assumptions on the shell geometry from Eremeyev and Lebedev [32]
and applying the results of Lions and Magenes [41], we can prove the following.

Theorem 4.3. There exists a weak solution in the sense of Definition 4.2 which is unique.

Proof. The proof follows the proof in Lions and Magenes [41]; also it almost mimics the one for an
clamped elastic membrane given in Lebedev et al. [39]. We omit this for brevity, but we should note
that both proofs are based on investigation of Faedo–Galerkin’s method for the problem and so simul-
taneously, as a result, we get a theorem on convergence of Faedo–Galerkin’s approximations to the
weak solution in space L2(½0,T �; V )

T
W 1, 2 (½0,T �; H). In a similar way, we can formulate an existence-

uniqueness theorem for non-perfect conditions for inclusions given by equations (20) and (21). For this,
similar to the procedure in the paper by Eremeyev and Lebedev [42], we should split solution U into
two parts. The first part describes rigid motions of the inclusions and another part is orthogonal in the
sense of space H to all the possible rigid motions. In this case, the rigid motions satisfy a system of
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ordinary differential equations, whereas the procedure for another part of the solution completely
repeats the one for the problem with perfect shell–inclusions contact.

5. Conclusion

Here, we have discussed the well-posedness of dynamic problems for linear micropolar shells with rigid
inclusions. We have considered three types of interactions between a shell and inclusions, including per-
fect contact and two types of non-perfect contact. The latter could be useful for modelling of gyroscopic
structures and metamaterial thin-wall structures. The system of governing equations includes PDEs and
ODEs that require a particular analysis. We formulated the principle of virtual work. Using it, we intro-
duce the corresponding energy space. Finally, the existence and uniqueness of weak solutions were
proven.

Let us note an interesting observation related to the equilibrium conditions for non-perfect contact.
It is known that a necessary condition for an equilibrium consists of vanishing of the total force and
total torque for any part of a structure under consideration. In other words, external forces and couples
should be self-balanced; see, for example, conditions given in Eremeyev and Lebedev [32] for a shell
with free boundary. Here, for an equilibrium of inclusions, we have to additionally consider the self-
balance conditions for each inclusion. Otherwise an inclusion with non-perfect contact could move
freely. As a result, for equilibrium of a shell with free boundary, the self-balance conditions consist of
condition for the shell and for each inclusion.
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[22] Awrejcewicz, J, Starosta, R, and Sypniewska-Kamińska, G. Complexity of resonances exhibited by a nonlinear

micromechanical gyroscope: an analytical study. Nonl Dyn 2019; 97(3): 1819–1836.
[23] Qatu, MS. Recent research advances in the dynamic behavior of shells: 19892000, part 2 —homogeneous shells. Appl

Mech Rev 2002; 55(5): 415–434.
[24] Andreev, AN, Stankewich, AI, Dyshko, AL, et al. Dynamics of thin walled structures with added masses (in Russian).

Moscow: MAI, 2012.
[25] Wan, M, Dang, XB, Zhang, WH, et al. Optimization and improvement of stable processing condition by attaching

additional masses for milling of thin-walled workpiece. Mech Syst Sig Process 2018; 103: 196–215.
[26] Miranda, EJP Jr, Nobrega, ED, Rodrigues, SF, et al. Wave attenuation in elastic metamaterial thick plates: analytical,

numerical and experimental investigations. Int J Solid Struct 2020; 204-205: 138–152.
[27] Cai, Y, Hui Wu, J, Xu, Y, et al. Realizing polarization band gaps and fluid-like elasticity by thin-plate elastic

metamaterials. Comp Struct 2021; 262: 113351.
[28] Ma, F, Wang, C, Liu, C, et al. Structural designs, principles, and applications of thin-walled membrane and plate-type

acoustic/elastic metamaterials. J Appl Phys 2021; 129(23): 231103.
[29] Steigmann, DJ. Mechanics and physics of lipid bilayers. In: Steigmann, DJ (ed.) The role of mechanics in the study of lipid

bilayers. Cham: Springer, 2018, pp. 1–61.
[30] Vorovich, II. Nonlinear theory of shallow shells, applied mathematical sciences, vol. 133. New York: Springer, 1999.
[31] Ciarlet, P. Mathematical elasticity: theory of shells, vol. III. Amsterdam: Elsevier, 2000.
[32] Eremeyev, VA, and Lebedev, LP. Existence theorems in the linear theory of micropolar shells. ZAMM 2011; 91(6):

468–476.
[33] Ghiba, ı̂, IDB, rsan, M, Lewintan, P, et al. The isotropic Cosserat shell model including terms up to: part II—existence of

minimizers. J Elast 2020; 142(2): 263–290.
[34] Eremeev, VA, and Lebedev, LP. On solvability of boundary value problems for elastic micropolar shells with rigid

inclusions. Mech Solid 2020; 55(6): 852–856.
[35] Eremeyev, VA, Cloud, MJ, and Lebedev, LP. Applications of tensor analysis in continuum mechanics. Hackensack, NJ:

World Scientific, 2018.

[36] Eremeyev, VA, and Pietraszkiewicz, W. Local symmetry group in the general theory of elastic shells. J Elast 2006; 85(2):

125–152.
[37] Pietraszkiewicz, W, and Eremeyev, VA. On vectorially parameterized natural strain measures of the non-linear Cosserat

continuum. Int J Solid Struct 2009; 46(11–12): 2477–2480.
[38] Berdichevsky, VL. Variational principles of continuum mechanics: I—fundamentals. Heidelberg: Springer, 2009.
[39] Lebedev, LP, Cloud, MJ, and Eremeyev, VA. Advanced engineering analysis: the calculus of variations and functional

analysis with applications in mechanics. Hackensack, NJ: World Scientific, 2012.
[40] Adams, RA, and Fournier, JJF. Sobolev spaces, pure and applied mathematics, vol. 140. 2nd ed. Amsterdam: Academic

Press, 2003.
[41] Lions, JL, and Magenes, E. Non-homogeneous boundary value problems and applications, vol. 1. Berlin: Springer, 1972.
[42] Eremeyev, VA, and Lebedev, LP. Existence of weak solutions in elasticity. Math Mech Solid 2013; 18(2): 204–217.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

