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Abstract

In this paper we discuss the constitutive relations for micropolar plates recently obtained by Altenbach and

Eremeyev. We pay particular attention to their relation for the resultant drilling stress couple and compare it with

that used so far in the statically and kinematically exact nonlinear six-parameter shell theory. Using the results of

Altenbach and Eremeyev, we present bounds on values of the constitutive parameter tα  from the six-parameter 

shell theory model. Some representative numerical simulations show how the drilling stiffness tα  affects the 

FEM results. 

1. Introduction

In an interesting paper [1] pursued an important problem of constitutive relations for micropolar plates. 

While the kinematics of the micropolar continuum is rather well-described (see for instance [2] and references 

given there) the problem of corresponding material laws is still discussed in the literature. Some of the recent 

advances concerning micropolar hyperelasticity in planar case may be found e.g. in [3] and references given 

therein. 

Altenbach and Eremeyev [1] obtained their governing equations using the direct approach. They 

compare the constitutive relations of micropolar plate with the constitutive equations used in the six-parameter 

nonlinear theory of shells (referred here as the shell constitutive equations) used, among others, in [5-9]. 

Particularly interesting seems to be the constitutive relation for the drilling couple resultant. 

The aim of this study is to discuss the comparison further.  The principal assumption of this paper is that 

the constitutive model from [1] is equivalent to shell constitutive equations from e.g. [5-9]. 

We express the shell constitutive equations in terms of those proposed in  [1]. We discuss the conditions 

of equivalence between these two models and show relations between the material constants. Finally, we present 

some representative numerical examples associated with constitutive relation for the resultant drilling stress 

couple and discuss how values of the constitutive parameter tα  may affect the FEM numerical results. In 

particular we introduce the notion ‘ tα -locking’ to describe the situations where, in membrane dominated 

deformations, large values of tα  cause too stiff responses in FEM analysis. 

2. Comparison

2.1. General remarks

Throughout the text an equation number preceded by AE designates the respective equation from the 

source paper [1].  
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Equation AE11 defines the surface strain energy density of an isotropic micropolar plate. The 

constitutive equations for the force tensor and the moment tensor components follow then from AE12 and AE13, 

respectively. Rewriting equations AE12 and AE13 in matrix form (see Appendix 1 of this paper) leads to 
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Two blocks of equation (1) are written in notations used in [5-8] i.e. in terms of components of the strain vector 

( , , ,αβ α αβ αε ε κ κ , 1, 2α = ) and corresponding energy conjugated components of the resultant force and couple 

vectors ( , , ,αβ α αβ αN Q M M ), respectively. The constants iα  and iβ  are defined by the equations AE45. 

Following Cowin [10] (compare also [11-12]  we set 1
2μ μ κ≡ −  and we rewrite equations AE45 as 
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 31
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 4β γh= . (9) 

It is seen that to fully describe the above coefficients six elastic constants are necessary; (the same number of 

elastic constants has been identified for shells in [13]). Two of them are classical Lame parameters λ  and μ  (or 

equivalently the technical constants E  and v ). The remaining four constants are interconnected with four scalar 

parameters defined as follows (compare AE, Table 1): 
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Since the equation (1) is decoupled, for sake of brevity we consider here the equivalence of blocks of the 

generalized strains  ,αβ αε ε  conjugated with the stress resultants ,αβ αN Q , the and generalized curvatures and 

,αβ ακ κ  conjugated with the stress couple resultants ,αβ αM M . 

 

2.2. Force stress resultants 

From AE16 follows the equivalence between the constants iα  from [1] and that used in constitutive relations 

considered in  [5-8]. The equivalence is recapitulated in Table 1.  

 

Table 1. Relations between constants iα  of Altenbach & Eremeyev and Chróścielewski et al. 

Altenbach & Eremeyev [1]  Chróścielewski et al [5][6][7][8]  
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It may be noted that the factor 1
2  appears in the relations (17) which follows from the fact that the shell theory 

is formulated in terms of engineering shear strains.  

 The value of the shear correction factor sα  has been a topic of numerous analyses. Its physical sense on 

the grounds of mechanics of beams, plates and shells is well recognized. Typical values of sα   are known and 

oscillate about 1. For plates and shells, sα  varies between 2 /12π  to 1 (usually 5
6sα = , cf. for instance [14], 

[15]). For detailed information cf. for instance [16]. 

From (15) it is seen that 2α  defined by (3) vanishes in the shell constitutive equations used in [5-8]. In 

connection with (3) and (10) it may easily be shown that 

 2
20

2
α N= ⇔ = . (18) 

With (18) we may generalize the constants in the shell constitutive equations for the stress resultants by writing 

them in terms of polar ratio (10). Starting from (1) and using the expressions (14), (15), (16), (17) we show that 
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Specifying (19) for 2
2

N = , we obtain 

 

2 2

2 2

2
2 2

2

11
1 1 11 11

22
22 221 1

12
12 12

21
21

1
1

2
2

(1 ) 02 0
0 (1 )0 2

(1 )2
(1 )2

vEE
v v

vE E
v v

NN

ε εC CvN
ε εCv CN
ε εC vN μh
ε C vN μ
ε C vQ μ
ε C vQ μ

− −

− −

=
=

                        −    = =       −           −        −         

21

1

2

ε
ε
ε

 
 
 
  
 
 
 
 
  

. (20) 

Thus we have shown that the shell constitutive equations for the stress resultants used in [5-8] are equivalent to 

the constitutive equations of the micropolar plates from [1] by letting 2
2

N = . 

 

2.3. Stress couple resultants  

The equation AE16 furnishes also equivalence relations for the part of constitutive equations associated 

with the couple resultants. These relations are repeated here in Table 2. 

 

Table 2. Relations between constants iβ  of Altenbach & Eremeyev and Chróścielewski et al. 

Altenbach & Eremeyev [1] Chróścielewski et al. [5-8]  
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Rewriting the relation (23)1 from [1] in terms of (11) we obtain the following relation:  
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Next comparing the equations (24) and using (11) we arrive at 
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From the relations (22) it follows that  
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Finally, the matrix form of (1) for the couple resultants is 
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By appealing now to (25) and (33) equation (35) may be rewritten as 
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which is exactly the same as that used in e.g. [5-8]. 
 

3. Numerical examples 
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Using in (27) the relation (26) we arrive at the fundamental formula for the coefficient tα  which is the 

necessary condition of the equivalence between Altenbach an Eremeyev [1] constitutive relations and those of 

Chróścielewski et al. [5-8]  

 2
1t

vα
v

−
=

−
 (37) 

Equation (37) represents a hyperbola, depicted in Fig. 1, bounded by two asymptotes: 1tα =  and 1v = . Relation 

(37) shows clearly that tα  is material constant dependent on Poisson’s ratio. It should not be confused with 

‘penalty multiplier’ as in [17] or [18].  

From (37) it follows that for typical values [0;0.5]v∈  one obtains [2,3]tα ∈ . The values of tα  so 

estimated are greater than those usually used in numerical simulations presented, among others, in [5-8]. 

Therefore in structures where the membrane stiffness plays an important role in deformation we may expect 

some tα -locking. This issue is pursued further in this section. Summarizing some results from [5-8] we present 

here representative examples that show the influence of tα  on numerical results. The analysis is confined to the 

linear range of deformations. To avoid discussions about a mesh convergence, spurious zero-energy forms or 

satisfaction of a patch-test, we use 16-node CAM finite elements [5-8] with full integration (FI) in all numerical 

simulations. 

 
Fig. 1. Nonlinear dependence of tα  on ν  

3.1. L-shaped frame in plane stress  

Consider an L-shaped frame in plane (micropolar) stress as shown in Fig. 2. This example has been 

studied, among others, in [7] and is motivated by the cantilever L-shaped plate studied, among others, in [19], 

[20]. The structure is clamped at the bottom end and is loaded with the moment M  applied at the point (a). 

Since the moment M  is energy conjugated with drilling degree of freedom this example can not be solved using 

standard plane stress formulations ot the standard five-parameter Reissner type shell theory. In computations, 

following [19] we use the data: 240L mm= , 30b mm= , 0 0.6h mm= , 271240 /E N mm= , 0.31ν = . The value 
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of the loading moment 0.001 refM M= ⋅ , where 2 1258914.7
2ref
πEJM Nmm

L
= =  is found assuming the pure 

bending in x y−  plane and the bending stiffness ( )yEI s const= . 

 
Fig. 2. L-shaped frame, concept of discretization, geometry and loads 

 

In comparison with the results presented in [7], we use finer discretization: 4 elements (16-node CAM, FI) along 

the shorter edge of the frame and 40 elements along longer edge plus additionally 16 elements for the corner 

zone. This amounts to the total of 3328 nodes and 9945 active equations. Following the approach presented in 

[5-7] we have studied the influence of tα  on the values of displacements of the point (a). The results are 

presented in Fig. 3. The curves are normalized by the values of displacements for 0.01tα =  given in Table 3. For 

comparison, we also present the values due to tα  found from (37) for 0.31ν = . 

 

 
Fig. 3. L-shaped frame, influence of tα  on values of displacements of the point (a) 

 
 

Table 3. L-shaped frame, values of displacements  

 u  [mm] v  [mm] ψ  
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0.01tα =  1.10454   0.377792  0.00617377  

2.449tα =  (37) 0.31ν=  1.09657  0.377628   0.00615710  

 
3.2. Simply supported channel beam 

 A simply supported channel beam loaded with uniformly distributed load [7] (cf. Fig. 4) can be traced 

back to the early work of Lee and Harris [21] (see also [22] for large displacement elasto-plastic analysis). The 

geometry is described by 36L =  in, 2a =  in, 6b =  in, 0.05h =  in. The load is 100p =  lb/in while the 

material constants are 710E =  lb/in and 0.333v = . In computations we exploit symmetry of the structure. A 

mesh consisting of 4 elements (16-node CAM, FI) for each flange, 8 elements for web and 24 elements for half 

of the beam length has been used, which yields 3577 nodes and 21240 active equations. In computations we 

have studied displacements of the point (a). Similarly to the previous example, the reference values of 

displacements for 0.01tα =  are presented in Table 4 while Fig. 5 shows the respective curves, normalized by 

values for 0.01tα =  given in Table 4. 

 
Fig. 4. Simply supported channel beam, geometry and load 

 
Table 4. Simply supported channel beam, values of displacements of the point (a) 

 u  [in] w  [in] 

0.01tα =  0.198134  0.369642  

2.499tα =  (37) 0.333v=  0.197927  0.369434  
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Fig. 5. Simply supported channel beam, influence of tα  on values of displacements of the point (a). 

 

 

3.3. Three intersecting plates 

 Following [23] we analyze the static version (cf. Fig. 6) of the challenging problem of dynamics of 

three intersecting plates proposed in [24]. The curious question of this example is that the results reported in the 

literature are considerably different, though the same geometry and material seem to be used, see discussion in 

[9]. The material properties are 72 10E = × , 0.25ν = . In comparison with original formulation we modify here 

the thickness of the plates to 0 0.5h const= = . The load is 1P = . The mesh used in computations consisted of 4 

elements (16-node CAM, FI) for each shorter edge of the plate and 12 elements along the longer edge. It yields 

1417 nodes and 8346 active equations. The reference displacements and rotations of point the (a) are set in Table 

5, while Fig. 7 portrays the dependence of computed values on tα . The graph is normalized by values of 

(generalized) displacements for 0.01tα =  given in Table 5 

 

Table 5. Three intersecting plates, values of displacements of the point (a) 
 u  v  w  1φ  φ  3φ  

0.01tα =  47.2857 10−− ×  

31.505 10−×  

41.97 10−− ×  

41.2919 10−×  

57.6008 10−×  

41.6447 10−− ×  

2.3(3)tα =     (37)  0.25ν= ) 
47.28568 10−− ×

 

31.50495 10−×  

41.97004 10−− ×  

41.2919 10−×  

57.6008 10−×  

41.6447 10−− ×  
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Fig. 6. Three intersecting plates, geometry and loads 

 

 
Fig. 7. Three intersecting plates, influence of tα  on values of displacements of the point (a). 
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4. Conclusions 

 

The present and other studies from [5-7] indicate that for 10 1010 10tα− +≤ ≤  there exist three clearly 

pronounced ranges of influence of tα . In the most important from the computational viewpoint 

10[10 ; 0.01]tα −∈ ≈ ,  tα  does not affect the deformation and differences in computed deflections are negligible.  

In the transient range 7[0.1;10 ]tα +∈  with the growth of tα  the values of displacements tend to decrease. 

This effect is clearly observable already for 10tα ≈ . Therefore the value of tα  found from (37) becomes almost 

the upper bound of the transient range. This bound depends on the analyzed structure. The last range may be 

described as 710tα +> . 

In the two latter ranges, a quantitative different character of influence of tα  on the overall behavior of the 

structure is visible. In case of membrane dominated situations (example 1 and 2) the values of 310tα +>  cause 

vanishing of the deformation. Such case is referred to as the tα -locking. In case of bending dominated case 

(example 3) for 310tα +>  there appears a stabilization of displacements on slightly lower level when compared 

with the solutions from the first range. 

The above results support the main conclusions: 

1) The presented results confirm that the Altenbach and Eremeyev model and the shell constitutive 

equations are equivalent under some values of parameters. Yet, the search for constitutive models for 

micropolar plates and shells should still be pursued so that the resulting value of tα  would drop below 3 

(or even below 1), at least for materials that do not exhibit micropolar characteristics. 

2) Assuming that the equivalence between two models holds, it is possible to assess the values of four 

material constants of the micropolar plate based only on E  and v . 

3) The presented numerical simulations show that the bounds on the value of tα  result in almost ‘locked’ 

solution. Since the observed effect is not strictly caused by FEM methodology we propose to refer to it 

as to tα -locking.  
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Appendix 1. Equation Section (Next) 

In what follows all vectors and tensors are referred to Cartesian frame of reference with base vectors ke , 

1, 2,3k = . Definition of the linear strain measures (AE7) is 

 s= ∇ + ×ε u A θ , s= ∇κ θ  (A1) 

Here 1 1 2 2(...) (...), (...),s∇ = ⊗ + ⊗e e  and 3 3 1 1 2 2k k= ⊗ − ⊗ = ⊗ + ⊗A e e e e e e e e . The operation ×A θ  is defined 

as follows (Eremeyev, private communication) 

 

1 1 2 2 1 1 2 2 3 3

1 1 1 1

( ) ( )θ θ θ

θ

× = ⊗ + ⊗ × + +

= ⊗ ×

A θ e e e e e e e

e e e 2 1 1 2 3 1 1 3

1 2 2 1 2 2 2 2

θ θ

θ θ

+ ⊗ × + ⊗ ×

= ⊗ × + ⊗ ×

e e e e e e

e e e e e e 3 2 2 3

2 1 3 1 2 3 3 2 1 1 2( )

θ

θ θ θ

+ ⊗ ×

= ⊗ − ⊗ + ⊗ − ⊗

e e e

e e e e e e e e

 (A2) 

The displacement gradient in the plane is  

 1 1 2 2 1 1 1 1 2 1 2 3 1 3 2 1 2 1 2 2 2 3 2 3, , ( , , , ) ( , , , )s u u u u u u∇ = ⊗ + ⊗ = ⊗ + + + ⊗ + +u e u e u e e e e e e e e  (A3) 

Therefore the equation (A1) in components read 

 
1 1 2 1 3 3 1 2

1 2 3 2 2 3 2 1

, , ,
( ) , , ,

0 0 0
ij

u u θ u θ
u θ u u θ

− + 
 = + − 
  

ε , 
11 21 31 1 1 2 1 3 1

12 22 32 1 2 2 2 3 2

, , ,
( ) , , ,

0 0 0 0 0 0
ij

κ κ κ θ θ θ
κ κ κ θ θ θ
   
   = =   
      

κ  (A4) 

The term  

 ( )s= = ∇ + ×ε εA u A θ A  (A5) 

is evaluated in the following steps.  

 

( )( )
( )( ) ( )( ) ( )( ) ( )( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 2 2 1 1 2 2

1 1 1 1 1 1 2 2 2 2 1 1 2 2 2 2

1 1 1 1 1 2 1 2 2 1 2 1 2 2 2 2

1 1 1 1 2 1 1 2 1 2 2 1 2 2 2 2

( ) , ,

, , , ,

, , , ,

, , , ,

s

u u u u

∇ = ⊗ + ⊗ ⊗ + ⊗

= ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗

= ⊗ + ⊗ + ⊗ + ⊗

= ⊗ + ⊗ + ⊗ + ⊗

u A e u e u e e e e

e u e e e u e e e u e e e u e e

u e e e u e e e u e e e u e e e

e e e e e e e e

 (A6) 

 

 

( )( )
( )
( )
( )

2 1 3 1 2 3 3 2 1 1 2 1 1 2 2

1 2 3 1 1 2 3 2 2

2 1 3 1 1 1 3 2 2

3 2 1 1 1 2 1 2 2 1 2 1 1 1 2 2 2

1 31 2 1 32 2

( ) ( )

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )

( ) (

θ θ θ

θ

θ

+θ

θ δ δ

× = ⊗ − ⊗ + ⊗ − ⊗ ⊗ + ⊗ =

= − ⊗ ⊗ + ⊗ ⊗

+ ⊗ ⊗ + ⊗ ⊗

⊗ ⊗ + ⊗ ⊗ − ⊗ ⊗ − ⊗ ⊗ =

= − ⊗ + ⊗

A θ A e e e e e e e e e e e e

e e e e e e e e

e e e e e e e e

e e e e e e e e e e e e e e e e

e e e( ) ( )
( )
( )

2 2 31 1 1 32 1 2

3 11 2 1 12 2 2 21 1 1 22 1 2

3 2 1 1 2

) ( ) ( )

( ) ( ) ( ) ( )

θ δ δ

θ δ δ δ δ

θ

+ ⊗ + ⊗ +

+ ⊗ + ⊗ − ⊗ − ⊗ =

= ⊗ − ⊗

e e e e e

e e e e e e e e

e e e e

 (A7) 

Finally (A5) becomes 
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1 1 2 1 3 11 12

1 2 3 2 2 21 22

, , 0 0
( ) , , 0 0

0 0 0 0 0 0
ij

u u θ ε ε
u θ u ε ε

−   
   = + =   
      

ε  (A8) 

The term  

 3 3 3 3( ) ( )( )s⊗ = ∇ + × ⊗ε e e u A θ e e   (A9) 

is 

 3 3 1 1 2 2 3 3 1 1 3 3 2 2 3 3

1 3 1 3 2 3 2 3 3 1 1 3 3 2 2 3

( ) ( , , )( ) ( , )( ) ( , )( )
, ( ) , ( ) , ( ) , ( )

s

u u
∇ ⊗ = ⊗ + ⊗ ⊗ = ⊗ ⊗ + ⊗ ⊗

= ⊗ + ⊗ = ⊗ + ⊗
u e e e u e u e e e u e e e u e e

u e e e u e e e e e e e
 (A10) 

while 3 3( )( )× ⊗A θ e e  reads 

 

( )3 3 2 1 3 1 2 3 3 2 1 1 2 3 3

1 2 3 3 3 2 1 3 3 3

3 2 1 3 3 3 1 2 3 3

1 33 2 3 2 33 1 3 3 13 2 3 3 23 1 3

1 2 3 2 1 3

( )( ) ( ) ( )
)( ) )( )

( )( ) ( )( )
) ) ( ) ( )

) )

θ θ θ
θ θ

θ θ
θ δ θ δ θ δ θ δ
θ θ

× ⊗ = ⊗ − ⊗ + ⊗ − ⊗ ⊗

= − ⊗ ⊗ + ⊗ ⊗ +
+ ⊗ ⊗ − ⊗ ⊗
= − ⊗ + ⊗ + ⊗ − ⊗
= − ⊗ + ⊗

A θ e e e e e e e e e e e e
(e e e e (e e e e
e e e e e e e e

(e e (e e e e e e
(e e (e e

 (A11) 

Ultimately (A9) is 

 ( )
3 1 2 31

3 3 3 2 1 32

0 0 , 0 0
( ) 0 0 , 0 0

0 0 0 0 0 0
ij

u +θ ε
u θ ε

   
   ⊗ = − =   
      

ε e e  (A12) 

Utilizing (A6), =κ κA  is  

 ( ) ( ) ( ) ( )1 1 1 1 2 1 1 2 1 2 2 1 2 2 2 2, , , ,θ θ θ θ= ⊗ + ⊗ + ⊗ + ⊗κA e e e e e e e e ,    (A13) 

and  

 
1 1 2 1 11 12

1 2 2 2 21 22

, , 0 0
( ) , , 0 0

0 0 0 0 0 0
ij

θ θ κ κ
θ θ κ κ
   
   = =   
      

κ  (A14) 

Similarly, based on (A10), 3 3( )⊗κ e e  reads 

 3 3 31 1 3 32 2 3( ) ( ) ( )κ κ⊗ = ⊗ + ⊗κ e e e e e e  (A15) 

and 

 ( )
3 1 31

3 3 3 2 32

0 0 , 0 0
( ) 0 0 , 0 0

0 0 0 0 0 0
ij

θ κ
θ κ

   
   ⊗ = =   
      

κ e e  (A16) 
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