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ABSTRACT 

The SARS-CoV-2 virus, which has emerged as a Covid-19 pandemic, has had the most 

significant impact on people's health, economy, and lifestyle around the world today. In the 

present study, the SARS-CoV-2 virus is mechanically simulated to obtain its deformation and 

natural frequencies. The virus under analysis is modeled on a viscoelastic spherical structure. 

The theory of shell structures in mechanics is used to derive the governing equations. Whereas 

the virus has nanometric size, using classical theories may give incorrect results. 
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Consequently, the nonlocal elasticity theory is used to consider the effect of interatomic 

forces on the results. From the mechanical point of view, if a structure vibrates with a natural 

frequency specific to it, the resonance phenomenon will occur in that structure, leading to the 

destruction of the structure. Therefore, it is possible that the protein chains of SARS-CoV-2 

would be destroyed by vibrating it at natural frequencies. Since the mechanical properties of 

SARS-CoV-2 are not clearly known due to the new emergence of this virus, deformation and 

natural frequencies are obtained in a specific interval. Researchers could also use this 

investigation as a pioneering study to find a non-vaccine treatment solution for the SARS-CoV-

2 virus and various viruses, including HIV. 

Keywords: SARS-CoV-2; Frequency analysis; Spherical structure; Viscoelastic property; 

Semi-analytical polynomial method. 

1. Introduction 

 Coronaviruses are relatively old viruses that were first identified in 1874 as infectious 

bronchitis viruses in birds. At the beginning of the current century, the Coronavirus in East and 

West Asia was seen. Acute Respiratory Syndrome (SARS) infected more than 8000 people and 

killed 774 people between 2002 and 2003 (Weiss and Navas-Martin, 2005). In the following 

years, the Middle East Respiratory Syndrome Coronavirus (CoV-MERS or 2012-nCoV) 

became the cause of severe lower respiratory tract disease, which has spread to humans in the 

Middle East, causing 858 deaths 2494 infections (Assiri et al., 2013). In late 2019, a new 

coronavirus nominated as SARS-CoV-2, which causes a severe respiratory disease called 

Covid-19, appeared in Wuhan (Velavan and Meyer, 2020). Coronaviruses belong to the 

Coronaviridae family, SARS-CoV, MERS-CoV, and SARS-CoV-2 pathogens are found in this 

family. These viruses infect many mammals, including bats, dogs, gulls, wolves, and humans. 

All of these viruses lead to respiratory disorders of humans being. SARS-CoV-2 is an RNA 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


virus with approximately 80-160 nm and a genomic 27-35 kb size, which causes COVID-19 

(Şahin, 2020). The viral infection is usually associated with upper respiratory tract 

inflammation, fever, headache, and cough. Infection with SARS-CoV and MERS-CoV can be 

asymptomatic in the early stages but can cause pneumonia, kidney failure, and even death in 

the later stages. The immune response is essential to controlling and fighting the coronavirus 

(Jin et al., 2020). 

Furthermore, immune system dysfunctions can lead to immunopathology and death. A 

further understanding of how the immune system functions against the coronavirus can 

effectively control pneumonia. Chemotactic factors are essential for the immune response 

against the virus because they play a role in bringing leukocytes into the lungs (Stoll et al., 

2018). Any change in these factors can cause the immune system to malfunction. Defects or 

abnormalities in the immune system can increase viral replication (Bansal et al., 2012). 

Moreover, if the immune system becomes overactive, it can damage tissues. 

Since this virus has become a global problem, new and effective treatments are needed 

to improve patients and reduce its incidence. Of the most effective therapies for improving and 

treating this disease is using drugs with small molecular structures that usually work based on 

the inhibition of viral enzymes (Ma et al., 2012; Prajapat et al., 2020; Sirsi and Borden, 2014; 

Stoll et al., 2018). These include DNA and RNA polymerase, viral protein glycosylation, virus 

assembly, viral particle transport, virus release, and protease inhibitors to fight the virus, 

including antiviral drugs, anti-malarial drugs, anti-HIV drugs, anti-inflammatory drugs, and 

corticosteroids. Antiviral drugs use three mechanisms to counteract the virus, including 

inhibiting virus replication, inhibiting ion channels, and inhibiting serine protease. The 

therapeutic effect of drug chaperones, which promote the proper folding of proteins in the 

endoplasmic reticulum, is considered an endoplasmic reticulum stress reducer and suppresses 
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cellular dysfunction, inflammation, and apoptosis, and therefore represents a promising 

therapeutic strategy of Covid-19 (Aoe, 2019; Mirabelli et al., 2020). 

Psychiatrists and medical professionals gradually turned their attention to vibration 

methods to create therapeutic and medical effects in medical practice, i.e., crushing kidney 

stones, psychiatry, physical therapy, and sports (Bills et al., 2019; Boyd-Brewer, 2003; Diniz et 

al., 2002; Fu et al., 2013). They may be utilized to transmit information among deaf people. 

Magnetic exciters can produce waves with a frequency of 1 to 100 Hz, which depending on the 

frequency type, can have excitatory or inhibitory effects. Low frequencies (less than or equal to 

1 Hz) have inhibitory effects, and higher frequencies (more than 1 Hz) have stimulatory effects 

on neurons. There are many medical applications of low/high-frequency human treatment. 

Transcortical Magnetic stimulation (TMS) is a safe and non-invasive method that affects the 

stimulated area by sending magnetic waves to the cortical activity and making changes in the 

level of glucose and neurotransmitters' activity. Diathermy is a physiotherapeutic procedure 

consisting of local heating of tissues under the tension of a strong electromagnetic field, 

contributing to muscle relaxation and relieving pain sensations (de Kleer, 1986; Ziemann, 

2004). Furthermore, the electromagnetic field finds particular application in oncology. One of 

the basic principles is radiotherapy, which irradiates the patient with radiation (e.g., X-rays or 

gamma rays) to reduce the tumor’s size and destroy cancer cells. 

Additionally, electromagnetic waves are used in diagnostics. One of the best known is X-

ray examinations (X-rays), which irradiate a specific body area with X-rays (Domenyuk et al., 

2018). The same principle is also used for computed tomography and its more advanced form - 

positron emission tomography (PET), which detects and identifies neoplastic cells. Similar to 

computed tomography, magnetic resonance imaging (MRI) works with the difference that 

instead of x-rays, it employes radio waves and a magnetic field. 
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However, there is a lack of study of virus treatment using engineering methods, such as 

electromagnetic fields. Mirtskhulava et al. (1995) performed an investigation of mice with an 

intranasal injection of the H1N1 virus. They treated them with a 2 kHz pulsed electromagnetic 

field therapy (PEMF) at 1 μT, 10 μT, and 100 μT for 7 days within 30 minutes per day. 

Comparison to a control group has shown significant results. The control group virus titers 

increased from 800 to 3200 after three and five days, respectively. After the seventh day, the 

number falls to 1600. For comparison in the groups treated with PEMF, the number of virus 

cells after not all curation exceeded 400 and 800 for 10, 100 μT groups and 1 μT group, 

respectively. 

Pica et al. (2006) performed a study on extremely low-frequency electromagnetic fields 

(ELF-EMF) and their influence on oncogenic viruses. In this study, Kaposi's sarcoma-

associated with herpesvirus (KSHV or HHV-8) has been exposed to the effects of 1 mT, 50 Hz 

sine waves, for 24-72 h. After total exposure under ELF-EMF, the viral progeny was formed 

mainly consisting of defective viral particles. 

Since Covid-19 is a novel viral infection, there are no effective prevention methods for 

spreading the virus. Currently, only vaccination and drugs are considered therapeutic strategies. 

On the other hand, Pawluk (2020) considers the excellent effect of PEMF as prevention in the 

incubation period and the last phase of COVID-19 infection - healing and repairing damaged 

tissues. Wierzbicki et al. (2021) investigated the resonant and transient harmonic vibrations of 

the Coronavirus family. 

The absence of Covid-19 disease’s complete treatment and emergency medicine 

availability is now the main undergoing problem. The first approach to help infected people get 

healthy was to use a medicine invented for another virus, such as Ebola or HIV. A group of 

scientists at the Allergy National Institute and Infectious Diseases (US National Institutes of 
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Health) (de Wit, 2020) reported a small molecule-based drug called Remdesivir. The drug, 

previously formulated to treat Ebola, can successfully prevent and treat MERS in the monkey 

animal model. It was also reported positive results based on the drug's in vitro and in vivo trials 

on SARS and MERS. Accordingly, a clinical trial using the drug in 270 patients having Covid-

19 was performed in China with mild to severe symptoms. As a result, this drug is mentioned 

as one of the appropriate medicines to reduce this virus's side effects. Another clinical study 

using this drug on 53 patients showed that this drug reduced oxygen demand in 68% of patients 

with Covid-19 (Grein et al., 2020). 

Preliminary results (Beigel et al., 2020) of this clinical trial indicate that the use of a 10-

day course of Remdesivir shows better clinical outcomes than placebo in the treatment of 

hospitalized patients with Covid-19. Favipiravir is the first approved new corona drug in China. 

Favipiravir showed mild side effects after clinical trials in people with Covid-19 (Dai et al., 

2020). 

Gautret et al. (2020) performed a clinical study on 42 patients with Covid-19, including 

26 patients treated with hydroxychloroquine and 16 patients who did not take any medicine. 

Within six days of follow-up, the group that took the drug improved by 70%. Only when 

hydroxychloroquine is combined with azithromycin does it provide 100% improvement after 

six days.  

Nowadays, careful analysis of mechanical behavior is essential to design and increase 

the reliability of nanostructures. Vibrations of nanostructures such as nanosheets are significant, 

and several theories and methods have been developed to explain the scale parameter on the 

vibrational behavior of nanosheets. Most classical theories of the mechanics of continuous 

environments are based on hyperelastic structural relationships that assume the stress at any 

point is a function of the strains at that point. The nonlocal theory first proposed by Eringen 
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states that the stress of any point is a function of the strain field of that point and a function of 

the strain of all continuous points in the media, see. (Eringen, 1983, 2002; Eringen and Edelen, 

1972) and reference therein. In recent years, Eringen's nonlocal theory has been used to solve 

nanostructure problems. Examination of the results indicates that Eringen's theory of nonlocal 

elasticity has good accuracy. Compared with the classical theory of continuum mechanics, 

Eringen's approach can assume the large nanosized structures' behavior without many 

complicated equations. Eringen investigated the vibrational behavior of nanosheets using 

nonlinear continuous environment models. He also considered the small-scale effect by 

introducing a new parameter which is named the scale parameter. This theory has been 

extensively tested for the behavior of 1D nanostructures, i.e., nanorod, nanobeams, and carbon 

nanotubes subjected to bending, buckling, and vibration (Heireche et al., 2008; Murmu and 

Pradhan, 2009; Şimşek, 2011). What is more, accurate results prediction of nanostructures 

involves the small-scale effect consideration, as using local theories over-predicts the results.  

According to the recent research mentioned in the literature review, there is no study on 

the frequency analysis of SARS-CoV-2 cells in nanoscale. The natural frequency of SARS-

CoV-2 cells following Eringen's nonlocal elasticity theory is evaluated in this study. 

Furthermore, the governing equations are obtained by applying the shell theory of structures 

and considering the virus's body as a spherical structure. To get the natural frequencies of the 

SARS-CoV-2 virus, the derived dynamic equations are computed. Additionally, according to 

mechanics, the resonance phenomenon will occur at the natural frequencies of the structure. 

Moreover, it could cause the cell's protein chains to be destroyed. In this study, natural 

frequencies are investigated in a particular range due to the unknown mechanical properties of 

SARS-CoV-2. This study is preliminary and pioneering to achieve the non-vaccine medical 

treatment against viruses like the SARS-CoV-2 and, i.e., HIV. 
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2. Virus modeling 

In this section, we will try to extract the governing equations of a spherical structure. In 

fact, the spherical geometric shape of the modeled state is a viral structure with a spherical 

appearance, which can be seen in Fig. 1. In the literature, there are some recent studies on the 

mechanical analysis of spherical shells (Audoly and Hutchinson, 2020; Sim et al., 2021; Yan et 

al., 2020; Yin et al., 2021). Fig. 1 shows the structure of the SARS-CoV-2 virus; the components 

can be seen in the figure. The geometric shape of the virus in Fig. 1 can be simulated with a 

very good approximation to a complete spherical structure in Fig. 2. In Fig. 2, the parameters 

ℎ, 𝑅, and 𝑘 are the thickness, radius, and stiffness coefficient of the elastic foundation (simulated 

here as the effect of 𝑅𝑁𝐴 on the deformation of the outer wall of the virus). The impact of the 

foundation is considered as a linear elastic spring. The governing dynamic equations can be 

obtained with a spherical viral model, which will be discussed in detail below. 
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Fig. 1. Schematic view of SARS-CoV-2 virus 

 

Fig. 2. Simulating the virus with a spherical structure and defining the coordinate 

system 

3. Spherical coordinate system 

Given that a spherical geometric shape model the viral structure, the best coordinate 

system that can be used to obtain the governing equations is the spherical coordinate system. In 

the spherical coordinate system, changes in the three principal directions 𝑟, 𝜑, and 𝜃 are 

considered. The two spherical and Cartesian coordinate systems can be converted to each other 

with the following equations (0 < 𝜑 < 180°, 0 < 𝜃 < 360°). 

{

𝑥 = 𝑟 sin𝜑 cos 𝜃
𝑦 = 𝑟 sin𝜑 sin 𝜃
𝑧 = 𝑟 cos𝜑
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 (1) 

By performing mathematical calculations, the gradient vector according to the spherical 

coordinate system is introduced as the following equation. 

�⃗� Spherical = [
𝜕

𝜕𝑟
�̂�𝑟

1

𝑅

𝜕

𝜕𝜑
�̂�𝜑

1

𝑅 sin𝜑

𝜕

𝜕𝜃
�̂�𝜃] 

 (2) 

Given that the structure of the virus is entirely spherical (𝜃 = 360°) and also the 

properties of the constituent material are uniform, there will be no changes in the direction of 

𝜃. In addition, the displacement vector of an arbitrary point on the structure can be considered 

as the following equation. 

�⃗⃗� = [𝑈𝑟�̂�𝑟 𝑈𝜑�̂�𝜑 𝑈𝜃�̂�𝜃] 

 (3) 

Also, the radius of the virus is considered to be approximately constant and equal to 𝑅, as 

a result, the change in the direction of 𝑟 is equal to zero. 

Consequently, it is observed that there will be only changes in the direction of 𝜑, and 

therefore it is predicted that due to the existence of only one variable in the obtained equations, 

the differential equations are ordinary (without considering the time variable). 

4. Stress and strain field 

According to the definition of strain tensor as a general relation, the following 

components of strain tensor can be obtained for the structure of the virus according to the 

following equations. 

휀⃡ =
1

2
[𝛻�⃗⃗� + 𝛻�⃗⃗� 𝑇 + 𝛻�⃗⃗� ⋅ 𝛻�⃗⃗� 𝑇] 
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 (4) 

𝛻�⃗⃗� = [
𝜕

𝜕𝑟
�̂�𝑟

1

𝑅

𝜕

𝜕𝜑
�̂�𝜑 0] [

𝑈𝑟�̂�𝑟
𝑈𝜑�̂�𝜑
0

]

=

[
 
 
 
 
 
 0

𝜕𝑈𝜑

𝜕𝑟
0

1

𝑅
(
𝜕𝑈𝑟
𝜕𝜑

− 𝑈𝜑)
1

𝑅
(
𝜕𝑈𝜑

𝜕𝜑
+ 𝑈𝑟) 0

0 0
1

𝑅
(𝑈𝑟 + cot𝜑 𝑈𝜑)]

 
 
 
 
 
 

 

휀⃡𝑖𝑗 = [

휀𝑟𝑟 = 0 휀𝑟𝜑 휀𝑟𝜃 = 0

휀𝜑𝑟 휀𝜑𝜑 휀𝜑𝜃 = 0

휀𝜃𝑟 = 0 휀𝜃𝜑 = 0 휀𝜃𝜃

] 

 (5) 

2휀𝑟𝜑 = 2휀𝜑𝑟 =
𝜕𝑈𝜑

𝜕𝑟
+
1

𝑅
(
𝜕𝑈𝑟
𝜕𝜑

− 𝑈𝜑) 

휀𝜑𝜑 =
1

𝑅
(
𝜕𝑈𝜑

𝜕𝜑
+ 𝑈𝑟) +

1

2𝑅2
((
𝜕𝑈𝑟
𝜕𝜑

)
2

+ 𝑈𝑟
2) 

휀𝜃𝜃 =
1

𝑅
(𝑈𝑟 + cot 𝜑 𝑈𝜑) +

1

2𝑅2
(𝑈𝑟)

2 

Because the virus under consideration has a soft protein structure, the viscoelastic 

properties of the material have been assumed. It means that the strains on the structure are 

depended on time. There are several simulations for this aspect in mechanics; however, the 

Kelvin-Voigt model has been used in this research due to its efficient and straightforward 

formulation. The details for this consideration can be found in many papers (Dastjerdi and 

Abbasi, 2020; Dastjerdi et al., 2020, 2021a; Malikan and Eremeyev, 2020; Cruz-González et 

al., 2020; Ghayesh, 2019; Jalaei and Civalek, 2019). Eventually, the introduced strain 

components in Eq. (5) will be reformulated as follows (𝑔 and 𝑡 represent the viscosity of the 

material and time respectively): 
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2휀𝑟𝜑 = 2휀𝜑𝑟 = (1 + 𝑔
𝜕

𝜕𝑡
) (
𝜕𝑈𝜑

𝜕𝑟
+
1

𝑅
(
𝜕𝑈𝑟
𝜕𝜑

− 𝑈𝜑)) 

 (6) 

휀𝜑𝜑 = (1 + 𝑔
𝜕

𝜕𝑡
)(

1

𝑅
(
𝜕𝑈𝜑

𝜕𝜑
+ 𝑈𝑟) +

1

2𝑅2
((
𝜕𝑈𝑟
𝜕𝜑

)
2

+ 𝑈𝑟
2)) 

 (7) 

휀𝜃𝜃 = (1 + 𝑔
𝜕

𝜕𝑡
) (
1

𝑅
(𝑈𝑟 + cot 𝜑 𝑈𝜑) +

1

2𝑅2
(𝑈𝑟)

2) 

 (8) 

Now that the strain tensor components are obtained, the stress tensor components can also 

be found according to Hooke's law (𝜎𝑖𝑗 = 𝐶: 휀⃡𝑖𝑗). In the mentioned equation, matrix 𝐶 

represents the characteristic of the structure material, which is defined by the parameters of 

Young's modulus 𝐸 and Poisson's ratio 𝜈. 

[

𝜎𝜑𝜑
𝜎𝜃𝜃
𝜎𝑟𝜑

] =
𝐸

(1 − 𝜈2)
[
1 𝜈 0
𝜈 1 0
0 0 (1 − 𝜈)

] [

휀𝜑𝜑
휀𝜃𝜃
휀𝑟𝜑

] 

 (9) 

5. Nonlocal elasticity theory of Eringen 

Whereas the SARS-CoV-2 virus size is analyzed at the nanometer scale, the existing 

classical theories can no longer be used for mathematical analysis and simulation (Kudin and 

Scuseria, 2001; Ivanovska et al., 2003; Eremeyev et al., 2015; Boni and Royer-Carfagni, 2021). 

For example, the above equation (which is Hooke's law of stress) represents local stresses. In 

other words, the stress at any point in the geometry range depends on the strain at that point. 

Eringen's theory of nonlocal elasticity has been used to obtain the governing equations in the 

present study. So many researchers due to its significant advantages (Dastjerdi and Akgöz, 
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2019; Dastjerdi et al., 2021b; Malikan et al., 2020a, b; Karami et al., 20219; Xu et al., 2021) 

have used the nonlocal elasticity theory widely. In nonlocal theory, the stress at a point on the 

geometry does not depend only on the strain at a similar point, but also on the amount of strain 

on the entire amplitude of the problem geometry. The differential form of the nonlocal elasticity 

theory is introduced according to the following equation. 

[1 − (𝑒0𝑎)
2∇2]𝜎𝑖𝑗 = 휀𝑖𝑗           𝜇 = (𝑒0𝑎)

2 

 (10) 

In the above equation, ∇2 is the Laplacian operator that is introduced in the spherical 

coordinate system as ∇2=
1

𝑟2 sin𝜑

𝜕

𝜕𝜑
(sin𝜑

𝜕

𝜕𝜑
) here. 𝑒0 depends on the kind of material under 

study, which is a dimensionless parameter. Also, 𝑎 is also a length-dependent parameter that 

depends on the factors affecting the analysis including geometric size, loading, boundary 

conditions, and environmental factors. Thus, the nonlocal parameter 𝜇 actually represents the 

intensity of the interatomic forces. The higher the numerical value of 𝜇, the greater the effect of 

nanoscale analysis. Determining a specific value for a nonlocal parameter requires practical 

experiments. Therefore, according to the nature of this research which is a theoretical mechanics 

aspect, an interval from zero to a particular value has been considered for the nonlocal parameter 

(𝜇) which depends on the physical condition of the structure under analysis. 

6. Governing equations 

6.1. The principle of minimum potential energy 

Earlier equations for nonlocal stress and strain tensors were introduced. It is now possible 

to obtain the governing dynamic equations by using the principle of minimum potential energy. 

In this method, the potential energy variations of the whole system must be equal to zero. The 

critical point of using this method is to obtain the dynamic governing equations with definitions 
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related to boundary conditions. Boundary conditions are of particular importance in mechanical 

science problems and, in fact, the physical description of the geometry boundaries. Different 

boundary conditions can be considered, each of which will create equations specific to those 

conditions. One of the most vital end conditions governing mechanical and physical phenomena 

is the free boundary condition. In other words, if the structure has no constraints on a geometric 

boundary and can move and rotate freely in all major directions, a free boundary condition will 

be created. The opposite of this description is the Clamp boundary condition, in which the 

freedom of transitional and rotational motion of the structure in all directions will be taken 

away. 

The basic equation for the principle of minimum potential energy is according to the 

following equation in which 𝛿𝑈𝜀 , 𝛿𝑈𝑘 and 𝛿𝑈𝑒𝑥𝑡 are variations of potential energy due to strain, 

kinetic and external forces on the structure, respectively. 

𝛿𝑈𝑇𝑜𝑡𝑎𝑙 = 𝛿𝑈𝜀 + 𝛿𝑈𝑘 + 𝛿𝑈𝑒𝑥𝑡 = 0 

 (11) 

The potential energy variations for each component (strain, kinetic and external forces) 

will now be discussed and formulated separately. First, the strain energy variations (𝛿𝑈𝜀) will 

be extended. 

𝛿𝑈𝜀 = ∫ (∭(𝜎𝑟𝑟𝛿휀𝑟𝑟 + 𝜎𝜑𝜑𝛿휀𝜑𝜑 + 𝜎𝜃𝜃𝛿휀𝜃𝜃 + 2𝜎𝑟𝜑𝛿휀𝑟𝜑)𝑑𝑉
𝑉

)𝑑𝑡
𝑡

0

 

 (12) 

In the above integral equation applied to the volume of the structure (𝑉 refers to the 

volume of the structure), the expansion of Eq. (12) can be rewritten based on the nonlocal 

stresses and strains introduced in Section 3 as follows. 
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𝛿𝑈𝜀 = ∫ (∭ (𝜎𝜑𝜑 (
1

𝑅
(
𝜕𝛿𝑈𝜑

𝜕𝜑
+ 𝛿𝑈𝑟) +

1

𝑅2
(
𝜕𝛿𝑈𝑟
𝜕𝜑

) (
𝜕𝑈𝑟
𝜕𝜑

))
𝑉

𝑡

0

+ 𝜎𝜃𝜃 (
1

𝑅
(𝛿𝑈𝑟 + cot𝜑 𝛿𝑈𝜑) +

𝑈𝑟𝛿𝑈𝑟
𝑅2

)

+ 𝜎𝑟𝜑 (
𝜕𝛿𝑈𝜑

𝜕𝑟
+
1

𝑅
(
𝜕𝛿𝑈𝑟
𝜕𝜑

− 𝛿𝑈𝜑)))𝑅
2 sin 𝜑 𝑑𝑟𝑑𝜑𝑑𝜃)𝑑𝑡 

 (13) 

The kinetic energy variation of the system with respect to the displacement vector �⃗⃗�  

(which is only in the direction of 𝜑) is introduced as the following equation. 

𝛿𝑈𝑘 =
𝛿

2
∫ (∭ 𝜌((

𝜕𝑈𝑟
𝜕𝑡
)
2

+ (
𝜕𝑈𝜑

𝜕𝑡
)

2

)
𝑉

𝑑𝑉)
𝑡

0

𝑑𝑡

= ∫ (∭ 𝜌((
𝜕𝑈𝜑

𝜕𝑡

𝜕𝛿𝑈𝜑

𝜕𝑡
) + (

𝜕𝑈𝑟
𝜕𝑡

𝜕𝛿𝑈𝑟
𝜕𝑡

))
𝑉

𝑅2 sin𝜑 𝑑𝑟𝑑𝜑𝑑𝜃)
𝑡

0

𝑑𝑡 

 (14) 

Eventually, the potential energy variations due to external forces will be formulated. 

These external forces can be of various types, including distributed or concentrated loads, types 

of elastic and inelastic substrates, van der Waals forces, and so on. In this study, there will be 

the only uniform distributed transverse load applied to the inner or outer surfaces of the virus 

(inner or outer surface of the spherical geometry) as well as the elastic substrate simulated with 

a linear spring. The effect of the mentioned factors on the final extracted equations is considered 

in the following equation. 

𝛿𝑈𝑒𝑥𝑡 = −∫ (∬(𝑞𝑟(𝛿𝑈𝑟) − 𝑘(𝛿𝑈𝑟))𝑑𝐴
𝐴

)𝑑𝑡
𝑡

0

         (𝑑𝐴 = 𝑅2 sin𝜑 𝑑𝜑𝑑𝜃) 

 (15) 
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6.2. Displacement field 

So far, the displacement vector �⃗⃗�  has been introduced in a general form. Note that �⃗⃗�  is a 

three-variable function relative to the variables 𝜑, 𝑟, and 𝑡 (𝑟 is in the thickness direction). 

Three-variable function analysis will eventually lead to the extraction of partial differential 

equations. To facilitate calculations, the displacement vector can be introduced based on the 

displacement fields provided by the researchers so far. Of the most widely used and popular 

displacement fields is the first-order shear deformation theory (FSDT), which provides suitable 

results for moderately thick structures. Based on the FSDT displacement field, the shear force 

is defined linearly along with the structure thickness. As a result, a shear correction factor is 

used to modify the dissatisfaction of the zero shear force conditions at both the upper and lower 

surfaces of the structure (𝑟 = ±ℎ/2 in Fig. 2). In various studies, a specific value for this 

coefficient has been proposed, and its value is usually considered as 𝜅𝑠 = 5/6. The modified 

characteristic material matrix 𝐶 that is defined in Eq. (9) will be reformulated by considering 

the value of 𝜅𝑠 as 𝐶 =
𝐸

(1−𝜈2)
[
1 𝜈 0
𝜈 1 0
0 0 𝜅𝑠(1 − 𝜈)

]. The displacement field according to FSDT 

theory is introduced according to the following equations for the displacement vector �⃗⃗� . 

{

𝑈𝜑(𝑟, 𝜑, 𝑡) = 𝑢(𝜑, 𝑡) + 𝑟. 𝜓(𝜑, 𝑡)

𝑈𝜃(𝑟, 𝜑, 𝑡) = 0

𝑈𝑟(𝑟, 𝜑, 𝑡) = 𝑤(𝜑, 𝑡)

 

 (16) 

By placing the above equations in the energy equation (Eq. (11)), the variations in strain 

energy, kinetic energy, and external forces can be rewritten as the following equations. 
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𝛿𝑈𝜀 = ∫

(

 
 
∫ ∫ ∫

(

 
 
𝜎𝑟𝜑 (𝛿𝜓 +

1

𝑅
(
𝜕𝛿𝑤

𝜕𝜑
− 𝛿𝑢 − 𝑟𝛿𝜓))

ℎ
2

−
ℎ
2

𝜑2

𝜑1

𝜃2

𝜃1

𝑡

0

+ 𝜎𝜑𝜑 (
1

𝑅
((
𝜕𝛿𝑢

𝜕𝜑
+ 𝑟

𝜕𝛿𝜓

𝜕𝜑
+ 𝛿𝑤) +

1

𝑅
((
𝜕𝛿𝑤0
𝜕𝜑

) (
𝜕𝑤0
𝜕𝜑

) + 𝑤0𝛿𝑤0)))

+ 𝜎𝜃𝜃 (
1

𝑅
((𝛿𝑤0 + cot 𝜑 (𝛿𝑢0 + 𝑟𝛿𝜓1))

+
1

𝑅
(𝑤0𝛿𝑤0)))

)

 
 
𝑅2 sin𝜑 𝑑𝑟𝑑𝜑𝑑𝜃

)

 
 
𝑑𝑡 

 (17) 

𝛿𝑈𝑘 = ∫ (∭ 𝜌((
𝜕𝑢

𝜕𝑡
+ 𝑟

𝜕𝜓

𝜕𝑡
) (
𝜕𝛿𝑢

𝜕𝑡
+ 𝑟

𝜕𝛿𝜓

𝜕𝑡
)

𝑉

𝑡

0

+(
𝜕𝑤

𝜕𝑡

𝜕𝛿𝑤

𝜕𝑡
))𝑑𝑉)𝑑𝑡

= ∫ (∬ (𝐼1 (
𝜕𝑢

𝜕𝑡

𝜕𝛿𝑢

𝜕𝑡
) + 𝐼2 (

𝜕𝑢

𝜕𝑡

𝜕𝛿𝜓

𝜕𝑡
+
𝜕𝜓

𝜕𝑡

𝜕𝛿𝑢

𝜕𝑡
)

𝐴

𝑡

0

+ 𝐼3 (
𝜕𝜓

𝜕𝑡

𝜕𝛿𝜓

𝜕𝑡
)

+ 𝐼1 (
𝜕𝑤

𝜕𝑡

𝜕𝛿𝑤

𝜕𝑡
))𝑅2 sin𝜑 𝑑𝑟𝑑𝜑𝑑𝜃)𝑑𝑡    (𝐼1, 𝐼2, 𝐼3) = ∫ 𝜌(1, 𝑟, 𝑟2)𝑑𝑟

ℎ
2

−
ℎ
2

 

 (18) 

𝛿𝑈𝑒𝑥𝑡 = −∫ (∬(𝑞𝑟(𝛿𝑤) − 𝑘(𝛿𝑤))𝑅
2 sin𝜑 𝑑𝜑𝑑𝜃

𝐴

)𝑑𝑡
𝑡

0

 

 (19) 

Now, by integrating into the direction of thickness 𝑟, the equations of strain energy 

variations can be made as equations as follows by considering the definitions related to stress 

and moment resultants. 
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𝛿𝑈𝜀 = ∫ (∫ ∫ (𝑁𝑟𝜑𝛿𝜓 +
1

𝑅
(𝑁𝑟𝜑

𝜕𝛿𝑤

𝜕𝜑
− 𝑁𝑟𝜑𝛿𝑢 −𝑀𝑟𝜑𝛿𝜓)

𝜑2

𝜑1

𝜃2

𝜃1

𝑡

0

+
1

𝑅
(𝑁𝜑𝜑

𝜕𝛿𝑢

𝜕𝜑
+𝑀𝜑𝜑

𝜕𝛿𝜓

𝜕𝜑
+ 𝑁𝜑𝜑𝛿𝑤

+
1

𝑅
(𝑁𝜑𝜑 (

𝜕𝑤0
𝜕𝜑

) (
𝜕𝛿𝑤0
𝜕𝜑

) + 𝑁𝜑𝜑𝑤0𝛿𝑤0))

+
1

𝑅
((𝑁𝜃𝜃𝛿𝑤 + (𝑁𝜃𝜃𝛿𝑢 +𝑀𝜃𝜃𝛿𝜓) cot 𝜑)

+
1

𝑅
(𝑁𝜃𝜃𝑤0𝛿𝑤0)))𝑅

2 sin𝜑 𝑑𝜑𝑑𝜃)𝑑𝑡 

 (20) 

{
 
 

 
 
(𝑁𝑟𝜑, 𝑁𝜑𝜑, 𝑁𝜃𝜃) = ∫ (𝜎𝑟𝜑, 𝜎𝜑𝜑, 𝜎𝜃𝜃)𝑑𝑟

ℎ
2

−
ℎ
2

(𝑀𝑟𝜑, 𝑀𝜑𝜑, 𝑀𝜃𝜃) = ∫ (𝜎𝑟𝜑, 𝜎𝜑𝜑, 𝜎𝜃𝜃)𝑟𝑑𝑟

ℎ
2

−
ℎ
2

 

 (21) 

Now, by adding similar terms of 𝛿𝑢, 𝛿𝜓 and 𝛿𝑤, the nonlocal dynamic equations of the 

rounded spherical structure (virus shown in Fig. 1) will be derived as the following equations. 

𝛿𝑢:−(
𝜕𝑁𝜑𝜑

𝜕𝜑
) + cot𝜑 (𝑁𝜃𝜃 − 𝑁𝜑𝜑) − 𝑁𝑟𝜑 − 𝑅 (𝐼1

𝜕2𝑢

𝜕𝑡2
+ 𝐼2

𝜕2𝜓

𝜕𝑡2
) = 0 

 (22) 

𝛿𝑤:−
𝜕

𝜕𝜑
(sin𝜑𝑁𝜑𝜑 (

𝜕𝑤

𝜕𝜑
)) + sin𝜑𝑤(𝑁𝜑𝜑 +𝑁𝜃𝜃) −

𝜕

𝜕𝜑
(𝑅 sin𝜑𝑁𝑟𝜑)

+ 𝑅 sin𝜑 (𝑁𝜑𝜑 + 𝑁𝜃𝜃) − (𝑞𝑟 − 𝑘)𝑅
2 sin𝜑 − 𝑅2 sin𝜑 (𝐼1

𝜕2𝑤

𝜕𝑡2
) = 0 

 (23) 
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𝛿𝜓:−𝑅 sin𝜑𝑀𝑟𝜑 + 𝑅
2 sin𝜑𝑁𝑟𝜑 − 𝑅

𝜕

𝜕𝜑
(sin𝜑𝑀𝜑𝜑) + 𝑅 sin𝜑 cot 𝜑𝑀𝜃𝜃

− 𝑅2 sin𝜑 (𝐼2
𝜕2𝑢0
𝜕𝑡2

+ 𝐼3
𝜕2𝜓1
𝜕𝑡2

) = 0 

 (24) 

It is observed that the extracted equations are in nonlocal form. By applying the definition 

of nonlocal stresses (Eq. (10)) in the above equations and performing some mathematical 

calculations, the nonlocal parameter (𝜇) can be applied into the equations, and finally, a new 

form of equations in which there is a nonlocal parameter can be obtained according to the 

following equations. 

𝛿𝑢:−(
𝜕𝑁𝜑𝜑

𝜕𝜑
) + cot𝜑 (𝑁𝜃𝜃 − 𝑁𝜑𝜑) − 𝑁𝑟𝜑 − 𝑅(1 − 𝜇∇

2) (𝐼1
𝜕2𝑢

𝜕𝑡2
+ 𝐼2

𝜕2𝜓

𝜕𝑡2
) = 0 

 (25) 

𝛿𝑤: 𝑅 (𝑁𝜑𝜑 + 𝑁𝜃𝜃 − cot𝜑𝑁𝑟𝜑 −
𝜕𝑁𝑟𝜑

𝜕𝜑
)

+ (1

− 𝜇∇2)(((
𝜕𝑁𝜑𝜑

𝜕𝜑
) (
𝜕𝑤

𝜕𝜑
) + cot𝜑𝑁𝜑𝜑 (

𝜕𝑤

𝜕𝜑
) + 𝑁𝜑𝜑 (

𝜕2𝑤

𝜕𝜑2
)

+ 𝑤(𝑁𝜑𝜑 + 𝑁𝜃𝜃)) − (𝑞𝑟 − 𝑘)𝑅
2 − 𝑅2 (𝐼1

𝜕2𝑤

𝜕𝑡2
)) = 0 

 (26) 

𝛿𝜓:−𝑅 sin𝜑𝑀𝑟𝜑 + 𝑅
2 sin𝜑𝑁𝑟𝜑 − 𝑅

𝜕

𝜕𝜑
(sin𝜑𝑀𝜑𝜑) + 𝑅 sin𝜑 cot 𝜑𝑀𝜃𝜃

− 𝑅2 sin𝜑 (𝐼2
𝜕2𝑢0
𝜕𝑡2

+ 𝐼3
𝜕2𝜓1
𝜕𝑡2

) = 0 
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 (27) 

The above equations are the final differential form of dynamic governing equations for 

the structure modeled in this research. According to the above equations, the deformations 

created in the structure which is under the transverse load of 𝑞𝑟 and embedded in an elastic 

foundation with stiffness coefficient 𝑘, can be achieved in the two main directions of the 

displacement field 𝑈𝜑 and 𝑈𝑟. 

However, the primary purpose of this study is to obtain the natural frequencies of the 

structure of Fig. 1. Mode frequencies can be determined according to the equations Eqs. (25-

27). To obtain natural frequencies, the transverse load applied to the structure must be 

considered zero. The system response to the displacement field must be considered the 

following equations. 

{
𝑈𝜑(𝑟, 𝜑, 𝑡) = 𝑢(𝜑)𝑒

𝑖𝜔𝑡 + 𝑟. 𝜓(𝜑)𝑒𝑖𝜔𝑡 = 𝑒𝑖𝜔𝑡(𝑢(𝜑) + 𝑟. 𝜓(𝜑))

𝑈𝑟(𝑟, 𝜑, 𝑡) = 𝑤(𝜑)𝑒
𝑖𝜔𝑡

 

 (28) 

By applying the second derivative to the time of the above relations and given that 𝜔 is 

the natural frequency of the system, the terms 
𝜕2𝑢

𝜕𝑡2
,
𝜕2𝜓

𝜕𝑡2
 and 

𝜕2𝑤

𝜕𝑡2
 will be obtained as follows. 

{
  
 

  
 
𝜕2𝑢

𝜕𝑡2
= −𝜔2𝑒𝑖𝜔𝑡𝑢(𝜑)

𝜕2𝜓

𝜕𝑡2
= −𝜔2𝑒𝑖𝜔𝑡𝜓(𝜑)

𝜕2𝑤

𝜕𝑡2
= −𝜔2𝑒𝑖𝜔𝑡𝑤(𝜑)

 

 (29) 
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By substituting the above equations (Eqs. (28, 29)) into the governing equations of the 

virus (Eqs. (25-27)), and considering 𝑞𝑟 = 0 and neglecting nonlinear terms, the dynamic 

governing equations will be obtained to achieve the structure's natural frequencies as follows. 

𝛿𝑢:−(
𝜕𝑁𝜑𝜑

𝜕𝜑
) + cot𝜑 (𝑁𝜃𝜃 −𝑁𝜑𝜑) − 𝑁𝑟𝜑 − 𝑅𝜔

2(1 − 𝜇∇2) (𝐼1
𝜕2𝑢

𝜕𝑡2
+ 𝐼2

𝜕2𝜓

𝜕𝑡2
) = 0 

 (30) 

𝛿𝑤: 𝑅 (𝑁𝜑𝜑 + 𝑁𝜃𝜃 − cot𝜑𝑁𝑟𝜑 −
𝜕𝑁𝑟𝜑

𝜕𝜑
) + (1 − 𝜇∇2)𝜔2 (𝑘𝑅2 − 𝑅2 (𝐼1

𝜕2𝑤

𝜕𝑡2
)) = 0 

 (31) 

𝛿𝜓:−𝑅 sin𝜑𝑀𝑟𝜑 + 𝑅
2 sin𝜑𝑁𝑟𝜑 − 𝑅

𝜕

𝜕𝜑
(sin𝜑𝑀𝜑𝜑) + 𝑅 sin𝜑 cot 𝜑𝑀𝜃𝜃

− 𝑅2𝜔2 sin𝜑 (𝐼2
𝜕2𝑢0
𝜕𝑡2

+ 𝐼3
𝜕2𝜓1
𝜕𝑡2

) = 0 

 (32) 

It is observed that by solving the ordinary differential equations obtained, the frequency 

values 𝜔 can be obtained, and thus the frequency mode shapes for the viral structure of Fig. 1 

will be calculated. 

7. Boundary conditions 

As mentioned earlier, using the principle of minimum potential energy simultaneously 

gives governing equations and a mathematical description of the boundary conditions. The 

mathematical description of the Free and Clamped boundary conditions is given in the 

following equations (𝜑𝑖 and 𝜑𝑓 refers to initial and final boundaries in 𝜑 direction) 

𝐶𝑙𝑎𝑚𝑝𝑒𝑑: 𝑢 = 𝜓 = 𝑤 = 0                (𝜑 = 𝜑𝑖 , 𝜑𝑓) (33) 

𝐹𝑟𝑒𝑒: 𝑁𝜑𝜑 = 𝑁𝑟𝜑 = 𝑀𝜑𝜑 = 0          (𝜑 = 𝜑𝑖 , 𝜑𝑓) (34) 
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8. Solution methodology 

In this research, there are two perspectives for solving the extracted equations, and the 

solution strategy is different for each one, which will be explained below: 

1. Dynamic equations of the structure under distributed uniform transverse load 

(bending analysis). 

2. Dynamic equations of structure to obtain natural frequencies. 

To obtain the structural deformations of the virus according to Eqs. (25-27), the SAPM 

solution method previously proposed by the authors of this study can be used effectively 

(Dastjerdi et al., 2021c). Details of this method can be seen in previous research (Dastjerdi and 

Akgöz, 2019, 2020). According to the SAPM, the system of differential equations is 

transformed into a system of algebraic equations by using polynomial functions that can be 

easily solved by applying numerical solution methods. Finally, the unknowns of the problem 

(which are the displacement field functions) will be obtained. As a result, other unknowns can 

be achieved by specifying the displacement field parameters. 

The second case is considered to be that the transverse load applied to the system is zero, 

and natural frequencies must be obtained. The eigenvalue problem is attended in which 

eigenvalues are, in fact, the natural frequencies of the system. One of the efficient numerical 

methods that have been highly regarded by researchers and can be used to analyze eigenvalue 

problems (natural frequency and buckling analyzes) is the differential quadrature method 

(DQM) (Li et al., 2021). In this numerical method (for solving differential equations), a weight 

function can be introduced for any value of first, second, etc., derivatives. Unlike the Finite 

Difference (FD) solution method, where the derivative at a specific point depends on the 

numerical values of the points before and after, in the DQM method, this range is wider, and 

the derivative at a particular point depends on the numerical value in the whole network of 
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problem geometry. Of course, the effect of closer points is greater, and, as mentioned, this effect 

is determined by the weight function. Second-order, third-order, and higher-order derivatives 

can be extracted according to the obtained first-order derivative. For example, for a one-

dimensional problem that changes in the direction of 𝑥 in the range 𝑥1 to 𝑥𝑁 (𝑁 represents the 

number of nodes) is considered. The derivative of 𝑁𝑡ℎ-order is introduced by the following 

equations. 

𝑑(𝑛)𝑓

𝑑𝑥(𝑛)
|
𝑥𝑖
= ∑ 𝐴𝑖𝑗

(𝑛)𝑓(𝑥𝑖)
𝑁
𝑗=1        (𝑖 = 1. . 𝑁) (35) 

𝐴𝑖𝑗
(𝑛)

= 𝑛(𝐴𝑖𝑗
(1)
𝐴𝑖𝑖
(𝑛−1)

−
𝐴𝑖𝑗
(𝑛−1)

(𝑥𝑖−𝑥𝑗)
)        𝑖 ≠ 𝑗,  𝐴𝑖𝑖

(𝑛)
= −∑ 𝐴𝑖𝑗

(𝑛)𝑁
𝑗=1,≠𝑖        𝑖, 𝑗 = 1. . 𝑁 (36) 

In the analysis of the virus structure, the 4𝑡ℎ-order derivatives must be calculated for some 

displacement field functions. By deriving derivatives using DQM functions numerically, these 

values can be substituted into the governing equations. By substituting Eqs. (35, 36) into Eqs. 

(30-32), the differential equations will be discretized into a system of algebraic equations. As a 

result, an eigenvalue problem will be obtained as ([𝐾] − 𝜔2[𝑀])[𝐷] = 0. [𝐷] is actually the 

displacement matrix at the nodes of the problem geometry domain. Also, [𝐾] and [𝑀] are the 

stiffness and mass matrixes, respectively. For example, if the number of 𝑁 = 9 nodes in the 

structure's geometry is considered in the direction of 𝜑, the matrix [𝐷] will be introduced as 

follows (𝑇 is the transpose of the matrix). 

𝐷𝑇 = [𝑢1 𝑢2⋯𝑢9 𝜓1 𝜓2⋯𝜓9 𝑤1 𝑤2⋯𝑤9]1×27 (37) 

𝛽 = [𝐾] − 𝜔2[𝑀] = [

𝛽11 ⋯ 𝛽1(27)
⋮ ⋱ ⋮

𝛽(27)1 ⋯ 𝛽(27)(27)

] (38) 
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By calculating the determinant of the matrix 𝛽 as |𝛽| and setting it to zero, a characteristic 

equation of degree 𝑁 will be obtained. By numerically solving this equation (which is only 

unknown 𝜔), the first mode frequency up to 3 × 𝑁𝑡ℎ mode number will be obtained. 

Lower frequency modes are usually more important. Because such frequencies are more 

likely to occur. Therefore, in this research, the first and second modes will be discussed more 

than others. By changing the parameters affecting the problem, natural frequencies can be 

calculated in any desired condition. Factors such as virus size (radius 𝑅), thickness (ℎ), elastic 

stiffness coefficient value (𝑘) as well as the value of the nonlocal parameter of nanoscale 

analysis (𝜇) can be studied on the results. Therefore, the effect of each mentioned parameter on 

the results will be studied individually. 

9. Numerical analysis and review of essential parameters 

9.1. Evaluation of results 

Before examining the effect of important factors, one must make sure that the obtained 

results are correct and accurate. For this purpose, a comparison between the obtained results in 

this study and previous research and a comparison with the results of existing popular software 

will be made. To evaluate a spherical structure with the following geometric and physical 

characteristics is considered. 

𝑅 = 1.15 𝑚, ℎ = 0.02 𝑚, 𝐸 = 190 𝐺𝑃𝑎, 𝜈 = 0.29, 𝜑𝑖 = 10°, 𝜑𝑓 = 170° (39) 

Now, the natural frequencies of the considered structure can be compared with the 

obtained results from ABAQUS software. Also, in the first part of solving the obtained dynamic 

equations, the SAPM method was applied to analyze the structure that is under a uniform 

transverse load (bending analysis). Therefore, the deformation results of the structure can be 

compared with the results of ABAQUS software. In general, the comparisons of bending and 
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frequency analyses can be seen in Figs. 3a, b, and Table 1 respectively (B.C. refers to the type 

of boundary conditions). The frequency comparison has been presented for two types of 

Clamped-Clamped (CC) and Free-Clamped (FC) boundary conditions at 𝜑𝑖 and 𝜑𝑓 edges. As 

can be seen, the achieved results from the mechanical modeling method performed in this study 

are slightly different from the results of ABAQUS software. ABAQUS is a very popular and 

accurate finite element software that has been used widely by mechanical engineers and 

researchers. Therefore, the simulation performed in the present study is reliable, and its 

consequence results can be used with sufficient confidence. In the following, the effect of the 

factors affecting the results (which were mentioned earlier) will be examined. It is aimed to 

examine the factors that have the greatest impact on the results in practice. 

Table 1. Comparison between the first natural frequency results of this paper and 

ABAQUS software 

 

B.C. 

First natural frequency (kHz) 

𝑅/ℎ = 100 𝑅/ℎ = 50 𝑅/ℎ = 20 𝑅/ℎ = 10 

Paper ABAQUS Paper ABAQUS Paper ABAQUS Paper ABAQUS 

CC 0.465 0.472 0.930 0.944 2.335 2.369 4.733 4.793 

FC 0.270 0.275 0.541 0.550 1.362 1.382 2.788 2.826 
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(a) 

 

(b) 
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Fig. 3. Deflection 𝑤 (𝑚𝑚) results of (a) ABAQUS software (b) present paper 

9.2. Investigating the effect of essential factors on the results 

Due to the viscoelastic properties of the structure of the SARS-CoV-2 virus, it is possible 

to plot the deformations created in it according to the passage of time. Fig. 4 shows the time-

related changes in the mentioned deformations for different values of the parameter 𝑔, which 

in fact represents the viscosity of the virus material. It is observed that the deformation created 

in the virus increases with increasing time. The slope of the changes in Fig. 4 is highly 

dependent on the value of g, and these changes are nonlinear with decreasing slope. In Fig. 4, 

𝑔 = 0 indicates the state that the structure strains are not time-dependent, and it can be 

concluded that as soon as the load is applied, the maximum final deformation occurs in the 

structure. However, the higher the value of 𝑔, the longer it will take for maximum deformation 

to occur. Eventually, over time (increasing t on the horizontal axis), all the graphs will converge 

to a certain value, which here is about 4.75 𝑛𝑚. The duration of the applied loading can have a 

significant effect on the deformation of the virus. Since it may not be possible to determine a 

specific value for virus viscosity to be analyzed, it is recommended to apply the load for a more 

extended period of time to maximize deformation. In the performed calculations related to Fig. 

4, a specific value of 0.75 is assumed for the nonlocal parameter (𝑒0𝑎)/ℎ. In order to investigate 

the effects of nanoscale analysis, the changes of (𝑒0𝑎)/ℎ on the results should be studied, which 

will be discussed in continue. 
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Fig. 4. Variations of deflection (𝑛𝑚) due to time for different values of viscosity 𝑔 (𝑁. 𝑠/𝑚2) 

In the rest of the analysis, the mechanical properties of the virus are used regarding Table 

2 (Stephanidis et al., 2007). 

Table 2. Mechanical properties of the virus 

E(GPa) υ ρ(kg/m3) 

3 0.3 1.2 

The effect of nanoscale analysis on the results of deformation in the virus will now be 

examined. As can be expected, the smaller the structure at the nanoscale, the greater the effects 

of the atomic forces, which are simulated by the nonlocal parameter. Therefore, the mentioned 

explanation should also be considered (the radius of the virus, which indicates its size). The 

radius of the SARS-CoV-2 virus does not have a specific value, and an interval can be 

considered for it. The range for the virus radius in this study is between 50 < 𝑅 < 120 (𝑛𝑚). 
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Fig. 5 shows the deformations of the virus against the dimensionless nonlocal parameter 

changes. Changes have been examined for different values of virus radius. The stiffness 

coefficient of the elastic foundation (the effect of reaction forces caused by the internal materials 

of the virus such as RNA) is considered equal to 𝐾 = 10 𝐺𝑃𝑎/𝑛𝑚2. It is observed that at the 

beginning of the changes, the deformation is approximately the same for different values of the 

virus radius ((𝑒0𝑎)/ℎ = 0). The slope of the changes is initially small and almost zero. But 

gradually, with increasing the nonlocal parameter, the slope of changes increases. In other 

words, the nonlocal parameter will affect the reduction of virus deformation. It can be 

understood that by increasing the nonlocal parameter, the effect of interatomic forces increases, 

and physically it can be described that the strength of the structure increases. Of course, 

determining the exact value of the nonlocal parameter is a fundamental challenge, and only by 

performing experimental efforts, the exact value of the nonlocal parameter can be obtained. It 

should be noted that the experimental values for (𝑒0𝑎) are obtained only for specific conditions 

of the same problem, and by changing the parameters, different values will be obtained. Also, 

as can be expected earlier, the effects of nanoscale analysis are reduced by increasing the radius 

of the virus. For example, in the range 0 <
(𝑒0𝑎)

ℎ
< 10, a reduction of about 100% is observed 

for a virus with a radius of 𝑅 = 50 𝑛𝑚, which results in a reduction of about 30% for a virus 

with a radius of 120 𝑛𝑚. Therefore, if the radius of the virus is assumed to be about 100 𝑛𝑚, 

due to the unknown value of the nonlocal parameter (𝑒0𝑎), we can use the results of classical 

analysis ((𝑒0𝑎) = 0) instead of the nonlocal analysis, which has simpler and fewer 

computational equations. 
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Fig. 5. Deflection results versus the dimensionless nonlocal parameter (𝑒0𝑎)/ℎ for different 

values of virus radii 

In the calculations performed in Fig. 5, as mentioned, the amount of elastic substrate 

stiffness is assumed 𝐾 = 10 𝐺𝑃𝑎/𝑛𝑚2. However, determining a specific value for 𝐾 is also a 

challenge that can only be achieved by experimental works. Therefore, 𝐾 changes can also be 

examined on the results. Fig. 6 shows the virus deformation in exchange for increasing the value 

of 𝐾 for different values of the dimensionless nonlocal parameter (𝑒0𝑎)/ℎ. The amount of 

dimensionless deformation 𝑤𝑛 is the ratio of nonlocal to classical deformation results. It is 

observed that the changes are decreasing, and at first, the slope of the graphs is very steep. And 

for a value of 𝐾 onwards there is no noticeable change in 𝑤𝑛. The higher the (𝑒0𝑎) value, the 

greater the distance between nonlocal and classical results. For example, for 
(𝑒0𝑎)

ℎ
= 2.5, the 

results of both local and nonlocal analyzes are approximately the same. But for the mentioned 
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result, for 
(𝑒0𝑎)

ℎ
= 10, about 20% of the difference between local and nonlocal results is 

observed. In Fig. 5, the value assumed for 𝐾 is vast, and it can be concluded that the effective 

interval for applying 𝐾 to the results is 0 < 𝐾 < 0.1 (𝐺𝑃𝑎/𝑛𝑚2). In other words, considering 

the value of 𝐾 = 10 𝐺𝑃𝑎/𝑛𝑚2 with the state that 𝐾 = 1 𝐺𝑃𝑎/𝑛𝑚2 will not make much 

difference in the results. In the calculations performed in Fig. 6, the virus radius is assumed to 

be equal to 100 𝑛𝑚. One can see the dimensionless deformation changes 𝑤𝑘 (the ratio of the 

amount of deformation in the case where there is an elastic foundation and its stiffness 

coefficient equal to 𝐾 to the deformation of the structure without the presence of an elastic 

substrate) due to changes of 𝐾 for different values of the virus radius in Fig. 7. The results 

described in Fig. 7 are almost similar to Fig. 6. It is observed that as the radius of the virus 

increases, the slope of the changes will increase. In other words, the effect of the elastic 

foundation for the virus with larger radii will be more intense. As a result, it further reduces the 

deformation of the virus. Of course, the difference between the results for different values of 𝐾 

will not be significant. Especially as the radius of the virus increases, the distance between the 

results decreases. For example, by increasing the radius of the virus from 50 to 80 𝑛𝑚, the 

difference between the obtained deformations is noticeable. However, by increasing the radius 

of the virus, the difference between the results can be ignored. In general, one can conclude that 

the larger the radius of the virus, the greater the effect of the internal material under the virus 

wall (which is assumed to be an elastic foundation) to reduce its deformation. As a result, a 

stronger load shall be imposed on the virus to create the intended deformation. If the structure 

of the SARS-CoV-2 virus is assumed to be without an elastic foundation, the deformations 

created in it will be much greater. Nevertheless, in reality, this is not the case, and internal 

materials affect the deformation and thus reduce it. 
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Fig. 6. Dimensionless deflection 𝑤𝑛 versus 𝐾 variations for different values of dimensionless 

nonlocal parameter (𝑒0𝑎)/ℎ 
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Fig. 7. Dimensionless displacement results versus stiffness coefficient of elastic foundation 𝐾 

for different values of virus radii 

In Figs. 4 to 7, the effect of parameters on the deformation results in the virus wall has 

been investigated. Applying force to a structure can cause it to break mechanically. Here, 

because it is a viral structure that is replicating in the human body or an organism, it is 

mechanically possible to apply force to it, although it is complicated in practice. However, 

innovative solutions can also be considered for this purpose. In addition to applying mechanical 

load, frequency analysis can also be used as a solution to destroy the structure of the virus. 

According to mechanics, if a structure vibrates at its natural frequency, a resonance 

phenomenon will occur, which in practice can cause the structure to vibrate with extreme 

amplitudes. In other words, if the natural frequencies of the virus that the human body is infected 

with and due to which the disease is caused can be calculated. After that, the body exposed to 

these specific frequencies (according to the type of first, second, or higher natural frequencies), 
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the virus structure can be expected to vibrate with very large amplitudes. In the meantime, the 

protein structure of the viruses may break down, and the virus may destroy. These waves can 

even be used to break the protein chain within the virus. Therefore, it is crucial to obtain the 

natural frequencies of the structure of the SARS-CoV-2 virus. This method is not limited to 

eliminating the virus and can be used to kill other types of viruses such as HIV or even a variety 

of tumors and cancer cells that have a microscopic and macroscopic scale. Of course, it should 

be reminded that if the human body is exposed to such waves, it must not be dangerous or 

harmful to other organs or vital enzymes in the body. Even this treatment must not affect the 

human DNA and the risk of transmission to future generations. Indeed, if this mechanical 

concept is used as a treatment method, specialist physicians should make clinical 

considerations. Therefore, the purpose of this study is only to present a theoretical assessment 

regarding the elimination of the virus structure by applying force or frequency. 

Due to the viscoelastic properties of SARS-CoV-2 virus material, this issue should be 

investigated in response to the natural frequencies of the virus. In Table 3, the first natural 

frequency is calculated for different values of viscosity and dimensionless nonlocal parameter 

(𝑒0𝑎)/ℎ. It is observed that with increasing value 𝑔, the obtained natural frequency increases. 

Also, the increase in natural frequency will occur in return for the increase in the dimensionless 

nonlocal parameter (𝑒0𝑎)/ℎ. This conclusion means that if the effects of nonlocal analysis 

increase, the distance between the nonlocal and classical results will be intensified. The effect 

of viscoelasticity on 𝑓1 is more remarkable for larger values of (𝑒0𝑎)/ℎ. For low viscosity 

values, the natural frequency values of 𝑓1 can be used with a suitable approximation, regardless 

of the viscoelastic property. This is more evident for small nonlocal parameter values. It tends 

to be anticipated that if the range of the virus is about 100 𝑛𝑚, the effects of nonlocal analysis 

on 𝑓1 are small. Therefore, for these types of viruses, the first natural frequency can be 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


considered with a suitable approximation, in which only the effects related to viscosity are 

considered. 

Table 3. The effect of dimensionless nonlocal parameter 
(𝑒0𝑎)

ℎ
 and viscosity 𝑔 on the 

first natural frequency of SARS-CoV-2 virus 

𝑔 (𝑃𝑎. 𝑠) 

𝑓1 

(𝑒0𝑎)

ℎ
= 0 

(𝑒0𝑎)

ℎ
= 5 

(𝑒0𝑎)

ℎ
= 10 

0 3.308 3.568 4.758 

1 3.510 3.805 5.186 

5 4.427 4.891 7.221 

10 5.767 6.503 10.322 

 

In this research, only the effect of essential parameters on the results of the first and 

second modes of natural frequencies have been considered and investigated. In Figs. 8a and b, 

we can see the changes in the natural frequencies of the first and second modes in exchange for 

increasing the dimensionless nonlocal parameter (𝑒0𝑎)/ℎ for different values of the virus 

radius. The first result, according to Figs. 8a and b, as the virus's radius increases, the first and 

second natural frequencies will decrease. In other words, the larger the structure size, the lower 

the natural frequency required to occur resonance. Fig. 8a shows that 𝑓1 increases with rising 

the nonlocal parameter (actually increasing interatomic forces). It is seen, the process of change 

for 𝑅 = 50 𝑛𝑚 is slightly different from other radii of the virus. Initially, the frequency changes 

of the first mode are incremental (
(𝑒0𝑎)

ℎ
= 7.5) and then for 

(𝑒0𝑎)

ℎ
> 7.5, it is observed that the 

first natural frequency decreases. But for virus radii in the range 80 𝑛𝑚 < 𝑅 < 120 𝑛𝑚, the 

trend is similar. As the radius of the structure increases, the effects of interatomic forces are 

observed to decrease. It is also observed that in the range 0 <
(𝑒0𝑎)

ℎ
< 7.5 the slope of changes 

is gentle and then the slope increases. The mentioned result is more evident for the radius of 
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80 𝑛𝑚. For a virus with a radius of about 100 𝑛𝑚, it can be observed that for the first natural 

frequency 3 𝐺𝐻𝑧 < 𝑓1 < 4 𝐺𝐻𝑧, a resonance phenomenon will occur. However, this range for 

a virus with a radius of 50 𝑛𝑚 is between 6 and 13 𝐺𝐻𝑧. The SARS-CoV-2 virus usually has 

a radius of about 100 𝑛𝑚. Therefore, the interval for 𝑓1 is considered smaller. The mentioned 

results for the second natural frequency (𝑓2) can also be seen in Fig. 8b. Here there are 

fluctuations in variations of the second natural frequency results. There is a peak for 𝑓2 due to 

the increase of the dimensionless nonlocal parameter (𝑒0𝑎)/ℎ. It is observed that by increasing 

the radius of the virus, the peak will be seen for larger values of (𝑒0𝑎)/ℎ. Only the trend of 

changes in 𝑓2 for a radius of 150 𝑛𝑚 will be similar to the trend of changes in 𝑓1. The natural 

frequency of 𝑓2 is higher than 𝑓1, and it can be concluded that the effects of nanoscale analysis 

on 𝑓2  are greater than 𝑓1. The range of frequency changes (𝑓2) for a virus with a radius of 

100 𝑛𝑚 will be between 7 𝐺𝐻𝑧 < 𝑓2 < 25 𝐺𝐻𝑧. The resulting interval for 𝑓2 is greater than 𝑓1. 

From a practical perspective, the specimen will reach the first natural frequency. Therefore, 

because the nonlocal frequency range for 𝑓1 is less than 𝑓2, it is more likely to reach the first 

nonlocal natural frequency. This result is because determining the value of a nonlocal parameter 

is theoretically possible in only one interval, and the fewer changes in this interval, the more 

accurate the exact result can be achieved. 
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Fig. 8. Results due to dimensionless nonlocal parameter for different values of virus radii (a) 

first (b) second natural frequency 

As mentioned earlier, the effect of internal materials of the SARS-CoV-2 virus (which is 

simulated in this study as an elastic substrate) on the deformation and natural frequency results 

is very high. Therefore, it is possible to observe the first and second dimensionless natural 

frequency changes against the changes of the elastic stiffness coefficient 𝐾 in Figs. 9a and b. 

Graphs are plotted for different nonlocal parameter values. Fig. 9a shows that for 
(𝑒0𝑎)

ℎ
= 0, 

increasing the value of 𝐾 (only slightly) will cause a sharp drop in the first natural frequency. 

The lower the nonlocal parameter value, the lower the result and the sharper the 𝑓1 frequency 

drop. Then, after a sharp drop in 𝑓1, with increasing the value of 𝐾, no significant change in 𝑓1 

results is observed. The dimensionless frequency 𝑓1 is, in fact, the ratio of the obtained nonlocal 

natural frequency (for a given value of the nonlocal parameter) to the classical natural frequency 

(
(𝑒0𝑎)

ℎ
= 0). As shown in Fig. 8, increasing the value of (𝑒0𝑎)/ℎ increases the natural frequency 

compared to the classical analysis (of course, in the case of the second natural frequency, there 

is fluctuation in the results and cannot be said with certainty in all acquired conditions). The 

results will now be reviewed in Fig. 9a. A sharp drop in the first natural frequency (Fig. 9a) 

means that for 
(𝑒0𝑎)

ℎ
= 10, an increase in the stiffness of the elastic foundation will bring the 

two nonlocal and classical analyzes closer together. Therefore, if it can be concluded from 

experimental works that the value of 𝐾 is significant, the results of the classical analysis can be 

used. Because, as stated earlier, determining a specific value for the nonlocal parameter is a 

tough challenge in the nonlocal elasticity theory. According to Fig. 9a, the lower the (𝑒0𝑎)/ℎ 

value, the closer the results of the classical and nonlocal analyzes are. Fig. 9b gives the same 

results as for Fig. 9a, except that for the second natural frequency. The results of the classical 

and nonlocal analyses are more distant from each other. For example, in Fig. 9a, with a slight 
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increase in 𝐾, the distance between the classical and nonlocal results approaches each other 

with a growth of about 125%. However, the same result in Fig. 9b will be only about 20%. 

Therefore, in the case of 𝑓2, even an increase in 𝐾 has little effect on the approach of the classical 

and nonlocal analyzes. Therefore, if resonance is to be achieved by vibrating the SARS-CoV-2 

virus at the second natural frequency (𝑓2), the nonlocal analysis must be used to make the 

resonance phenomenon more confident. Determining the 𝐾 value for this nanometer-sized virus 

is a very complex and challenging task. 
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(b) 

Fig. 9. The effect of 𝐾 coefficient on (a) first (b) second natural frequency for different values 

of dimensionless nonlocal parameter (𝑒0𝑎)/ℎ 

10. Conclusions and remarks 

In this study, we made an effort to achieve the deformations and natural frequencies of 

the SARS-CoV-2 virus. For this purpose, the virus is simulated by a spherical structure, and 

mathematical equations are obtained by theories of mechanics. Since the virus has nanometer 

dimensions and also its material structure is assumed viscoelastic, the nonlocal elasticity theory 

has been used to derive the governing equations. Applying loads and vibrations with natural 

frequencies can be considered as a treatment method. The results can be categorized and 

expressed as follows: 

 By applying mechanical load, deformations can be created in the structure of the 

SARS-CoV-2 virus that cause its destruction. 
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 The applying time of the load should be extended to create maximum deformation 

in the structure. 

 The internal materials of the virus, which play the role of an elastic foundation, 

reduce the deformations created in it. 

 The first and second natural frequencies are to create resonance in the range of 

3 𝐺𝐻𝑧 < 𝑓1 < 4 𝐺𝐻𝑧 and 7 𝐺𝐻𝑧 < 𝑓2 < 25 𝐺𝐻𝑧. 

  Considering the viscoelastic property as well as nonlocal analysis causes the 

values of the obtained results to be more than those of the classical results. 

 If the radius of the virus is about 100 𝑛𝑚 (average radius of SARS-CoV-2 virus), 

the distance between classical and nonlocal results is insignificant. 
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