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Marin KrzywkowskiOn the hat problem, its variations, and theirappliationsAbstrat. The topi of our paper is the hat problem in whih eah of n playersis randomly �tted with a blue or red hat. Then everybody an try to guesssimultaneously his own hat olor by looking at the hat olors of the otherplayers. The team wins if at least one player guesses his hat olor orretly,and no one guesses his hat olor wrong; otherwise the team loses. The aimis to maximize the probability of a win. There are known many variationsof the hat problem. In this paper we give a omprehensive list of variationsonsidered in the literature. We desribe the appliations of the hat problemand its variations, and their onnetions to di�erent areas of siene. We givethe full bibliography of any papers, books, and eletroni publiations aboutthe hat problem.1. IntrodutionIn the hat problem, a team of n players enters a room and a blue or red hatis randomly plaed on the head of eah player. Eah player an see the hats of allof the other players but not his own. No ommuniation of any sort is allowed,exept for an initial strategy session before the game begins. One they have hada hane to look at the other hats, eah player must simultaneously guess the olorof his own hat or pass. The team wins if at least one player guesses his hat olororretly and no one guesses his hat olor wrong; otherwise the team loses. Theaim is to maximize the probability of a win.The hat problem with seven players, alled the �seven prisoners puzzle�, wasformulated by T. Ebert in his Ph.D. Thesis [20℄. The hat problem was also thesubjet of artiles in The New York Times [46℄, Die Zeit [9℄, and abNews [44℄.It is also a one of subjets of the webpage [7℄.The hat problem with 2k − 1 players was solved in [22℄, and for 2k playersin [17℄. The problem with n players was investigated in [11℄. The hat problem andHamming odes were the subjet of [12℄.AMS (2000) Subjet Classi�ation: 91A43.Volumes I-VII appeared as Annales Aademiae Paedagogiae Craoviensis Studia Mathematia.



[56℄ Marin KrzywkowskiThere are known many variations of the hat problem. For example the gen-eralized hat problem with n players and q olors was investigated in [40℄. In thepapers [1, 15, 35℄ there was onsidered a variation in whih passing is not allowed,thus everybody has to guess his hat olor. The aim is to maximize the numberof orret guesses. The authors of [25℄ investigated several variations of the hatproblem in whih the aim is to design a strategy guaranteeing desired numberof orret guesses. In [30℄ there was onsidered a variation in whih the proba-bilities of getting hats of eah olors do not have to be equal. The authors of [5℄investigated a problem similar to the hat problem. There are n players whih haverandom bits on foreheads, and they have to vote on the parity of the n bits. Thehat problem on a graph is as follows. There is a graph, where verties orrespondto players and a player an see eah player to whom he is onneted by an edge.This variation of the hat problem was �rst onsidered in [38℄. There were provensome general theorems about the hat problem on a graph, and the problem wassolved on trees. Additionally, there was onsidered the hat problem on a graphsuh that the only known information are degrees of verties. In [39℄ the problemwas solved on the yle C4. Further results about the hat problem on a graphwere established by Uriel Feige [24℄. For example, there the problem was solvedfor bipartite graphs, and planar graphs ontaining a triangle. Based on these andsome other results, the author onjetured that for every graph there is an optimalstrategy in whih all verties whih do not belong to the maximum lique alwayspass.The hat problem and its variations have many appliations and onnetionsto di�erent areas of siene, for example: information tehnology [8℄, linear pro-gramming [25℄, geneti programming [14℄, eonomy [1, 35℄, biology [30℄, approxi-mating Boolean funtions [5℄, and autoreduibility of random sequenes [6, 20�23℄.In this paper we give a omprehensive list of variations of the hat problemonsidered in the literature. We also present what is already known about eahvariation. For some variations we give a strategy whih solves the problem. Nextwe desribe the appliations of the hat problem and its variations, and their on-netions to di�erent areas of siene. We give the full bibliography of any papers,books, and eletroni publiations about the hat problem.2. Appliations of the hat problemIn this setion we present appliations of the hat problem and its variations.We also onsider their onnetions to di�erent areas of siene.Information tehnology. The paper [8℄ shows the strong onnetion betweenthe hat problem and the following problem. In storing or transmitting digitaldata, there is always some risk of distortion: a 0 might aidentally �ip to 1 orvie versa. One way to deal with this problem is to introdue some redundanyinto the transmission � for instane, by sending eah bit multiple times. However,transmitting too many extra bits is ostly and ine�etive. We need to protet
k bits of data against the possibility of an error by using the minimal numberof additional �hek bits�. Note that the method must not only detet the error,D
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On the hat problem, its variations, and their appliations [57℄but also determine its preise loation, so that the user an reover the originalmessage every time. This problem has been solved using Hamming odes � odeswhih detet and orret errors. So alled overing odes are strongly relatedto Hamming odes. The website [41℄ ontains up-to-date data on the best knownovering odes. The oding theory (for more information, see [47℄) was inauguratedby Rihard Hamming. He realized that there is a way to use as few bits as possibleand still reeive the orret message, but he was unable to expliitly prove it [42℄.The work of Hamming piqued the interest of other mathematiians, suh as ClaudeShannon who worked on the information theory aspets of oding to ahieve leardata transmission. Some of work of Shannon provides us with high sound qualityof ompat diss. Even though ompat diss may have visible srathes and thumbprints, a ompat dis player still reads the song aurately. This is beause of theerror-orreting apabilities built into the ompat diss. The hat problem with
2k − 1 or 2k players has been solved using the Hamming odes. The hat problemwith n /∈ {2k − 1, 2k} players, and the generalized hat problem with any numberof players and at least three olors are unsolved. These hat problems may havefurther onnetions to and appliations in information tehnology.Geneti programming. In [14℄ the authors try to solve the hat problem with
n /∈ {2k − 1, 2k} players using geneti programming. The aim is not only to solvethe hat problem, but also to learn the way in whih the geneti programmingworks, and what is its e�etiveness, beause the hat problem seems to be a typialone to solve using geneti programming. As a result it an help us in solvinganother, even pratial problems using geneti programming.Biology. In [30℄ it is shown that one of the most important problems in ell bi-ology is to understand funtionality of eah and every gene of any living organism.A mammoth projet, alled the Deletion Projet, is underway to study the DNAof the yeast organism. The genome of yeast organism has been ompletely mappedout. It has about 6000 genes. Experiments on yeast ells, under the projet, havethe following basi operations:1. removal of a gene from the ell;2. plaement of the ell in a hamber at a set temperature;3. examination of every one of the remaining ells to determine whether or notit is ative.The data vetor generated is of order 1× 6000. Every entry in the vetor, exeptone, is 0 (inative) or 1 (ative). The missing entry orresponds to the deletedgene. Steps 1, 2, and 3 should be repeated with respet to every gene. Thus, atthe set temperature, we will have 6000 binary data vetors, eah vetor havingexatly one blank spae. The whole ell is also plaed in the hamber withoutremoving any of its genes. The data vetor generated will not have any blanks.Using all these data vetors, one has to guess what would have been the role of thedeleted gene had it been present in the ell. It an be hoped that the hat problemmight have some pointers.D
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[58℄ Marin KrzywkowskiMathematis: the autoreduibility of random sequenes. In the Ph.D.Thesis of Todd Ebert [20℄ and in [23℄ it an be read that the autoreduibilityof random sequenes is the problem of deduing a property of a random binarysequene when some of the bits of the sequene upon whih the property dependsare not known. This ours quite often in pratie when, due to time and otherresoure onstrains, a deision is made using only partial information. This on-sideration is losely related to omplexity theory sine a deision must be madebefore a limited resoure suh as time has been exhausted. In [22, 23℄ the authorsuse the hat problem to investigate the autoreduibility of random sequenes. Theproblem of autoreduibility of random sets, whih is strongly onneted to theproblem of autoreduibility of random sequenes, was investigated in [6, 21℄.Cellular automata. It an be seen that a similarity exists between the hatproblem on a graph and so alled ellular automata.First, let us onsider asynhronous threshold networks studied by Noga Alonin [2℄. There is a graph G with an initial sign s(v) ∈ {−1, 1} for every vertex v.When v beomes ative, it hanges its sign to s′(v) whih is the sign of majorityof its neighbors (we de�ne s′(v) = 1 if there is a tie). We say that G is in a stablestate if s(v) = s′(v) for every vertex v. The timing is synhronus if all vertiesbeome ative simultaneously. The timing is asynhronous when only one vertexbeomes ative at a time. Alon has proven that for every threshold network withall positive edge weights there is an asynhronous run with at most one sign hangeper vertex whih leads the network to a stable state.The problem above is onneted to soieties with symmetri in�uenes intro-dued by Svatjopluk Poljak and Miroslav Sura [43℄. The authors proposed a simplemodel of soiety with a symmetri funtion w(u, v) measuring the in�uene of theopinion of member v on that of member u. The opinions are hosen from the set
{0, 1, . . . , p} for some positive integer p. At eah step everyone aepts the ma-jority opinion (with respet to w) of the other members (if there are two or moremajority opinions, then he aepts the highest one). Obviously, the behavior ofsuh a soiety is periodi after some initial time. The authors have proven that thelength of the period is either one or two. They also onluded that if the in�uenefuntion w is not symmetri, then the period an be arbitrarily large.Another model of soial in�uenes was introdued by Frenh [26℄ and Harary [31℄.The main di�erenes between their model and the one of Poljak and Sura are thatthe �opinions� of the members u ∈ V are real numbers, in�uenes w(u, v) betweenmembers are nonnegative real numbers, and the opinion of a member u is theaverage opinion of the others. For a survey on this topi, see the book [45℄.For more information about ellular automata, see [18℄.From now to the end of this setion we onsider variations of the hat problem.Linear programming. One of the theorems about the hat problem provedin [25℄ an be represented as a speial ase of the well known fat that linear pro-grams with integer onstraints and a totally unimodular onstraint matrix alwayshave integer optimal solutions. The onnetion between total unimodularity andD
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On the hat problem, its variations, and their appliations [59℄the solution of integer programs was apparently �rst shown in [34℄. It an behoped that the hat problem has further onnetion to and appliation in linearprogramming.Eonomy. Niole Immorlia in her Ph.D. Thesis [35℄ and the authors of [1℄projet autions in whih the aim is to maximize the pro�t of the seller. Duringinvestigating this problem, they onsider a variation of the hat problem in whiheverybody has to guess his hat olor and we are interested in guaranteeing asmuh orret guesses as possible. This problem is related to the aution problemas follows. Consider the ase where are only two types of bidders, those with highvaluation for the item, h; and those with a low valuation for the item, l. Mapping
h to the olor red and l to the olor blue, a solution of the hat problem would o�erhalf of the h bids at a prie h and half of the l bids at a prie l, thus the pro�tof suh an aution would be at least half of optimal revenue.Mathematis: approximating a Boolean funtion. The authors of [5℄ on-sider the problem of approximating a Boolean funtion f : {0, 1}n → {0, 1} by thesign of an integer polynomial p of degree k. We say that a polynomial p(x) pre-dits the value of f(x) if, whenever p(x) ≥ 0, f(x) = 1, and whenever p(x) < 0,
f(x) = 0. A low-degree polynomial p is a good approximator for f if it predits
f at almost all points. Given a positive k, and a Boolean funtion f , the problemis how good is the best degree k approximator to f . To investigate this problem,the authors use the problem similar to the hat problem in whih every one froman odd number of players has 0 or 1 on his forehead. Everybody has to guess theparity of the bits. The game is won if more than half of all guesses are orret.3. Variations of hat problemNow, we give a omprehensive list of variations of the hat problem onsideredin literature. We also present what is already known about eah variation. Forsome variations we give a strategy whih solves the problem.(1) �The generalized hat problem with n players and q olors� was �rst inves-tigated in [40℄. Every one of n players has got a hat of one from q possible olors,and the probabilities of getting hats of all olors are equal. We say that a strat-egy is symmetri if every player makes his deision on the basis of only numbersof hats of eah olor seen by him, and all players behave in the same way. A strat-egy is nonsymmetri if it is not symmetri. The authors of [30℄ solved the hatproblem with three players and three olors by giving a symmetri strategy foundby omputer, and proving that it is optimal. In [37℄ the problem was solved byproving the optimality of a nonsymmetri strategy found without using omputer.There were also proven some upper bounds on the e�etiveness of any strategyfor the generalized hat problem with n players and q olors. Additionally, therewere onsidered the numbers of strategies that su�e to be veri�ed to solve thehat problem, or the generalized hat problem. N. Alon [3℄ proved a lower boundon the maximum hane of suess for the generalized hat problem.D
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[60℄ Marin Krzywkowski(2) There are n players and two olors. Everybody has to guess his hat olor.The aim is to �nd a strategy guaranteeing as many orret guesses as possible.It is known that guaranteeing ⌊n/2⌋ orret guesses is the best possible. Thefollowing strategy is optimal. Have players paired up. If the number of players isodd, then the unpaired one always guesses he has, let us say, a blue hat. In eahpair one player guesses he has a hat of the same olor as the other player, whilethe other player guesses he has a hat of the olor another than the �rst player, see[13, 15, 32, 49, 50℄.(3) It di�ers from the previous problem only in that there are q ≥ 3 olors. Ithas been proven that guaranteeing ⌊n/q⌋ orret guesses is the best possible. Thefollowing strategy is optimal. Number players 1 to n, and olors 1 to q. The ithplayer guesses as if the sum of olors of all hats (inluding own) is ongruent to
i modulo q, see [15℄.(4) It di�ers from the previous problem only in that there is a direted graph
G determining players seen by eah player � if there is an ar from u to v, thenthe player u an see the player v. Optimal strategy for this problem is not known.There exist some lower and upper bounds on the number t(G) whih means themaximum number of orret guesses that an be guaranteed. For a direted graph
G, let c(G) denote the maximal number of vertex-disjoint yles in G, and let
F (G) denote the minimum number of verties whose removal from G makes thegraph ayli. Then c(G) ≤ t(G) ≤ F (G), see [15℄.(5) It di�ers from the previous problem only in that there is also a graph Hdetermining eah player to guess the hat olor of the partiular player (possiblyown) � if there is an ar from u to v, then the player u has to guess the hat olorof the player v. Let tq(G,H) mean the maximum number of orret guesses thatan be guaranteed when there are q olors. There is known only the fat that
tq(G,H) > 0 if and only if there is a vertex of H whose outdegree is greater than
1, or there is a direted yle in the union of G and H , see [15℄.(6) It di�ers from the previous problem only in that there are a1, a2, . . ., aq hatsof the olor 1, 2, . . . , q, respetively. There are few fats known for the variation,one of them is as follows. By t(n; a1, a2, . . . , aq) let us denote the maximum numberof orret guesses that an be guaranteed when there are n players, and a1 hatsof the �rst olor, a2 hats of the seond olor, and so on up through aq hats of qtholor. Of ourse, we need a1 + a2 + . . . + aq ≥ n to ensure that we have enoughhats. Without loss of generality we may assume that 0 < ai ≤ n for all i. It iseasy to notie that if a1 + a2 + . . .+ aq = n, then t(n; a1, a2, . . . , aq) = n, see [15℄.(7) There are n players standing in a line and two olors. Everybody an seethe hat olors of players before him, but neither his nor those of players behindhim. Players have to guess their hat olors sequentially, starting from the bakof the line. Everybody an hear the answer alled out by eah player. We areinterested in a strategy guaranteeing as many orret guesses as possible. Thefollowing strategy is optimal. If the last player sees an odd number of red hatsin front of him, then he guesses he has a red hat. Otherwise he guesses he hasa blue hat. Player n−1 will dedue his own hat olor from the information said byD
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On the hat problem, its variations, and their appliations [61℄the last player. Similar reasoning applies to eah player going up the line. Player
i sums the number of red hats he sees and red guesses he hears. If the sum isodd, then he guesses he has a red hat. Otherwise he guesses he has a blue hat.Of ourse, it is not possible to guarantee the orretness of the guess of the playerwho guesses as �rst, thus guaranteeing n− 1 orret guesses is the best possible,see [4, 19, 27, 49℄.(8) It di�ers from the previous problem only in that there are q ≥ 3 olors.Now also the maximum number of orret guesses that an be guaranteed is n−1.By v1, v2, . . . , vn let us denote players, and by 1, 2, . . . , q let us denote olors. Let
yi represent the hat olor of player vi, and let us de�ne Yi =

∑n
j=i yj modq.The following strategy is optimal. Player v1 guesses he has a hat of the olor

Y2 =
∑n

i=2 yimodq. For eah i > 1 player vi an see the values yi+1, . . . , yn, andhas heard the values Y2 and y2, . . . , yi−1. As an e�et, he solves the expressionfor Y2 to get yi. As the result, n − 1 players guess their hat olors orretly, see[4, 19℄.(9) It di�ers from the two previous problems only in that the seeing radiusand/or the hearing radius are limited (there are q ≥ 2 olors). The seeing radiusof a player is the maximum number of players that he an see ahead of him. Thehearing radius of a player is the maximum number of players ahead of him thatan hear him. We assume that the seeing (hearing, respetively) radius is thesame for all players, and we denote it by s (h, respetively). For this variation it isknown only that the maximum number of orret guesses that an be guaranteedis n− ⌈n/(min(s, h) + 1)⌉, see [4℄.(10) There are n players and two olors. There is also a lok and as everyminute elapses, everybody an guess his hat olor. Time elapses after n minutes,and everybody who has not tried to guess his hat olor loses. If some player guesseshis hat olor wrong, then all players lose. Is there a strategy suh that everybodywins? No, although we an try to �nd a strategy suh that as many players aspossible wins, see [27℄.(11) It di�ers from the previous problem only in that there is an additionalplayer who omes to the team and says �somebody has a blue hat� or �everybodyhas a red hat� or something else. Does it an help to guarantee that everybody willwin? Assume that the additional player says that somebody has a blue hat. Letus onsider the following strategy. Everybody ounts blue hats he sees. After kminutes, if nobody has tried to guess his hat olor, then everybody who sees k− 1red hats guesses he has a red hat. If at least two players have a red hat, then theinformation from the additional player that somebody has a red hat is a fat knownby everybody. Paradoxially, it has a value. The information from the additionalplayer is alled ommon knowledge. That is, everybody knows it, and everybodyknows that everybody knows it, and everybody knows that everybody knows thateverybody knows it, et. Players an use this meta-information to derive theirown hat olors, see [10, 27℄.(12) There are three players, A, B, and C. There are four green and four redstamps. Players are blindfolded, and two stamps are pasted on the head of eahD
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[62℄ Marin Krzywkowskiplayer. After removing the blindfolds, A, B, and C are asked in turn about olorsof own stamps. No player knows the answer. Now A is asked one more. Heagain does not know the answer. Now B is asked, and he replies �yes�. What arethe olors of the stamps of B? The answer is that he has one green, and one redstamp, see [29℄.(13) There are three players and two olors. Everybody has to simultaneouslyguess his hat olor or pass. The team wins if at least one player guesses his hatolor orretly and nobody guesses his hat olor wrong. The probabilities of theeight ases whih an appear does not have to be the same. How does it in�uenethe strategy whih should be applied by the team? It has been proven (usingomputer) that to solve the problem it su�es to alulate the hane of suessfor a family of twelve strategies, see [30℄.(14) It di�ers from the previous variation only in that there are n players and
q ≥ 2 olors, see [40℄.(15) In the �Gabay � O'Connor hat problem� there are an in�nite number ofplayers numbered 1, 2, . . . , and two olors. Everybody has to guess his hat olor.The team wins if only �nite number of guesses are wrong. Is there a strategyguaranteeing that the team will win? Yes, but only if the Axiom of Choie holds,see [32, 33, 51℄.(16) The variation alled �All right or all wrong� di�ers from the previousproblem only in that the team wins if and only if all guesses are orret or allguesses are wrong. Similarly as for the previous variation, the win of the team anbe guaranteed if and only if the Axiom of Choie holds, see [51℄.(17) There are ten players and every one of them has a digit from 0 to 9 writtenon the forehead. Everybody has to guess his digit. The team wins if at least oneplayer does it orretly. The aim is to �nd a strategy guaranteeing that the teamwill win. Let us onsider the following strategy. Number players 0 to n − 1. Let
s be the sum of the numbers on the foreheads of all players, modulo n. Now letplayer k guess that s = k, that is, guess that his own number is k minus the sumof the numbers he sees, modulo n. This will ensure that player s will be orret,see [51℄.(18) The variation alled �The olor-blind prisoner� di�ers from the previousproblem in that numbers are written in red, one player has a green skin, and oneanother player does not distinguish green and red. Thus he deides about his guesson the basis of only eight digits. Now it is not possible to guarantee that the teamwill win, see [51℄.(19) In the variation alled �Numbers and hats� there are n players, and everyone of them has a distint real number written on the forehead. Everybody has tohoose a blue or red hat for himself. The aim is for the hat olors to alternate inthe order determined by the real numbers. There is a strategy guaranteeing thatthe team will win, but it is very long and ompliated, see [51℄.(20) In the �Voting puzzle 1� there are an odd number of players, say n. EveryD
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On the hat problem, its variations, and their appliations [63℄one of them has a random bit written on the forehead. Players have to vote onthe parity of the bits (by voting 0 or 1).The result of the voting is the bit hosenmore often. Players win if the result of the voting is equal to the parity of the bits.The aim is to maximize the hane of suess. Optimal strategy gives the haneof suess equaling n/(n+ 1). For the strategy, see [5℄.(21) The �Voting puzzle 2� di�ers from the previous problem only in thateverybody an make as many votes as he wants. Optimal strategy gives the haneof suess equaling (2n − 1)/2n. For the strategy, see [5℄.(22) The �Voting puzzle 3� is as follows. Let S be a set of randomly hosen nbits. There are (

n
k

) players, every one of them an see another k-element subsetof S. Players partiipate in a voting, the result of whih should be the parityof the bits. Everybody has to make an integer number of votes. If their sum ispositive, then the result of the voting is 0. If it is negative, then the result is 1.If the sum is zero, then the result of the voting is not de�ned. A strategy, basedon approximating a Boolean funtion, guarantees that the team will win, see [5℄.(23) In the variation alled �Not distinguishable players� there are n playersand q ≥ 2 olors. Every player an see everybody exluding him, but annotdistinguish them. Thus everybody makes his guess on the basis of only numbersof hats of eah olor seen by him. Every player guesses his hat olor or passes.The team wins if at least one player guesses his hat olor orretly and nobodyguesses his hat olor wrong. It has been proven that for large n the maximumhane of suess is approximately (1 + (1/3)q−1)/2, for details see [28℄.(24) It di�ers from the previous variation only in that all players have to behavein the same way, see [40℄.(25) The variation alled �Players do not distinguish olors 1� is as follows.There are n olor-blind players and two olors. Before �tting players with hatssomebody says players what will be the probability of getting a blue hat, andwhat of a red hat. By q let us denote the probability of getting a blue hat.It is known that for large n the maximum hane of suess is approximately
(1− q)(1−q)/q − (1 − q)1/q, see [28℄.(26) The variation �Players do not distinguish olors 2� di�ers from the previousproblem only in that later (after �tting with hats) somebody says what was theprobability of getting a blue hat, and what of a red hat (somebody says how manyblue and how many red hats were plaed). It is known that, omparing to theprevious variation, it does not hange the hane of suess of optimal strategy,see [28℄.(27) In the variation alled �Crowns of the Minotaur� there are three playersand every one of them is �tted by the Minotaur with a blue or red rown. Everyplayer bets zero or more points on guessing his rown olor. A player wins or losesas many points as he has bet, depending on the auray of his guess. Then thewon and the lost points are added separately, and the team wins if there are morewon than lost points. It is known that the maximum hane of suess is equalto 7/8. The following strategy is optimal. At �rst, number players who is �rst,D
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[64℄ Marin Krzywkowskiseond, and third. The �rst player bets one point for red. If the seond playersees that the �rst has a blue rown, then he bets two points for red, otherwisepasses. If the third player sees that the �rst two have both blue rowns, then hebets four points for red, otherwise passes. Unless every player has a blue rown(hane 1/8), everybody wins, see [48℄.(28) In �The disarded hat variation� there are 4k− 1 players, and 2k blue and
2k red hats. Every player is �tted with a hat, and one hat is taken away. Theneverybody has to guess his hat olor. The aim is to guarantee as many orretguesses as possible. It is known that guaranteeing 3k − 1 orret guesses is thebest possible. For an optimal strategy, involving yli arrangement of players,see [25℄.(29) In �The everywhere balaned variation� there are n players and q ≥ 2olors. Let {c1, c2, . . . , cq} be the set of olors, and let Hi mean the set of playershaving a hat of olor ci. Nobody knows neither to whih set he belongs nor whatare the ardinalities of sets Hi. The aim is to �nd a strategy guaranteeing thatin every set Hi the number of players guessing their hat olors orretly is between
⌊|Hi|/q⌋ and ⌈|Hi|/q⌉. For suh strategy (a ompliated one), see [25℄.(30) The variation �Hat problem on a direted graph asking for at least oneorret guess� is as follows. There are n players and two olors. We have a diretedgraph G determining players seen by eah player � if there is an ar from u to v,then the player u an see the player v. What subgraph has to have the visibilitygraph to ensure the existene of a strategy guaranteeing at least one orret guess?It has to have a yle as a subgraph, for details see [32℄.(31) It di�ers from the previous problem in that there are n players and nolors. It is known that now the visibility graph has to be omplete, see [32℄.(32) It di�ers from the two previous problems in that there are n players and qolors. What is the maximum number of orret guesses that an be guaranteed?The answer is ⌊n/q⌋, see [32℄.(33) There are n players and q ≥ 2 olors. Players are allowed more thanone round in whih to guess their hat olors. During eah round everybody mustsimultaneously say �My hat olor is i�, �My hat olor is not i�, or �Pass�, where
i is one of the olors. However, if everybody passes in any round, then the teamloses. The rounds ontinue, with eah player making a guess or passing, as long asno inorret guess is made and at least one player guesses his hat olor orretly.Then the team wins. It has been proven that the maximum hane of suess is
n(q − 1)/(1 + n(q − 1)), see [16℄.(34) In the variation alled �Zero-information strategies� there are n playersand two olors. Everybody has to simultaneously guess his hat olor or pass.The team wins if at least one player guesses his hat olor orretly and nobodyguesses his hat olor wrong. Every player makes his deision without aess toany information. Now a winning probability of 1/4 is asymptotially attainableand optimal, see [40℄.D
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On the hat problem, its variations, and their appliations [65℄(35) �The hat problem on a graph� is as follows. There is a graph, where vertiesorrespond to players and a player an see eah player to whom he is onnetedby an edge. This variation of the hat problem was �rst onsidered in [38℄. Therewere proven some general theorems about the hat problem on a graph, and theproblem was solved on trees. Additionally, there was onsidered the hat problemon a graph suh that the only known information are degrees of verties. In [39℄the problem was solved on the yle C4. Further results about the hat problemon a graph were established by Uriel Feige [24℄. For example, there the problemwas solved for bipartite graphs, and planar graphs ontaining a triangle. Based onthese and some other results, the author onjetured that for every graph thereis an optimal strategy in whih all verties whih do not belong to the maximumlique always pass.(36) �The modi�ed hat problem� is as follows. There are n ≥ 3 players. Ev-eryone of them is randomly �tted with a blue or red hat. Players do not have toguess their hat olors simultaneously. In this variation of the hat problem playersguess their hat olors by oming to the basket and throwing the proper ard intoit. Every player has got two ards with his name and the sentene �I have gota blue hat� or �I have got a red hat�. If someone wants to resign from answering,then he does not do anything. The problem was investigated in [36℄. There wasgiven an optimal strategy for the problem whih always sueeds.Referenes[1℄ G. Aggarwal, A. Fiat, A. Goldberg, J. Hartline, N. Immorlia, M. Sudan, De-randomization of autions, Proeedings of the 37th Annual ACM Symposium onTheory of Computing, 619�625, ACM, New York, 2005.[2℄ N. Alon, Asynhronous Threshold Networks, Graphs Combin. 1 (1985), 305�310.[3℄ N. Alon, Problems and results in extremal ombinatoris. II, Disrete Math. 308(2008), 4460�4472.[4℄ S. Aravamuthan, S. Lodha, Covering odes for Hats-on-a-line, Eletron. J. Com-bin. 13 (2006), Researh Paper 21, 12 pp.[5℄ J. Aspnes, R. Beigel, M. Furst, S. Rudih, The expressive power of voting polyno-mials, Combinatoria 14 (1994), 135�148.[6℄ R. Beigel, L. Fortnow, F. Stephan, In�nitely-often autoreduible sets, SIAM J.Comput. 36 (2006), 595�608.[7℄ Berkeley Riddles, www.of.berkeley.edu/wwu/riddles/hard.shtml.[8℄ M. Bernstein, The hat problem and Hamming odes, MAA Fous, November, 2001,4�6.[9℄ W. Blum, Denksport für Hutträger, Die Zeit, May 3, 2001.[10℄ J. Blowers, Hats and hangar queens, http://jimvb.home.mindspring.om/hat-queen.htm.[11℄ M. Breit, D. Deshommes, A. Falden, Hats required: perfet and imperfet strategiesfor the hat problem, manusript.[12℄ E. Brown, K. Mellinger, Kirkman's shoolgirls wearing hats and walking through�elds of numbers, Math. Mag. 82 (2009), 3�15.D
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[66℄ Marin Krzywkowski[13℄ J. Buhler, Hat triks, Math. Intelligener 24 (2002), 44�49.[14℄ E. Burke, S. Gustafson, G. Kendall, A Puzzle to hallenge geneti programming,Geneti Programming, 136�147, Leture Notes in Computer Siene, Springer,2002.[15℄ S. Butler, M. Hajianghayi, R. Kleinberg, T. Leighton, Hat guessing games, SIAMJ. Disrete Math. 22 (2008), 592�605.[16℄ L. Calloway, J. Casher, S. Hoehn, From guessing games to ompat diss: someappliations of oding theory, manusript.[17℄ G. Cohen, I. Honkala, S. Litsyn, A. Lobstein, Covering Codes, North-Holland,Mathematial Library 54, 1997.[18℄ J. Demongeot, E. Goles, M. Thuente, Dynamial Systems and Cellular Automata,Aademi Press, London 1985.[19℄ N. Do, Communiating with eyes, hats and light bulb, Austral. Math. So. Gaz.33 (2006), 157�164.[20℄ T. Ebert, Appliations of reursive operators to randomness and omplexity, Ph.D.Thesis, University of California at Santa Barbara, 1998.[21℄ T. Ebert, W. Merkle, Autoreduibility of random sets: a sharp bound on thedensity of guessed bits, Mathematial foundations of omputer siene 2002, 221�233, Leture Notes in Comput. Si. 2420, Springer, Berlin, 2002.[22℄ T. Ebert, W. Merkle, H. Vollmer, On the autoreduibility of random sequenes,SIAM J. Comp. 32 (2003), 1542�1569.[23℄ T. Ebert, H. Vollmer, On the autoreduibility of random sequenes, Mathematialfoundations of omputer siene 2000 (Bratislava), 333�342, Leture Notes inComput. Si. 1893, Springer, Berlin, 2000.[24℄ U. Feige, On optimal strategies for a hat game on graphs, submitted.[25℄ U. Feige, You an leave your hat on (if you guess its olor), Tehnial ReportMCS04-03, Computer Siene and Applied Mathematis, The Weizmann Instituteof Siene, 2004, 10 pp.[26℄ J. Frenh, A formal theory of soial power, Psyhologial Review 63 (1956), 181�194.[27℄ A. Frieze, D. Sleator, Puzzle 15: hat problems, Alan and Danny's puzzle page,www.s.mu.edu/puzzle.[28℄ D. Gale, I. Adler, Colored gaps and overing odes, manusript, 2001.[29℄ M. Gardner, The Seond Sienti� Amerian Book of Mathematial Puzzles andDiversions, University of Chiago Press, Chiago, 1987.[30℄ W. Guo, S. Kasala, M. Rao, B. Tuker, The hat problem and some variations,Advanes in distribution theory, order statistis, and inferene, 459�479, Stat.Ind. Tehnol., Birkhäuser Boston, 2006.[31℄ F. Harary, A riterion for unanimity in Frenh's theory of soial power, Studiesin Soial Power, 168�182, University of Mihigan Press, Ann. Arbor, 1959.[32℄ C. Hardin, A. Taylor, An introdution to in�nite hat problems, Math. Intelligener30 (2008), 20�25.[33℄ C. Hardin, A. Taylor, Hat problem observations, manusript.D
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On the hat problem, its variations, and their appliations [67℄[34℄ A. Ho�man, J. Kruskal, Integral boundary points of onvex polyhedra, Linear in-equalities and related systems, 223�246, Annals of Mathematis Studies, no. 38,Prineton University Press, Prineton, 1956.[35℄ N. Immorlia, Computing with strategi agents, Ph.D. Thesis, Massahusetts In-stitute of Tehnology, 2005.[36℄ M. Krzywkowski, A modi�ed hat problem, submitted.[37℄ M. Krzywkowski, A more olorful hat problem, submitted.[38℄ M. Krzywkowski, Hat problem on a graph, Math. Pannon. 21 (2010), 3�21.[39℄ M. Krzywkowski, Hat problem on the yle C4, Int. Math. Forum 5 (2010), 205�212.[40℄ H. Lenstra, G. Seroussi, On hats and other overs, IEEE International Symposiumon Information Theory, Lausanne, 2002.[41℄ S. Litsyn, Simon Litsyn's online table of overing odes, www.eng.tau.a.il/lit-syn/tabler.[42℄ J. O'Connor, E. Robertson, Hamming biography, www.history.ms.stand.a.uk/Biographies/Hamming.html.[43℄ S. Poljak, M. Sura, On periodial behavior in soieties with symmetri in�uenes,Combinatoria 3 (1983), 119�121.[44℄ J. Poulos, Could you solve this $1 million hat trik?, abNews, November 29,2001.[45℄ F. Roberts, Disrete Mathematial Models, with Appliation to Soial, Biologial,and Environmental Problems, Prentie-Hall, Englewood Cli�s, 1976.[46℄ S. Robinson, Why mathematiians now are about their hat olor, The New YorkTimes, Siene Times Setion, page D5, April 10, 2001.[47℄ S. Roman, Coding and Information Theory, Springer-Verlang, New York, 1992.[48℄ D. Sasha, Crowns of the Minotaur, Sienti� Amerian, Otober 2001, p. 82.[49℄ P. Winkler, Games people don't play, Puzzlers' Tribute, 301�313, A.K. Peters,Natik, Massahusetts, 2001.[50℄ P. Winkler, Mathematial Puzzles: A Connoisseur's Colletion, A.K. Peters,Wellesley, Massahusetts, 2004.[51℄ P. Winkler, Mathematial Mind-Benders, A.K. Peters, Wellesley, Massahusetts,2007. Faulty of Eletronis, Teleommuniations and InformatisGda«sk University of TehnologyNarutowiza 11/12, 80-233 Gda«skPolandE-mail: fevernova�wp.plReeived: 22 April 2010; �nal version: 9 June 2010;available online: 30 July 2010.D
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