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1. Introduction

The theory of Markov chains is a well-developed field of mathematics whose applications arise

in many different areas of science and technology. However, there are some biological and physical

models which cannot be described by homogeneous chains. One of them is a model related to po-

pulation genetics. To examine the problemof the evolution of biologic system, the notion of a quadratic

stochastic process was introduced (see [8] for review). The fundamental issue is the study of the limit

behavior of suchprocesses. In [3] the authors considered the concept of the ergodic principle (originally

this notion was introduced by Kolmogorov in [7]) for both quadratic stochastic processes and Markov

chains and discussed the relationship between them. Unfortunately, some parts of the results obtained

in [3] are false, namely Theorem 2.2 and those subsequent theorems which are partly based on it.
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In this paper we study different types of limit behavior, e.g. mixing and ergodicity, of infinite di-

mension nonhomogeneous Markov chains. We also examine the geometric structure of the set of all

discrete time nonhomogeneous Markov chains. We shall see that the set of Markov chains which are

mixing is not dense in norm operator topology, but the weaker property, i.e. norm almost mixing, is

generic for both norm and strong operator topologies. Finally, we improve on and generalize some

results presented in [3].

Throughout the paper we consider

�1 =
{
x = (xn) : ‖x‖1 =

∞∑
n=1

|xn| < ∞, xn ∈ R

}
,

D = {x ∈ �1 : xn � 0, ‖x‖1 = 1}.
A matrix [Qij]i,j∈N is called stochastic if

Qij � 0;
∞∑
j=1

Qij = 1.

The convex set of all stochastic matrices is denoted by S.

Definition 1.1. A family of stochastic matrices

Q = {[Qm,n
ij ]i,j∈N : m, n ∈ N, n − m � 1}

is called a discrete time (nonhomogeneous) Markov chain if for any natural numbers m, l, n such that

m < l < n the following condition, known as the Chapman–Kolmogorov equation, is satisfied:

Q
m,n
ij =

∞∑
k=1

Q
m,l
ik Q

l,n
kj .

Every stochastic matrix defines a linear operator Qm,n : �1 → �1 as follows:

(Qm,n(x))j =
∞∑
i=1

Q
m,n
ij xi, x = (xn) ∈ �1.

The norm of this operator is given by

‖|Qm,n|‖ = sup
x∈D

‖Qm,nx‖1 = 1.

Stochasticity of (Q
m,n
ij )i,j∈N implies that

‖|Qm,n|‖ = 1 and Qm,n(D) ⊂ D.

Notice that the Chapman–Kolmogorov equation can be presented in the form

∀m<l<n∈N Qm,n = Ql,n ◦ Qm,l,

where ◦ stands for the composition of linear operators (multiplication of matrices).

Remark 1.2. Applying a Chapman–Kolmogorov property, a Markov chain Q may be considered as a

mapping

N 	 n 
→ Qn,n+1 ∈ S.
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In fact,

Qm,n = Qn−1,n ◦ . . . ◦ Qm+1,m+2 ◦ Qm,m+1.

The set of all Markov chains will be denoted by S , i.e.

S =
{
(Qn,n+1)n�1 : Qn,n+1 are linear operators defined by

{
[Qn,n+1

ij ]i,j∈N

} }
.

Tosimplify thenotation, elementsof thesetS will bewritten inbold, i.e. insteadofwriting (Qn,n+1)n�1∈ S we will write Q ∈ S .

Definition 1.3. Given t ∈ [0, 1], a convex combination T(t) of two nonhomogeneous Markov chains

Q and R ∈ S is defined as

Tn,n+1(t) = tQn,n+1 + (1 − t)Rn,n+1.

Moreover,

Tm,n(t) = Tn−1,n(t) ◦ . . . ◦ Tm+1,m+2(t) ◦ Tm,m+1(t) for t ∈ [0, 1].
It follows that T(t) ∈ S for every t ∈ [0, 1] and, moreover, [0, 1] 	 t 
→ T(t) ∈ S is continuous

(when S is endowed with a suitable topology), and T(0) = R, T(1) = Q. In particular, the set S has

an affine structure and therefore is arcwise connected.

There are several topologies considered in studying the geometric structure of the set S . We have:

(1) The sup norm operator topology induced by metric ρn. sup : S × S → R+ ∪ {0} defined by

ρn. sup(Q, T) = sup
m

‖|Qm,m+1 − Tm,m+1|‖.

(2) The
∑

norm operator topology induced by metric ρn.
∑ : S × S → R+ ∪ {0} defined by

ρn.
∑(Q, T) =

∞∑
m=1

1

2m
‖|Qm,m+1 − Tm,m+1|‖.

(3) The
∑

sup strong operator topology induced by themetricρso. sup : S ×S → R+∪{0}defined
by

ρso. sup(Q, T) =
∞∑
l=1

1

2l
sup
m

‖Qm,m+1e(l) − Tm,m+1e(l)‖1,

where {e(m)} is a standard basis in �1, i.e. e(m) = (0, 0, . . . , 1︸ ︷︷ ︸
m

, 0, . . .), m ∈ N.

(4) The
∑ ∑

strong operator topology induced by the metric ρso.
∑ : S × S → R+ ∪ {0} defined

by

ρso.
∑(Q, T) =

∞∑
m,l=1

1

2m+l
‖Qm,m+1e(l) − Tm,m+1e(l)‖1,

where {e(m)} is a standard basis in �1.
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Clearly ρn. sup generates the strongest topology and ρso.
∑ generates the weakest. Note that metrics

ρn.
∑ and ρso. sup cannot be compared. Indeed, consider Qj = (Q

m,m+1
j )j�1 ∈ S defined as follows:

Q
m,m+1
j =

⎧⎨⎩ Q , if 1 � m < j,

I, if m � j,

where I stands for the identity operator and Q = (Q)m�1 is such that Q �= I. Then

ρn.
∑(Qj,Q) =

∞∑
m=1

1

2m
‖|Qm,m+1

j − Qm,m+1|‖

=
j−1∑
m=1

1

2m
‖|Q − Q |‖ +

∞∑
m=j

1

2m
‖|I − Q |‖

= 1

2j−1
‖|I − Q |‖ → 0 as j → ∞.

On the other hand,

ρso. sup(Qj,Q) =
∞∑
l=1

1

2l
sup
m

‖Qm,m+1
j e(l) − Qm,m+1e(l)‖1

=
∞∑
l=1

1

2l
‖e(l) − Qe(l)‖1 > 0.

Thus, ρso. sup(Qj,Q) � 0 as j → ∞. It follows that ρn.
∑ is not stronger than ρso. sup.

Now let us define Qj = (Q
m,m+1
j )j�1 ∈ S as follows:

Q
m,m+1
j e(l) =

⎧⎨⎩ e(l), if 1 � l � j,

e(1), if l > j,

that is, Q
m,m+1
j x = (x1 + ∞∑

k=j+1

xk, x2, . . . , xj, 0, . . .) for any x = (x1, x2, . . .). Note that Qj =
(Qj)m�1 = (Qj,Qj, . . .). Consider I = (I, I, . . .) ∈ S , where I stands for the identity operator.

Observe that

ρso. sup(Qj, I) =
∞∑
l=1

1

2l
sup
m

‖Qm,m+1
j e(l) − Ie(l)‖1

=
∞∑
l=1

1

2l
‖Qm,m+1

j e(l) − e(l)‖1

=
∞∑

l=j+1

1

2l
‖e(1) − e(l)‖1 =

∞∑
l=j+1

1

2l
· 2 = 1

2j−1
→ 0 as j → ∞.

On the other hand,

ρn.
∑(Qj, I) =

∞∑
m=1

1

2m
‖|Qm,m+1

j − I|‖

=
( ∞∑
m=1

1

2m

)
‖|Qj − I|‖ = 1 · 2 = 2 � 0 as j → ∞.

Thus ρso. sup is not stronger than ρn.
∑. It follows that themetrics ρn.

∑ and ρso. sup are not comparable.
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The relationships between the considered metrics are illustrated in the diagram below:

2. Norm mixing

This paper is dedicated to the geometric structure of the sets of those operatorsQ ∈ S which have

asymptotically stationary density (we call them mixing). Of course we have different types of mixing

depending on considered topologies. In this section we examine the strongest case, the normmixing.

We start with

Definition 2.1. A nonhomogeneous Markov chain Q is said to be norm mixing, if there exists a one-

dimensional (stochastic) projection P ∈ S such that for every mwe have

lim
n→∞ ‖|Qm,n − P|‖ = 0.

The set of all norm mixing Markov chains is denoted by Snm.

Remark 2.2. A mixing Markov chain is sometimes called norm asymptotically stable. Equivalently it

may be defined by

lim
n→∞ sup

x∈D
‖Qm,nx − p‖1 = 0,

where p ∈ D is a fixed probabilistic vector (then each row of the limit matrix P coincides with p).

The following theorem shows that norm mixing nonhomogeneous Markov chains are rare, which

is the opposite of the homogeneous case (cf. [2, Theorem 2.4]). This supports what was remarked on

by Iosifescu [5] that norm mixing is not a "natural" concept for nonhomogeneous Markov chains and

that Snm is a very restricted class (see [5, Remark 4]).

Theorem 2.3. The setS c
nm of all Markov chains which are not normmixing isρn. sup topology dense subset

of S . Moreover, in this case its interior IntS c
nm �= ∅.

Proof. We will show that

∀Q∈S ∀ε>0 ∃Q∗∈S c
nm

ρn. sup(Q,Q∗) < 2ε.

Given an arbitrary Q ∈ S and 0 < ε < 1 consider a convex combination

Qm,m+1∗ = (1 − ε)Qm,m+1 + εRm,m+1,
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where R ∈ S is defined as follows: for any vector x = (x1, x2, . . .) ∈ D ,

Rm,m+1x = (0, . . . , 0︸ ︷︷ ︸
m

, x1, x2, . . .).

Then

ρn. sup(Q∗,Q) = sup
m

‖|(1 − ε)Qm,m+1 + εRm,m+1 − Qm,m+1|‖
= ε sup

m
‖|Qm,m+1 − Rm,m+1|‖ � 2ε.

It remains to show that Q∗ /∈ Snm. Suppose that, on the contrary, there exists p ∈ D such that

lim
n→∞Qm,n∗ p = p. Since p ∈ D then there exists M ∈ N such that

M∑
j=1

pj > 1 − ε.

Hence

M∑
j=1

(Qm,n∗ p)j −→
M∑
j=1

pj > 1 − ε, n → ∞.

On the other hand it follows from the definition of Q∗ that

M∑
j=1

(Qm,n+1∗ p)j � 1 − ε,

when m is large enough, which is a contradiction. Indeed, if m > M, then

M∑
j=1

(Qm,n+1∗ p)j = 1 −
∞∑

j=M+1

(Qm,n+1∗ p)j

= 1 −
∞∑

j=M+1

(
Qn,n+1∗ (Qm,n∗ p)

)
j

= 1 −
∞∑

j=M+1

(((1 − ε)Qn,n+1 + εRn,n+1)(Qm,n∗ p))j

� 1 − ε
∞∑

j=M+1

(Rn,n+1(Qm,n∗ p))j = 1 − ε.

It follows that S c
nm is ρn. sup dense in S (in particular S c

nm is ρn.
∑ dense).

It remains to show that IntS c
nm �= ∅ for the ρn. sup topology. For this consider the open ball

K(R, 1) = {T ∈ S : ρn. sup(T, R) < 1},
where as before

Rm,m+1x = (0, . . . , 0︸ ︷︷ ︸
m

, x1, x2, . . .).

We will show that K(R, 1) ⊆ S c
nm. In fact, if T ∈ K(R, 1), then for some ε > 0

sup
x∈D

‖Tm−1,mx − Rm−1,mx‖1 � ρn. sup(T, R) = 1 − ε.
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In particular, for every m > M � 1 and x ∈ D ,

M∑
j=1

(T0,mx)j � ρn. sup(T, R) = 1 − ε.

It follows that

sup
M∈N

lim sup
m→∞

M∑
j=1

(T0,mx)j � ρn. sup(T, R) = 1 − ε < 1,

and therefore T has no invariant densities. Hence T ∈ S c
nm. �

Topologies on S generated by ρn. sup and ρn.
∑ differ. In fact, we have

Proposition 2.4. The set Snm is ρn.
∑ dense in S .

Proof. Let T ∈ S and ε > 0 be taken arbitrarily. We findM ∈ N such that 1

2M−1 < ε. Define

Tm,m+1
ε =

⎧⎨⎩ Tm,m+1, if m � M,

E, if m > M,

where Ex =
((∑∞

j=1 xj

)
, 0, 0, . . .

)
. Clearly E = (Em,m+1)m�1 ∈ S (where for every m ∈ N,

Em,m+1 = E) is a stochastic projection (and it is norm mixing). We find

lim
n→∞ sup

x∈D
‖Tm,n
ε x − (1, 0, . . .)‖1 = 0.

It follows that

∀m∈N lim
n→∞ ‖|Tm,n

ε − E|‖ = 0.

Hence the Markov chain Tε is norm mixing. Obviously,

ρn.
∑(T, Tε) =

M∑
m=1

1

2m
‖|Tm,m+1 − Tm,m+1

ε |‖ +
∞∑

m=M+1

1

2m
‖|Tm,m+1 − E|‖

� 2 · 1

2M
= 1

2M−1
< ε.

We conclude that Tε ∈ Snm. �

The metric ρn. sup is much more relevant concerning the geometric structure of S . It will be used

in the sequel.

Definition 2.5. A (nonhomogeneous) Markov chain Q is said to be norm almost mixing, if

∀m∈N lim
n→∞ sup

x,y∈D
‖Qm,nx − Qm,ny‖1 = 0.

The set of all norm almost mixing Markov chains is denoted by Snam.

In [6] norm almost mixing is called norm completely mixing. The reader will find the following

theorem as a generalization of genericity of norm completely mixing for homogeneousMarkov chains

(cf. [6, Theorem 3]).
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Theorem 2.6. Snam is a dense Gδ subset of S in both ρn. sup and ρn.
∑ topologies.

Proof. First we will show that the set Snam is a ρn. sup dense subset of S , i.e. we will show that

∀Q∈S ∀ε>0 ∃Qε∈Snam
ρn. sup(Q,Qε) < 2ε

(the denseness in ρn.
∑ metric follows from Proposition 2.4 or from the fact that ρn.

∑ � ρn. sup).
Given an arbitrary Q ∈ S and 0 < ε < 1 consider a convex combination

Qn,n+1
ε = (1 − ε)Qn,n+1 + εE,

where E is such as in the proof of the Proposition 2.4 (clearly ρn. sup(Q,Qε) < 2ε). By convexity

Qε ∈ S . For any pair of vectors x, y ∈ D we have

‖Qn−1,n
ε x − Qn−1,n

ε y‖1 = (1 − ε)‖Qn−1,nx − Qn−1,ny‖1

= (1 − ε)‖Qn−1,n(x − y)‖1

� (1 − ε)‖x − y‖1.

Moreover,

‖Qm,n
ε x − Qm,n

ε y‖1 = ‖Qn−1,n(Qm,n−1x − Qm,n−1y)‖1

� (1 − ε)‖Qm,n−1x − Qm,n−1y‖1, x, y ∈ D.

Iterating the last inequality for any x, y ∈ D we have

‖Qm,n
ε x − Qm,n

ε y‖1 � (1 − ε)n−m‖x − y‖1,

and so

‖Qm,n
ε x − Qm,n

ε y‖1 � 2(1 − ε)n−m.

As the above inequality holds true for any pair of vectors x, y ∈ D , then

sup
x,y∈D

‖Qm,n
ε x − Qm,n

ε y‖1 � 2(1 − ε)n−m.

Therefore,

lim
n→∞ sup

x,y∈D
‖Qm,n
ε x − Qm,n

ε y‖1 = 0.

Thus Snam is a dense subset of S in both ρn.
∑ and ρn. sup metrics.

It remains to show that Snam is a Gδ subset of S . Observe that the sequence ‖Qm,nx − Qm,ny‖1 is

nonincreasing. Indeed,

‖Qm,n+1x − Qm,n+1y‖1 = ‖Qn,n+1(Qm,nx)− Qn,n+1(Qm,ny)‖1

� ‖Qm,nx − Qm,ny‖1.

It follows that the sequence sup
x,y∈D

‖Qm,nx − Qm,ny‖1 is nonincreasing. Therefore, we obtain that

Snam =
{
Q ∈ S : ∀m∈N lim

n→∞ sup
x,y∈D

‖Qm,nx − Qm,ny‖1 = 0

}

=
∞⋂

m=1

∞⋂
k=1

∞⋃
n=m+1

{
Q ∈ S : sup

x,y∈D
‖Qm,nx − Qm,ny‖1 <

1

k

}
.
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To finish the proof we only need to notice that for fixedm < n the function

S 	 Q 
→ sup
x,y∈D

‖Qm,nx − Qm,ny‖1

is ρn.
∑ continuous. Hence, Snam is a Gδ set for themetric ρn.

∑ (so it is a Gδ set for any stronger metric

like ρn. sup). �

3. Strong operator topology mixing

In this section we study the strong operator topology mixing. We begin with

Definition 3.1. A nonhomogeneous Markov chain Q is said to be strong almost mixing if

∀m ∀i ∀j lim
n→∞ ‖Qm,n

i. − Q
m,n
j. ‖1 = 0.

The set of all strong almost mixing Markov chains is denoted by Ssam.

Theorem 3.2 (Schur). A sequence (xn) ⊂ �1 is weakly convergent if and only if it converges in norm, i.e.

weak and norm convergence of sequences are equivalent.

Clearly, we have

Corollary 3.3. A nonhomogeneous Markov chain Q is strong almost mixing if

∀m ∀i ∀j w − lim
n→∞(Q

m,n
i. − Q

m,n
j. ) = 0.

The strong almost mixing property means that the rows of the matrix (Q
m,n
ij )i,j∈N tend to be the

same. Obviously Snam ⊂ Ssam. We easily obtain the following:

Theorem 3.4. The set Ssam is a
∑ ∑

strong operator topology (i.e. in ρso.
∑) dense Gδ subset of S .

Proof. It remains to show that Ssam is a strong operator topology Gδ . For this notice that

Ssam =
{
Q ∈ S : ∀m∈N ∀i∈N ∀j∈N lim

n→∞ ‖Qm,n
i· − Q

m,n
j· ‖1 = 0

}
=

∞⋂
m=1

∞⋂
i=1

∞⋂
j=1

∞⋂
l=1

∞⋂
N=1

⋃
n>max{N,m}

{
Q ∈ S : ‖Qm,n

i· − Q
m,n
j· ‖1 <

1

l

}

(we notice that n 
→ ‖Qm,n
i· − Q

m,n
j· ‖1 = ‖Qm,ne(i) − Qm,ne(j)‖1 is nonincreasing). To end the proof

observe that for fixedm < n the function

S 	 Q 
→ ‖Qm,n
i· − Q

m,n
j· ‖1

is continuous for the metric ρso.
∑. Therefore, Ssam is a Gδ set for the metric ρso.

∑. Since the metric

ρso. sup is stronger than ρso.
∑, it follows that Ssam is a Gδ set for ρso. sup as well. �

Definition 3.5. A nonhomogeneous Markov chain Q is said to be strong mixing, if

∃p0∈D ∀m ∀i lim
n→∞ ‖Qm,n

i. − p0‖1 = 0.

The set of all strong mixing Markov chains is denoted by Ssm.
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Clearly Snm ⊆ Ssm.

We easily observe the following

Corollary 3.6. If a nonhomogeneous Markov chain is strong mixing, then it is strong almost mixing.

Theorem 3.7. The set S c
sm of all Markov chains which are not strong mixing is ρso. sup topology dense

subset of S .

Proof. Given an arbitrary Q ∈ S and 0 < ε < 1 consider a convex combination

Qm,m+1∗ = (1 − ε)Qm,m+1 + εRm,m+1,

where R ∈ S as before is defined as follows: for any vector x = (x1, x2, . . .) ∈ D ,

Rm,m+1x = (0, . . . , 0︸ ︷︷ ︸
m

, x1, x2, . . .).

Then

ρso. sup(Q∗,Q) =
∞∑
l=1

1

2l
sup
m

‖(1 − ε)Qm,m+1e(l) + εRm,m+1e(l) − Qm,m+1e(l)‖1

= ε
∞∑
l=1

1

2l
sup
m

‖Qm,m+1e(l) − Rm,m+1e(l)‖1 � 2ε.

Similar arguments to those used towards the proof of the Theorem 2.3 imply that Q∗ /∈ Ssm. Indeed,

suppose that, on the contrary, there exists p0 ∈ D such that for every m ∈ N and every p ∈ D ,

lim
n→∞ ‖Qm,n∗ p − p0‖1 = 0. Since p0 ∈ D then there exists M ∈ N such that

M∑
j=1

p0j > 1 − ε.

Hence

M∑
j=1

(Qm,n∗ p)j −→
M∑
j=1

p0j > 1 − ε, n → ∞.

On the other hand it follows from the definition of Q∗ that

M∑
j=1

(Qm,n+1∗ p)j � 1 − ε,

when m is large enough, which is a contradiction. �

4. Ergodic principle

This section is devoted to the ergodic principle for nonhomogeneous Markov chains and quadratic

stochastic processes and the relation between them.We recall results presented in [3]. We begin with

Definition 4.1. A Markov chain Q is said to satisfy the ergodic principle if

lim
n→∞ |Qm,n

ik − Q
m,n
jk | = 0

is valid for every i, j, k,m ∈ N.
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Notice that the above definition states that the sequence (Q
m,n
i· −Q

m,n
j· )n∈N converges to 0 inweak*

topology in �1.

Remark 4.2. There are a few more relevant works in the literature dealing with the topic of limit

behavior of nonhomogeneousMarkov chains (see e.g. [4,5]). The reader should bewarned that authors

do not always use the same names for the same notions, e.g. in [5], weak ergodicity is what we refer

to as norm almost mixing and strong ergodicity is what we call norm mixing.

Ganikhodjaev et al. (see [3, Theorem 2.2]) discussed relations between the following conditions:

For a nonhomogeneous Markov chain Q:

(i) Q satisfies the ergodic principle.

(ii) For every i, j,m ∈ N the following relation holds:

lim
n→∞ ‖Qm,ne(i) − Qm,ne(j)‖1 = 0.

(iii) For every ϕ,ψ ∈ D andm ∈ N the following relation holds:

lim
n→∞ ‖Qm,nϕ − Qm,nψ‖1 = 0.

Note that all three conditions are not equivalent in general. Clearly (ii) and (iii) are equivalent and

they imply (i). However, (i) is essentiallyweaker anddoesnot imply (ii) and (iii), as the ergodic principle

is concernedwithweak* convergence (and therefore the Schur theorem is not applicable). Obviously in

the finite dimension case all three conditions are equivalent. Note that (ii) is the strong almost mixing

condition.

In fact, repeating arguments used in the proof of Theorem 2.2 [3] the following generalization of

equivalence of the conditions (ii) and (iii) may be shown. We have

Theorem 4.3. Let Q be a nonhomogeneous Markov chain. The following conditions are equivalent:

(i) Q is strong mixing.

(ii) There exists p0 ∈ D such that for every m ∈ N and every p ∈ D

lim
n→∞ ‖Qm,np − p0‖1 = 0.

Ganikhodjaev et al. [3] have proved the following theorem:

Theorem 4.4 [3]. Let Q be a Markov process. If there exists a number k0 ∈ N and a sequence {λn},
0 < λn < 1 for every n ∈ N, satisfying the conditions

∞∑
n=1

λn = ∞, (1)

n∑
j=1

∏n
k=1(1 − λk)

(1 − λj)
→ 0 as n → ∞ (2)

and such that

Q
n−1,n
ik0

� λn for all i, n ∈ N, (3)

then the Markov process satisfies the ergodic principle.

Wewill generalize the result above by showing that the condition (2) is not essential. Moreover, in

(3) the state k0 is not necessarily fixed (i.e. may depend on each step n).
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Recall that a Banach lattice E is called an AL−space if its norm is additive, i.e. if ‖x+y‖ = ‖x‖+‖y‖
whenever x ∈ E, x � 0 and y ∈ E, y � 0.

Remark 4.5. The norm ‖ · ‖1 on the cone �1+ = {x = (xn) : ‖x‖1 = ∞∑
n=1

|xn| < ∞, xn � 0} is

additive. Therefore �1 is an AL − space.

Note that if x, y ∈ D then

‖x − x ∧ y‖1 = 1 − ‖x ∧ y‖1

and

‖x − y‖1 = 2(1 − ‖x ∧ y‖1),

where x ∧ y = min{x, y}.
Theorem 4.6. Let Q be a Markov chain. If there exists a sequence (λn)n∈N, 0 � λn < 1, satisfying (1)

and such that for some sequence of states kn

Q
n−1,n
ikn

� λn for all i, n ∈ N, (4)

then Q is norm almost mixing (and therefore Q satisfies the ergodic principle).

Proof. First we observe that for every x, y ∈ D and every natural number n we have

‖Qn−1,nx − Qn−1,ny‖1 � (1 − λn)‖x − y‖1 � 2(1 − λn).

Applying (4) we obtain

‖Qn−1,nx ∧ Qn−1,ny‖1 � λn

for all n ∈ N and all x, y ∈ D . Therefore, repeating arguments from [1],

‖Qn−1,nx − Qn−1,ny‖1

= ‖Qn−1,n(x − x ∧ y)− Qn−1,n(y − x ∧ y)‖1

=
∥∥∥∥∥Qn−1,n

(
x − x ∧ y

1 − ‖x ∧ y‖1

)
− Qn−1,n

(
y − x ∧ y

1 − ‖x ∧ y‖1

)∥∥∥∥∥
1

(1 − ‖x ∧ y‖1)

= ‖Qn−1,nu − Qn−1,nv‖1(1 − ‖x ∧ y‖1)

= 2(1 − ‖x ∧ y‖1)(1 − ‖Qn−1,nu ∧ Qn−1,nv‖1)

� 2(1 − λn)(1 − ‖x ∧ y‖1)

= (1 − λn)‖x − y‖1,

where

u = x − x ∧ y

1 − ‖x ∧ y‖1

, v = y − x ∧ y

1 − ‖x ∧ y‖1

and ‖u‖1 = ‖v‖1 = 1.

Therefore,

sup
x,y∈D

‖Qm,nx − Qm,ny‖1 = sup
x,y∈D

‖Qn−1,n(Qm,n−1x)− Qn−1,n(Qm,n−1y)‖1

� (1 − λn) sup
x,y∈D

‖Qm,n−1x − Qm,n−1y‖1.
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Iterating the last inequality we have

sup
x,y∈D

‖Qm,nx − Qm,ny‖1 � sup
x,y∈D

(1 − λn)(1 − λn−1) . . . (1 − λm+1)‖x − y‖1

= 2

n∏
j=m+1

(1 − λj).

Because (λn)n∈N, 0 � λn < 1, n ∈ N, satisfies (1), then

n∏
j=m+1

(1 − λj) → 0 as n → ∞.

Therefore,

lim
n→∞ sup

x,y∈D
‖Qm,nx − Qm,ny‖1 = 0

which completes the proof. �

The above theorem gives us a constructive method for norm approximation of nonhomogeneous

Markov chain Q ∈ S by norm almost mixing Markov chains. In fact, given Q ∈ S and any control

sequence 0 � εn → 0 such that
∑∞

n=1 εn = ∞, consider a convex combination

Q̃ n,n+1
ε = (1 − εn)Q

n,n+1 + εnE,

where E = (Em,m+1)m�1 ∈ S (here for every m ∈ N, Em,m+1 = E) is defined as follows: for any

vector x = (x1, x2, . . .) ∈ D ,

Ex =
⎛⎝⎛⎝ ∞∑

j=1

xj

⎞⎠ , 0, 0, . . .
⎞⎠ .

We get

‖|Q̃ n,n+1
ε − Qn,n+1|‖ � 2εn → 0,

hence asymptotically Q̃ n,n+1
ε is shadowing Qn,n+1. Clearly, (Q̃ n,n+1

ε )n�1 ∈ Snam.

We will now discuss the limit behavior of quadratic stochastic processes. We will use the concept

considered in [3]. We start with

Definition 4.7. The family of functions P = {P[s,t]
ij,k : i, j, k ∈ N, s, t ∈ R+, t − s � 1} is said to be a

quadratic stochastic process (QSP) if for fixed s, t ∈ R+ it satisfies the following conditions:

(i) P
[s,t]
ij,k � 0,

∞∑
k=1

P
[s,t]
ij,k = 1 for any i, j, k ∈ N.

(ii) P
[s,t]
ij,k = P

[s,t]
ji,k for any i, j, k ∈ N.

(iii) for any initial distribution x(0) ∈ D , x(0) = (x
(0)
1 , x

(0)
2 , . . .) and s < r < t such that t − r � 1,

r − s � 1 one of the following equations is satisfied:

(iiiA) P
[s,t]
ij,k = ∞∑

m,l=1

P
[s,r]
ij,m P

[r,t]
ml,kx

(r)
l ,

(iiiB) P
[s,t]
ij,k = ∞∑

m,l,g,h=1

P
[s,r]
im,l P

[s,r]
jg,h P

[r,t]
lh,k x

(s)
m x

(s)
g ,

where x
(r)
k = ∞∑

i,j=1

P
[0,r]
ij,k x

(0)
i x

(0)
j .
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We will consider discrete time QSP, i.e. P = {P[s,t]
ij,k }, where s, t ∈ N.

Definition 4.8. A QSP P is said to satisfy the ergodic principle if

lim
n→∞

∣∣∣P[m,n]
ij,k − P

[m,n]
uv,k

∣∣∣ = 0

is valid for every i, j, u, v, k ∈ N and arbitrary m ∈ N.

It is known that certain Markov chains can be defined by means of QSP (see [3]). Let

H
m,n
ij :=

∞∑
l=1

P
[m,n]
il,j x

(m)
l , i, j ∈ N.

Theorem 4.9 [3]. If P is a QSP, then H = {Hm,n
ij } is a Markov chain.

Ganikhodjaev et al. (see [3, Theorem2.6]) discussed the relation between theQSP P and theMarkov

chain H. In fact, taking our previous remark into consideration, they proved the following:

Theorem 4.10. Let P be a QSP. The following conditions are equivalent:

(i) P is strong almost mixing, i.e.

∀m∈N ∀i,j,u,v∈N lim
n→∞ ‖P[m,n]

ij,· − P[m,n]
uv,· ‖1 = 0.

(ii) The Markov chain H is strong almost mixing.

The following generalization of Theorem 3.4 [3] is a direct application of our Theorem 4.6. We have

Theorem 4.11. Let P be a QSP. If there exists a sequence (λn)n∈N, 0 � λn < 1, satisfying (1), and such

that for some sequence of states kn

P
[n−1,n]
il,kn

� λn for all i, l, n ∈ N,

then P is strong almost mixing (and therefore P satisfies the ergodic principle).

Proof. It is sufficient to note that

H
n−1,n
ikn

=
∞∑
l=1

P
[n−1,n]
il,kn

x
(n−1)
l �

∞∑
l=1

λnx
(n−1)
l = λn,

and then use Theorem 4.10. �
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