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It has been recently shown, that some of the tripartite boxes admitting bilocal decomposition, lead
to non-locality under wiring operation applied to two of the subsystems [R. Gallego et al. Physical
Review Letters 109, 070401 (2012)]. In the following, we study this phenomenon quantitatively.
Basing on the known classes of boxes closed under wirings, we introduce multipartite monotones
which are counterparts of bipartite ones - the non-locality cost and robustness of non-locality. We
then provide analytical lower bounds on both the monotones in terms of the Maximal Non-locality
which can be obtained by Wirings (MWN). We prove also upper bounds for the MWN of a given
box, based on the weight of boxes signaling in a particular direction, that appear in its fully bilocal
decomposition. We study different classes of partially local boxes (i.e. having local variable model
with respect to some grouping of the parties). For each class the MWN is found, using the Linear
Programming. The wirings which lead to the MWN and exhibit that some of them can serve as a
witness of the certain classes are also identified. We conclude with example of partially local boxes
being analogue of quantum states that allow to distribute entanglement in separable manner.

I. INTRODUCTION

The non-locality is one of the most intriguing charac-
teristics of the quantum theory. Since seminal papers
by Bell [1], where non-locality was referred as the non-
local causality, as well as by Popescu and Rohrlich [2], it
has been treated as a resource [3] for the tasks such as
communication complexity [4], device independent cryp-
tography [5–9] or estimation of some properties of the
system, like dimension [10] (see [11] for a recent review).

The central notion considered in the context of the
non-locality is a conditional probability distribution,
called a box. In the bipartite setting, the box determines
the probability of obtaining results a and b, provided that
measurement settings x and y were chosen. We are in-
terested in the non-signaling boxes for which the change
of measurement of one part does not change statistics of
the other part. The box is (casually) local if it can be
written as:

P (ab|xy) =

∫
Λ

dλq(λ)P (a|x, λ)P (b|y, λ), (1)

where q(λ) is a distribution of a hidden variable λ [11].
While the bipartite boxes have been studied deeply in
recent years, the multipartite ones still deserve much
attention. Due to the complicated and rich structure
of the multipartite correlations some interesting results
concerning the multipartite non-locality have been re-
cently presented, opening an area for a further inves-
tigation. The conventional definition of the multipar-
tite non-locality, due to Svetlichny [12], states that if
P (a1, a2, a3|x1, x2, x3) can be written in the following

way:

P (a1, a2, a3|x1, x2, x3) = (2)∑
λ

pλPλ(a1|x1)Pλ(a2, a3|x2, x3) +∑
µ

pµPµ(a2|x2)Pµ(a1, a3|x1, x3) +

∑
ν

pνPν(a3|x3)Pν(a1, a2|x1, x2),

where
∑
λ pλ +

∑
µ pµ +

∑
ν pν = 1 and ∀λpλ ≥ 0,

∀µpµ ≥ 0, ∀νpν ≥ 0, then it does not contain any tri-
partite non-locality, namely, it is local. In this paper the
boxes admitting decomposition (2) would be called the
boxes with bilocal decomposition. It has been found that
this definition has serious drawbacks [13, 14]. Namely,
some of the boxes that are local according to this defi-
nition can entile signaling bipartite boxes in the decom-
position (2) which may lead to the so called grandfather
type paradoxes [13]. In turn, a new definition of multi-
partite (non-)locality has been proposed which eliminates
the paradox. In parallel [14], another problem with the
original definition has been found. Namely, when some of
the parties that have an access to a multipartite box form
a group, then they can create non-locality between the
group as well as the rest of the parties by applying some
processing of inputs and outputs called a wiring [15]. To
avoid this phenomenon, which should not occur in case
of local boxes, regardless what is their definition, an op-
erational framework has been developed, as well as a new
definition of multipartite non-locality has been proposed
[14].

The both concepts of wiring and classes of non-local
correlations have confirmed independently to be impor-
tant in the context of non-locality. The wiring applied to
many copies of a bipartite box, allow for an amplification
of the weak correlations [16, 17], what is known as a dis-
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tillation of non-locality. Introduction of the time ordered
correlation classes allowed to confirm that the quantum
correlations require multipartite information principles
[18]. In what follows, it is aimed to find a new phenom-
ena as well as applications connected with this subject.

In this paper the phenomenon of the non-locality
emerging via wiring on 3-party boxes with binary inputs
and binary outputs is studied. Definitions of the locality
proposed in [13] and [14] differ in general. In [14] a par-
ticular class of boxes closed under wiring is found. This
class is called the time ordered bilocal one (TOBL). The
property of closeness under wiring is crucial for the re-
sults presented here, thus we focus on the definition of
multipartite non-locality from [14]. Basing on the TOBL
class, we introduce the counterparts of non-locality mea-
sures known for bipartite boxes - the non-locality cost and
the robustness of non-locality. Subsequently, the analyti-
cal lower bounds on these measures in terms of the MWN
are provided, namely, the maximum violation of the ap-
propriate CHSH-like inequality [19] after application of
the best wiring to some two of the three subsystems.
This quantity, although may appear to be similar to the
concept of N-copy distillable non-locality introduced in
[20], captures different properties of a box. The N-copy
distillable non-locality quantifies how much non-locality
can be obtained from the N-copies of a box using wiring
transforming the N-boxes to a single box. The Maxi-
mal Wireable Non-locality is defined for a single copy
of a multipartite box and wiring acting on some parties
forming a group.

We focus on the particular classes of boxes - the ones
that admit the particular model of a locality/non-locality,
according to some grouping of the parties. Subsequently,
we apply the Linear Programming to find the MWN for
the considered classes. An explicit example is the class
of boxes which cannot be mapped to a non-local bipar-
tite box by wiring applied to the two partitions (Bob
and Charlie together, as well as Alice and Charlie to-
gether), while it can be mapped to a non-local bipartite
box by some wiring applied to the third partition - Alice
and Bob together. If a quantum box with the analogous
properties were found, it would serve as a resource for dis-
tributing non-locality in a local-like manner in analogy to
distributing entanglement in separable manner [21] (see
[22, 23] for the quantitative description of this effect).

The original definition of locality by Svetlichny fails to
fit into an operational framework of wiring, because the
bipartite boxes which appear in the bilocal decomposi-
tion (2) of a considered box are in a general signaling.
The appearance of the signaling boxes is the reason for
the non-locality emerging via wiring from such a box. In
what follows, a subclass of boxes with bilocal decompo-
sition (2) is mostly considered. Namely, we focus on the
particular cut: for example 3:12, when Alice (subsystem
1) and Bob (subsystem 2) are considered together and
Charlie (subsystem 3) is at a distance. A box is fully
bilocal in this cut if it can be expressed in a following

way:

P (a1, a2, a3|x1, x2, x3) =∑
ν

pνPν(a3|x3)Pν(a1, a2|x1, x2), (3)

where
∑
ν pν = 1. An upper bound on the MWN is

given in terms of the weight of boxes signaling in the
opposite direction to wiring which appear in fully bilocal
decomposition.

The paper is organized as follows. The section II in-
troduces the basic notions and useful parametrization of
the tripartite non-signaling boxes, the CHSH values as
well as wiring. The section III begins with the compari-
son of known definitions of the local boxes, demonstrat-
ing explicitly that they are inequivalent and introduces
classes of different partially local multipartite boxes, that
is boxes which are fully bilocal in all the cuts as well as
those that at least in one cut cannot be wired to a bi-
partite non-local box. The basic notions of the study are
presented: the WN and the MWN. The III B provides an
upper bound on the MWN for a particular box in terms
of the weight of signaling boxes in its description accord-
ing to fully bilocal decomposition (3). The section IV A
collects some known, useful facts about the non-locality
cost for bipartite boxes with two binary inputs and two
binary outputs. In IV B we introduce 3-partite counter-
part of non-locality cost, and show that linear function
of the MWN places a lower bound on the 3-partite non-
locality cost. Then an analogous result for 3-partite ro-
bustness of non-locality in section IV C is demonstarted.
Finally, the problem of finding the MWN for a given class
of partially local boxes using the Linear Programming is
studied. The particular boxes that allow to distribute
the non-locality in a local-like manner (section IV B) are
found, as well as wiring with respect to its strength in
creation of non-locality for different classes are classified.

II. TRIPARTITE NON-SIGNALING BOXES
AND BIPARTITE WIRING

Any probability distribution belonging to the set of
tripartite non-signaling correlations, with binary inputs
(xi) and outputs (ai) for each party, fulfils the following
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constraints:

∀ a1, a2, a3, x1, x2, x3, P (a1, a2, a3|x1, x2, x3) ≥ 0(4)

∀x1, x2, x3,
∑

a1,a2,a3

P (a1, a2, a3|x1, x2, x3) = 1 (5)

∀a2, a3, x2, x3, x1, x
′
1,

∑
a1

P (a1, a2, a3|x1, x2, x3) (6)

=
∑
a1

P (a1, a2, a3|x′1, x2, x3),

∀a1, a3, x1, x3, x2, x
′
2,

∑
a2

P (a1, a2, a3|x1, x2, x3) (7)

=
∑
a2

P (a1, a2, a3|x1, x
′
2, x3),

∀a1, a2, x1, x2, x3, x
′
3,

∑
a3

P (a1, a2, a3|x1, x2, x3) (8)

=
∑
a3

P (a1, a2, a3|x1, x2, x
′
3).

The set of tripartite boxes with the binary inputs and
outputs, which satisfy these conditions, will be denoted
as NS3. The conditions presented above define a non-
signaling polytope. It has been demonstrated [24] that
this polytope has 53 856 extremal points belonging to 46
different classes. All the deterministic extremal points
form a single class, the remaining 45 classes consist of
non-local extremal points. Due to the non-signaling and
normalization constraints an arbitrary 3-partite box with
binary inputs and outputs P (a1, a2, a3|x1, x2, x3) can be
written using the 26 parameters in the following way [24]:

P (a1, a2, a3|x1, x2, x3) = (9)

1

8
[1 + a1 〈Ax1

〉+ a2 〈Bx2
〉+ a3 〈Cx3

〉+ a1a2 〈Ax1
Bx2
〉

+ a1a3 〈Ax1
Cx3
〉+ a2a3 〈Bx2

Cx3
〉+ a1a2a3 〈Ax1

Bx2
Cx3
〉] ,

where e.g. 〈Ax1
〉 = P (a1 = 1|x1) − P (a1 = −1|x1) is

an expectation value of outcome for the input x1. The
notation where outputs (ã, b̃, c̃) take values in {0, 1} will

be used. The relation between ã, b̃, c̃ and a, b, c is given

by a = (−1)ã, b = (−1)b̃, c = (−1)c̃ [24]. For the details
of conversion of the expectation values to this notation
see Appendix VII A. From now on, for the sake of clarity,
the a would be written instead of ã.

In what follows, the effect of wiring which maps tri-
partite boxes into bipartite ones will be studied. For this
reason, the notion of non-signaling bipartite boxes is also
required. The latter boxes fulfil the following conditions:

∀ a1, a2, x1, x2 P (a1, a2|x1, x2) ≥ 0

∀x1, x2

∑
a1,a2

P (a1, a2|x1, x2) = 1

∀ a2, x2, x1, x
′
1

∑
a1

P (a1, a2|x1, x2) =
∑
a1

P (a1, a2|x′1, x2)

∀ a1, x1, x2, x
′
2

∑
a2

P (a1, a2|x1, x2) =
∑
a2

P (a1, a2|x1, x
′
2)

(10)

The set of the non-signaling bipartite boxes with 2 binary
inputs and 2 binary outputs will be denoted as NS2.

Having the important sets of boxes introduced, we will
focus on the wirings. It is possible to map a tripartite
non-signaling box P (a1, a2, a3|x1, x2, x3) into a bipartite
one P (a′1, a3|x′1, x3), having the bipartition as well as
wiring set. The wiring presented in Figure 1 would be
considered. According to this wiring, the input of the
first subsystem of the bipartite box - x1 depends on x′1
while the input of the second subsystem - x2 can depend
on x′1 and the output of the first subsystem on - a1. The
effective output - a′1 can depend on outputs a1, a2 and
the effective input on x′1. A particular parametrization

FIG. 1: Depiction of wiring defined by vectors of binary coef-
ficients γ and η. An effective input bit is denoted as x′1. This
bit is equal to an input x1 of the first party in a bipartition.
An input x2 of the party, which measures as the second one, is
determined by the effective input bit x′1 as well as an output
of the first party a1. An effective output bit depends on x1’,
a2 and an output of the second party a2.

of wiring will be used, in which an input of the first party
in the bipartition will be 1 x1 = x′1. The second party
chooses:

x2 = ⊕ijγijai1x
j
1 (11)

as an input, where ⊕ is an additional module 2, γij are
binary constants and i, j are also binary. Similarly, the
output of the box is defined as a polynomial of the form:

a′1 = ⊕ijkηijkai1x
j
1a
k
2 , (12)

where ηijk, i, j, k are binary. For a particular choice
of γ = (γ00, . . . , γ11) and η = (η000, . . . , η111) wiring will

1 Other possibilities are either bit negation (x1 = x′
1⊕1) or choos-

ing as an input constant bit (for example x1 = 0)
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be denoted as Wγ,η or by specifying inputs and outputs

(x2 = ⊕ijγij(ai1x
j
1), a′1 = ⊕ijηijk(ai1x

j
1a
k
2)). To denote

on which subsystem wiring is applied the following nota-
tion is used: WX

γ,η means that Wγ,η is applied to systems

2 and 3, WY
γ,η to systems 1 and 3 and finally WZ

γ,η to
systems 1 and 2. It is also important to denote the or-
der of measurements in particular wiring: for instance,
on Fig. 1, the system 1 is measured prior to the sys-
tem 2. Therefore by WX→

γ,η the second observer measures
first and can send its results to the third observer. The
parametrization (11),(12) is valid for WZ→

γ,η . In general,
(11),(12) should be modified accordingly to other choices
of parties and/or ordering of measurements. In Section
V it is argued that the number of the considered wiring
can be restricted.

In order to verify if after the application of wiring effec-
tive probability distribution becomes non-local the value
of one of the CHSH expressions [3] is calculated:

βrst(P (a1, a2|x1, x2)) = (−1)t 〈00〉+ (−1)t+s 〈01〉
+(−1)t+r 〈10〉
+(−1)t+s+r+1 〈11〉 , (13)

where 〈ij〉 = P (a1 = a2|ij) − P (a1 6= a2|ij) and r, s,
t take values either 0 or 1. Correspondingly, the CHSH
inequalities have a form:

− 2 ≤ βrst(P (a1, a2|x1, x2)) ≤ 2 (14)

for binary r, s, t. It is sufficient to consider the inequities
(14) equivalent to the CHSH, as the effective box after
application of wiring to a tripartite box with all binary
inputs and outputs is a box with two binary inputs and
outputs. For more than binary inputs or outputs of a
tripartite box it would be required to consider other Bell
inequalities.

III. DEFINITIONS OF PARTIALLY LOCAL
MULTIPARTITE BOXES AND THE
WIRE-EMERGING NON-LOCALITY

In this section, we present definitions of multipartite
local boxes and justify the choice of the TOBL class. As
mentioned in the introduction, according to Svetlichny,
no temporal order is imposed on bilocal terms in decom-
position (2), that is, signaling bipartite boxes can also
appear in this decomposition. It has been recently no-
ticed that signaling boxes may cause serious problems,
since wired signaling probability distributions may lead
to the grandfather-style paradoxes [13]. This fact has
motivated the authors of [13] to introduce the following
definition of the partially mutipartite locality.

Definition 1 Correlations are T2 local if

P (a1, a2, a3|x1, x2, x3) can be written in the form:

P (a1, a2, a3|x1, x2, x3) = (15)∑
λ

pλPλ(a1|x1)P 2→3
λ (a2, a3|x2, x3) +∑

µ

pµPµ(a2|x2)P 1→3
µ (a1, a3|x1, x3) +

∑
ν

pνPν(a3|x3)P 1→2
ν (a1, a2|x1, x2),

where P i→j
λ,µ,ν(ai, aj |xi, xj) denotes probability dis-

tribution signaling at most in one direction, that
is

∑
aj
P i→j
λ,µ,ν(ai, aj |xi, xj) = P i→j

λ,µ,ν(ai|xi) and∑
ai
P j→i
λ,µ,ν(ai, aj |xi, xj) = P j→i

λ,µ,ν(aj |xj), terms

P i→j
λ,µ,ν(ai, aj |xi, xj) can be replaced by P j→i

λ,µ,ν(ai, aj |xi, xj)
independently,

∑
λ pλ ≥ 0,

∑
µ pµ ≥ 0,

∑
ν pν ≥ 0 and∑

λ pλ +
∑
µ pµ +

∑
ν pν = 1.

The above definition solves the problem of the time
ordering. However, there is another definition that has
been introduced from a different perspective. Namely,
as it has been demonstrated in [14], if no time ordering
of correlations is imposed, the ”creation” of non-locality
among N parties by means of local operations as well
as classical communication is possible when N-1 parties
collaborate. To avoid this type of misunderstanding the
following definition has been proposed in [14].

Definition 2 Correlations admit the TOBL model in cut
1 : 23, when they can be written in a form:

P (a1, a2, a3|x1, x2, x3) =∑
λ

pλP
1
λ(a1|x1)P 2→3

λ (a2, a3|x2, x3) = (16)∑
λ

pλP
1
λ(a1|x1)P 3→2

λ (a2, a3|x2, x3),

where P i→j
λ (ai, aj |xi, xj) denotes probability distribution

signaling at most in one direction.
From the above definitions it can be seen that if a

given box admits the TOBL model, it admits necessarily
T2 model. However, the converse is not true. One could,
for instance, consider a box given in Table I. Following
the procedure described in [13] one can verify that it
belongs to T2 class. Wiring Wγ,η with γ = (0, 0, 1, 0)
and η = (0, 1, 0, 0, 0, 0, 0, 0) applied to subsystems 1 and
2 with (x2 = a1, a

′
1 = a2) results in P (a2, a3|x1, x3) for

which β000(P (a2, a3|x1, x3)) = 7
2 and it cannot belong to

the TOBL.
In order to lower bound possible non-locality obtained

by wirings in Sec. IV we introduce non-locality mono-
tones. Their monotonicity is assured by the fact that
certain sets involved in definitions of the monotones are
closed under wirings. Due to this fact, we will use the
TOBL model. In what follows we will focus on the three
classes: the most general class of boxes with fully bilocal
decomposition referred to as the S class, as it may include
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〈Ax1〉 〈Bx2〉 〈Cx3〉 〈Ax1Bx2〉 〈Ax1Cx3〉
0 1 0 1 0 1 00 01 10 11 00 01 10 11

− 17783
135743

23193
135743

− 195747
542972

212995
542972

35041
542972

19229
542972

− 7097
542972

− 10691
542972

− 19295
542972

− 8725
542972

291895
542972

− 224737
542972

− 252767
542972

− 211635
542972

〈Bx2Cx3〉 〈Ax1Bx2Cx3〉
00 01 10 11 000 001 010 011 100 101 110 111

25612
135743

51024
135743

− 29459
135743

106063
271486

− 110539
135743

65946
135743

115319
135743

− 189937
271486

101225
135743

89089
135743

− 108359
135743

− 113289
271486

TABLE I: An example of a box belonging to T2 and not to the TOBL class. Definitions of the classes are presented in Sec. III.
For the details of the box parametrization see (9) and (54).

two-way signaling terms (3), the TOBL (T ) class and the
NSBL class (N), defined that in (16) only no signaling
terms are allowed. It is known that [14]

NSBL ⊂ TOBL ⊂ S. (17)

A. Studied quantities and notation

In what follows a box which in cut 1:23 and 2:13 be-
longs to the TOBL class and in cut 3:12 admits fully
bilocal decomposition is considered (in general including
signaling terms). This class of boxes will be denoted as
TTS. Moreover, the article handles wiring acting on a
subsystem 12 and also fixes the direction of wiring - from
a subsystem 1 to 2.

FIG. 2: A TTS box for which quantities in the main text
are defined. The blue dashed lines denote cuts in which the
box admits the TOBL model (16). The red line indicates
fully bilocal decomposition (3) in cut 3:12. Wiring acting on
subsystems 1 and 2 in direction from a subsystem 1 to 2 is
also depicted.

Using wiring two quantities could be defined: the WN
and the MWN. The first one quantifies the violation of
one of the CHSH inequalities (14) that can be obtained
using given wiring and the TTS class of correlations,
whereas the second one gives the maximal violation of
one of the CHSH inequalities that can be obtained using
any wiring for the TTS class [3]. Formally, the WN for
the given wiring Wγ,η specified by some functions as in

equation (11) and (12) is defined as follows:

WN(Wγ,η) =


maxP β000(Wγ,η(P )) :

if maxP β000(Wγ,η(P )) > 2

0 : otherwise

subjected to P ∈ TTS,

where P is a box from the TTS class. Only the violation
of β000 inequality is required to be considered, since the
formula entails maximization over only the 2×2×2 boxes.
Indeed, if there is a box for which |β000| > 2 then the
same box after an appropriate local relabelling violates
any other CHSH inequality (14), as the latter equals the
scalar product with a linear combination of the locally
equivalent boxes [25]. In order to compute the WN, it
would be tempting to follow [26], restricting the search to
extremal vertices only, however the structure of different
classes considered here is not yet known. The MWN for
the the TTS class is:

MWN = max
γ,η

WN(Wγ,η). (18)

Moreover, considering a single box P instead of the
complete class of boxes, by means of the MWN for a
given box, the maximal violation of one of the CHSH
inequalities (14) can be quantified. That can be obtained
for a given cut of P using any wiring with mentioned
order time of measurements. Formally, we write:

MWN(P ) = max
γ,η,r,s,t

βrst(Wγ,η(P )). (19)

To simplify the notation, maxγ,ηWγ,η(.) ≡ maxW W (.)
and maxr,s,t βrst(.) ≡ maxβ β(.) could be denoted.

B. Upper bound on Maximal Wireable
Non-locality from fully bilocal decomposition

In this section, the discussion centers on special boxes,
namely the ones which are fully bilocal in cut 3:12 having
form (3) and do not belong to the TOBL class (16) in this
cut. It is also assumed that fully bilocal decomposition
is explicitly known for the boxes under consideration, as
it will be used to the upper bound MWN for these boxes.
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Due to the fact that the non-zero non-locality after
wiring involving systems 1 and 2 is caused by the signal-
ing terms, it appears that the lower is the weight of such
boxes in decomposition, the lower should be the MWN.

Here we follow this intuition and derive a bound on
the MWN for a given box P described above in terms of
the weight of boxes signaling in the opposite to wiring
direction (in these considerations from subsystem 2 to
subsystem 1) that appear in the fully bilocal decomposi-
tion.

Prior to demonstrating bound on the WN, we show
that mere tracing out of the system cannot lead to a
non-locality in case of the boxes with decomposition (3).

Observation 1 Consider a box P (a1, a2, a3|x1, x2, x3)
admitting decomposition (3). For any r, s, t ∈ {0, 1}, and
for any value of x2 ∈ {0, 1}

|βrst(
∑
a2

P (a1, a2, a3|x1, x2, x3))| ≤ 2.

Proof.
Because P (a1, a2, a3|x1, x2, x3) is a legitimate

box, the marginal distribution P (a1, a3|x1, x3) =∑
a2
P (a1, a2, a3|x1, x2, x3) is well defined. It is sufficient

to demonstrate that the reduced box is local for fully
bilocal decomposition. Therefore the attention can be
focused on a particular input for the second party, for
instance, the assumption that x2 = 0. Then:

P (a1, a3|x1, x3) =
∑
a2

P (a1, a2, a3|x1, 0, x3) =∑
a2,ν

Pν(a3|x3)Pν(a1, a2|x1, x2) =

∑
ν

Pν(a3|x3)P ′
ν,x2=0(a1|x1). (20)

The above equation demonstrates that the reduced box
remains local. (Note that for x2 = 1 terms P ′

ν,x2=1(a1|x1)
may be different, however LHS of (20) will not change
and the product form of RHS of (20) will be preserved).
�

As a result, it is impossible to map a box admitting
decomposition (3) into a non-local one by a partial trace.
However, it is not the case when one considers wiring as
described in equations (11), (12).

Theorem 1 Let P (a1, a2, a3|x1, x2, x3) be a tripartite
box with binary inputs and outputs admitting the fully
bilocal decomposition:

P (a1, a2, a3|x1, x2, x3) =∑
ν

pνPν(a3|x3)Pν(a1, a2|x1, x2). (21)

The MWN of the box P (a1, a2, a3|x1, x2, x3) satisfies the
following bound:

MWN(P ) = max
W,β

β(W (P )) ≤ inf
pνs

2
∑
νs

pνs + 2, (22)

where the maximum is taken over wiring W with direc-
tion from subsystem 1 to 2 and pνs are weights of bipar-
tite boxes signaling opposite to direction, that is from a
subsystem 2 to 1.

Proof.
The wiring W acting on subsystems 12 are again con-

sidered:

MWN(P ) = (23)

max
W,β

β(W (P (a1, a2, a3|x1, x2, x3)) =

max
W,β

β(
∑
ν

pνPν(a3|x3)W (Pν(a1, a2|x1, x2)).

The MWN is independent from the particular decompo-
sition of the form (21) which may not be unique. For any
decomposition, which is split into the two terms: the one
signaling in direction of wiring and the one which does
not, it leads to the following bound:

max
W,β

(24)[∑
νgs

pνgsβ(Pνgs(a3|x3)W (Pνgs(a1, a2|x1, x2))+

∑
νs

pνsβ(Pνs(a3|x3)W (Pνs(a1, a2|x1, x2))

]
≤ 2

∑
νgs

pνgs + 4
∑
νs

pνs = 2
∑
νs

pνs + 2,

where
∑
νgs pνgs is the weight of boxes which are ei-

ther non-signaling or singaling in the direction of the
wiring. The fact that these boxes are mapped into lo-
cal ones by wiring and

∑
νs pνs = 1 −

∑
νgs pνgs was

used. Hence, for each νgs, β on the bipartite box
Pνgs(a3|x3)W (Pνgs(a1, a2|x1, x2)) emerging from wiring
is bounded by 2. Since the above inequality holds for
any decomposition the one which leads to the tightest
bound can be chosen, obtaining:

MWN(P ) = max
W,β

β(W (P )) ≤ inf
pνs

2
∑
νs

pνs + 2, (25)

where infimum is taken over decomposition (21) such that∑
νs pνs is the weight of boxes which are singalizing in

the direction opposite to wiring. �
Despite the fact that for signaling boxes the value of β

was replaced by its algebraic maximum, the bound (22)
is tight.

In Table II an example of the box for which the bound
is tight is presented (MWN(P ) = infpνs 2

∑
νs pνs + 2 =

3, for wiring acting on subsystems 1 and 2 (x2 = a1, a
′
1 =

a2)).
Generalization of the notation. The quantities and

the bound obtained in this section can be straightfor-
wardly generalized as follows. A tripartite box can have
different kinds of correlations according to the different
set of subsystems. A box BXY Z with X,Y, Z ∈ {S, T,N}
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Class
〈Ax1〉 〈Bx2〉 〈Cx3〉 〈Ax1Bx2〉 〈Ax1Cx3〉 〈Bx2Cx3〉 〈Ax1Bx2Cx3〉
0 1 0 1 0 1 00 01 10 11 00 01 10 11 00 01 10 11 000 001 010 011 100 101 110 111

1 0 0 − 1
20

1
20

0 0 0 0 0 0 1
20
− 1

20
1
20
− 1

20
0 1

2
0 1

2
− 1

2
1
2

1
2
− 1

2
1
2

1
2
− 1

2
− 1

2

TABLE II: The exemplary box P for which bound (22) on the MWN(P ) is tight. The bound yields infpνs 2
∑
νs pνs + 2 = 3.

This value equals the MWN(P ) = 3 which is achieved for the wiring acting on subsystems 1 and 2 (x2 = a1, a
′
1 = a2). For the

details of the box parametrization see (9) and (54).

meaning that in partition where 23 are together, it be-
longs to X class, in partition where 13 are together to Y
class and in partition where 12 are together to Z class.
The set of all boxes with subindex XY Z is called the
XY Z-class. The class with some pattern of letters T
(or N) includes as a subset a class with another pattern
of letters T (or N), provided the latter can be obtained
from the former by changing a single letter T (or N) into
S. For instance:

TTT ⊂ TST ⊂ SST
NNN ⊂ NST ⊂ SST. (26)

By transitivity, sometimes even differing by two letters,
it assures inclusion. Other notation will be also required,
namely B1:23 ∈ TOBL means that the box B, when 2
and 3 are considered together, belongs to the TOBL class.
Then B ∈ XY Z if B1:23 ∈ X, B2:13 ∈ Y and B3:12 ∈ Z
is written. Wiring acting on different groups of a given
box in arbitrary direction can be also considered. For
instance, WZ→ denotes wiring acting on subsystems 12,
from a subsystem 1 to 2.

Taking into account the above notation one immedi-
ately generalizes all the introduced quantities. As an
example, we give definition of the MWN for an arbitrary
class and direction of wiring:

MWNXY Z = max
γ,η,q→

WNXY Z(W q→
γ,η ), (27)

where q denotes subsystems on which wring acts and →
takes into account direction of wiring.

IV. NON-LOCALITY MONOTONES AND
WIRING

Having considered the classes of partially local boxes,
associated monotones, which measure multipartite non-
locality with respect to a given class, can be defined.
There will be two kinds of them: these that are counter-
part of the (bipartite) cost of non-locality, and these that
are counterpart of the bipartite (anti)robustness. Then
it is demonstrated that each of these multipartite mono-
tones is lower bounded by the maximal violation of the
appropriate CHSH-like inequality of the effective 2 × 2
box [3]. To derive the bound for multipartite case, the
known results for 2×2 bipartite boxes are first collected.

A. Known properties of non-locality cost and
twirlings for a 2× 2 case

The non-locality cost in a 2× 2 case has the following
definition:

Definition 3 [27] The non-locality cost for a box P is
defined as:

C(P ) = inf{ p|P = pA+ (1− p)L,
A ∈ NS2, L ∈ LRns, p ∈ [0, 1]},

(28)

where P is a 2 × 2 box, A denotes an arbitrary but no-
signaling bipartite 2× 2 box and LRns is the set of local
non-signaling bipartite 2× 2 boxes.

The non-locality cost is monotonous under local op-
erations. In particular, it is monotonous under twirling
type operations τrs.

Definition 4 [25, 28, 29]A twirling operation τrs is de-
fined by flipping randomly 3 bits ∆x,∆y,∆z and applying
the following transformation to a 2× 2 box P (a, b|x, y):

x → x⊕∆x

y → y ⊕∆y

a → a⊕∆yx⊕∆x∆y ⊕∆z ⊕ s∆y

b → b⊕∆xy ⊕∆z ⊕ r∆x.

(29)

It is known that the non-local vertices of the set NS2

have the form [3]:

Brst(a, b|x, y) =

{
1
2 if a⊕ b = xy ⊕ rx⊕ sy ⊕ t
0 else

(30)

with r, s, t = {0, 1}.
It is important, that after τrs any (2×2) non-signaling

box becomes an isotropic box denoted as Pαrs for some
α ∈ [0, 1], according to the following parametrization:

Pαrst(a, b|x, y) = αBrst(a, b|x, y) + (1− α)Brst̄(a, b|x, y),
(31)

(̄. denotes bit negation). Note that B000 is a PR box
and B001 is an anti-PR box. The boxes Pαrst are invari-
ant under an appropriate twirling operation: τrs(P

α
rst) =
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Pαrst. Adapting similar results as in [30], the following
dependence occurs:

Observation 2 For a 2 × 2 isotropic box Pαrst with α ∈
[ 1
2 , 1] and t ∈ {0, 1}:

C(Pαrst) = max{0, 4α− 3} (32)

(for details of proof for r = s = t = 0 see [30], for the
other r, s the proof is analogous).

In what follows, another fact is also required, namely,
that for any (2×2) box, βrst is invariant under τrs twirling
operation [31]:

Observation 3 [25, 30] For any binary r, s, t, r′, s′, a
2× 2 box P:

βrst(τr′s′(P )) = (8α− 4)δr,r′δs,s′ (33)

and

βrst(P ) = βrst(τrs(P )) (34)

for some α ∈ [0, 1], where τr′s′(P ) = Pαr′s′ (τrs(P ) = Pαrs)
denotes a box that is invariant under τr′s′ (τrs) twirling
operation, and δ is the Kronecker symbol.

Collecting the facts from the observations 3 and 2 as
well as using monotonicity of C under local operations,
the following fact is immediately obtained:

Observation 4 For a bipartite 2 × 2 box P , and any
r, s ∈ {0, 1}, such that τrs(P ) = Pαrst, there is:

C(P ) ≥ C(Pαrst) =
βrst(P

α
rst)− 2

2
=
βrst(P )− 2

2
. (35)

B. Non-locality cost for multipartite boxes and the
lower bound

Considering in place of LRns the class of partially local
boxes XY Z (that is such that at least one letter belongs
to the set {TOBL,NSBL}), one obtains a measure of
multipartite non-locality with respect to this class.

Definition 5 A non-locality cost for a box P with respect
to the class XYZ is defined as:

CXY Z(P (a1, a2, a3|x1, x2, x3)) = (36)

inf
p
{ p|P (a1, a2, a3|x1, x2, x3) = pA+ (1− p)L ,

A ∈ NS3, L ∈ XY Z, p ∈ [0, 1]} ,

where at least one of X,Y, Z belongs to the set
{NSBL, TOBL} while the others are arbitrary in
{NSBL, TOBL, S}.

Following the dependences (26), the relation is ob-
tained:

CXY Z ≥ CX′Y ′Z′ (37)

if X ′Y ′Z ′ can be obtained from XY Z by changing ex-
actly one letter T into S, in particular:

CSST ≤ CTST ≤ CTTT
CTSS ≤ CTTS ≤ CTTT . (38)

The CXY Z is non-increasing under linear operations,
which preserves the set XY Z, namely, that transforms
the set XY Z into the set XY Z.

To lower bound of the multipartite non-locality cost,
the attention will be centered on the non-locality cost
with respect to the classes TY Z, that is, where in cut
1 : 23 the box belongs to the TOBL or NSBL class, and
set Y and Z are fixed arbitrarily:

CTY Z(P (a1, a2, a3|x1, x2, x3)) = (39)

inf
p
{p|P (a1, a2, a3|x1, x2, x3) = pA+ (1− p)L ,

A ∈ NS3, L1:23 ∈ TOBL, L2:13 ∈ Y,L3:12 ∈ Z} ,

where Y and Z are arbitrary from the set
{S, TOBL,NSBL}. Since these considerations will
remain true for any choice of Y and Z the above
measure will be referred to as to CX .

The following fact for the 3-party correlations can be
observed:

Lemma 1 For any 2 × 2 × 2 box P CX(P ) for X ∈
{NSBL, TOBL} and Y,Z ∈ {NSBL, TOBL, S}, is
lower bounded by the non-locality cost of a box emerging
from P under any wiring operation Wγ,η applied to the
systems 2 and 3 where the maximum over the directions
of wiring W can be taken.

Proof. - Let us fix Y and Z arbitrarily and wiring Wγ,η

on systems 23 and its direction from the subsystem 2 to
3. Let us assume, that C(P (a1, a2, a3|x1, x2, x3)) = p,
that is, P (a1, a2, a3|x1, x2, x3) = pA + (1 − p)L.
After applying the wiring, a 2 × 2 box is
obtained: Wγ,η(P (a1, a2, a3|x1, x2, x3)) =
P (a1, a

′
2|x1, x

′
2) ≡ P ′. By linearity of the

wiring, Wγ,η(P (a1, a2, a3|x1, x2, x3)) = pWγ,η(A) +
(1 − p)Wγ,η(L). Now, one recalls the fact that
L1:23 ∈ {TOBL,NSBL}. It is known that the classes
TOBL and NSBL are closed under wiring [14], thus
the box Wγ,η(L) is a local 2 × 2 box. As a result, the
decomposition of P ′ into Wγ,η(A) and Wγ,η(L) is a valid
decomposition into (possibly non-local) and local part,
with the weight p which can be then larger from C(P ′).
Hence, this is obtained:

C(P (a1, a
′
2|x1, x

′
2)) ≤ C(P (a1, a2, a3|x1, x2, x3)), (40)

as desired.�
Having all the mentioned properties of the both 3- and

2- party non-locality, it can be seen that the non-locality
cost for a 2 × 2 × 2 box is lower bounded by the linear
function of the CHSH expression of a 2× 2 box resulting
from the wiring:
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Theorem 2 The non-locality cost for a 2× 2× 2 box P
with X ∈ {TOBL,NSBL}, admits the following lower
bound:

CX(P ) ≥ max
W

C(W (P )) ≥ max
β,W

β(W (P ))− 2

2
, (41)

where the wiring acting on the subsystems 2 and 3 are
considered and the maximum over direction of wiring is
taken.

Proof. -
Let us fix r, s ∈ {0, 1}, γ, η and the direction of a wiring

Wγ,η arbitrarily. Denote Wγ,η(P ) as P ′. First, lemma 1
is used to obtain:

CX(P ) ≥ C(P ′). (42)

By monotonicity of C under τrs which is a locality pre-
serving operation [30]:

CX(P ) ≥ C(P ′) ≥ C(τrs(P
′)). (43)

Now, there are two possibilities. First is that
C(τrs(P

′)) = 0. Then the box τrs(P
′) is local, and hence

|βr′s′t′(τrs(P ′))| ≤ 2 by definition for any r′s′t′. Then
the second inequality in (41) is satisfied. Second case is
that C(τrs(P

′)) > 0. Then the box τrs(P
′) is not local

which in a 2× 2 case means that there exists a pair r′s′

such that for all t′ there is |βr′s′t′(τrs(P ′))| > 2, since
βr′s′0 = −βr′s′1. Now, the box τrs(P

′) is described as
τrs(P

′) = Pαrst for α ∈ ( 3
4 , 1] which fixes the value of

t ∈ {0, 1}. Due to the observation 3: r′ = r and s′ = s.
Also t′ = t we obtain the following:

βrst(P
α
rst) > 2. (44)

Due to the observation 4:

C(Pαrst) ≥
βrst(P

′)− 2

2
, (45)

as desired. Due to the (44) RHS of the above inequality
is greater than zero. From the above consideration, for
any r′′, s′′, t′′ ∈ {0, 1} there is:

βrst(P
′)− 2

2
≥ βr′′s′′t′′(P

′)− 2

2
. (46)

Indeed, for (r′′, s′′) 6= (r, s) RHS of the above equals −1,
and for (r′′, s′′) = (r, s), and t′′ 6= t, it is less than −2,
while the LHS is positive by a construction. This leads
to:

CX(P ) ≥ C(W (P )) ≥ max
β

β(W (P ))− 2

2
. (47)

Since Wγ,η was arbitrary, maximising over the wiring,
the desired chain of inequalities is obtained. �

If the class of partially local boxes has more than one
cut which admits the TOBL or the NSBL model, then the
above theorem can be applied to these cuts, and obtain
independent lower bounds. Taking supremum over the
cuts yields a superior lower bound, hence an immediate
corollary is obtained:

Corollary 1 Let Q ⊂ {X,Y, Z} such that for q ∈ Q
there is q ∈ {TOBL,NSBL}. Then, for any tripartite
box P , there is:

CXY Z(P ) ≥ max
q∈Q

max
β,W q

β(W q(P ))− 2

2
, (48)

where the maximum over the direction of wiring is
taken.

C. Multipartite robustness of non-locality and the
lower bound

In analogy to non-locality cost the so called robustness
R is studied which is a multipartite counterpart of the
measure given by R ≡ 1 − R̄ [25] which is defined as
follows:

Definition 6 For a bipartite 2 × 2 box P ∈ NS2, its
robustness of non-locality is defined as:

R(P ) = inf
A∈NS2

{p | pA+ (1− p)P ∈ LRns, p ∈ [0, 1]} ,
(49)

where A is an arbitrary bipartite non-signaling 2× 2 box
and LRns denotes the set of non-signaling local-realistic
bipartite 2× 2 boxes.

The multipartite robustness of non-locality for 3 par-
ties is defined with respect to a class of local boxes XY Z
(that is such that at least one letter belongs to the set
{TOBL,NSBL}):

Definition 7 For a tripartite 2 × 2 × 2 box P ∈ NS3,
its robustness of non-locality with respect to a class of
local boxes XY Z, where at least one of X,Y, Z be-
longs to {NSBL, TOBL} and the others are arbitrary
in {NSBL, TOBL, S} reads:

RXY Z(P ) = inf
A∈NS3

{p | pA+ (1− p)P ∈ XY Z (50)

p ∈ [0, 1]} ,

where the infimum is taken over the arbitrary non-
signaling 2× 2× 2 boxes.

Similarly as for non-locality cost (38), the following
dependencies occur:

RTTT ≥ RTST ≥ RSST
RTTT ≥ RTTS ≥ RTSS . (51)

Since considerations concerning bound on this mea-
sure are analogous to that for cost of non-locality, just
the results are here presented. For the sake of complete-
ness, the proofs are presented in Appendix. In analogy to
lemma 1 it is demonstarted that multipartite robustness
does not increase under wiring:

Lemma 2 For any 2 × 2 × 2 box P , its robustness
RXY Z(P ) for X ∈ {NSBL, TOBL} and Y,Z ∈
{NSBL, TOBL, S}, is lower bounded by the robustness
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of non-locality of a box emerging from P under wiring
operation applied to systems 2 and 3.

Realizing this, an analogue of theorem 2 for multipar-
tite robustness can be stated:

Theorem 3 The robustness of non-locality for a 2×2×2
box P with X ∈ {TOBL,NSBL}, admits the following
lower bound:

RXY Z(P ) ≥ max
W

R(W (P )) ≥ (52)

max
β,W

β(W (P ))− 2

β(W (P )) + 4
,

where wiring W acting on subsystems 2 and 3 is consid-
ered and the maximum is taken over wiring direction.

Finally, if the class of boxes is closed under wiring with
respect to more than one cut, the bounds over the MWN
in these cuts can be maximized:

Corollary 2 Let Q ⊂ {X,Y, Z} such that for q ∈ Q
there is q ∈ {TOBL,NSBL}. Then, for any tripartite
2× 2× 2 box P , there is:

RXY Z(P ) ≥ max
q∈Q

max
β,W q

β(W q(P ))− 2

β(W q(P )) + 4
, (53)

where the maximum over the direction of wiring is taken.

V. THE MWN - THE CASE STUDY VIA THE
LINEAR PROGRAMMING

In this section the MWN is studied by the Linear Pro-
gramming. Different classes of tripartite boxes are con-
sidered: NNS, NTS, TTS, NSS and TSS class. Prior to
presenting results it is sufficient to restrict the consider-
ations to wiring of a simple form.

Observation 5 Let us consider a wiring Wγ,η. For
the WN the following relation holds WN(Wγ,η) =
WN(Wγ̄,η) where Wγ̄,η denotes wiring of a simple form,

namely, (x2 = a1, a
′
1 = ⊕ijηijk(ai1x

j
1a
k
2)). Moreover,

MWN = maxη(Wγ̄,η).
The idea of the proof of the above observation (see

Appendix sec. VII B) is based on the fact that the action
of any wiring Wγ,η on a box P can be implemented by
the wiring of the simple form Wγ̄,η on a box P ′ that can
be obtained from P by the local operations. Hence, since
the WN entiles maximization over all boxes from the
same class, to which P and P ′ belongs, it is sufficient to
consider the wiring of the simple form.

The values of the MWN and WN for different classes
are summarized in the Table III. Only the presented
classes matter, as far as the MWN of a class is concerned,
since classes with the same number of letters T (or N)
yield the same MWN. Moreover, due to the relations (17)
the MWN for SSS class can be obtained from a Table III
(because TSS ⊂ SSS and the MWN for TSS class yields

maximal possible value for bipartite boxes with binary in-
puts and outputs). We found that as far as wirings are
concerned, there is no difference between the NNS and
NTS. The same holds for the TSS class.

Class MWN WN(Wγ̄,η)

NTS, NNS 3 2 4
5

TTS 3 2 12
13

NSS, TSS 4 3

TABLE III: The MWN for different correlations classes (N -
NSBL, T -TOBL, S- boxes with the fully bilocal decompo-
sition which may entile the two way signaling boxes). The
values of the WN are also presented.

The wiring leading to the non-zero WN for classes are
presented in Tables VIII, IX, X, XI. The full list of wiring
can be obtained from these Tables by performing the lo-
cal relabeling of a2 (a2 → a2 + 1 and a2 → a2 + a1). For
a given class, in principle there could be as many WNs
as non-trivial wiring, however, as it can be seen in Ta-
bles VIII, IX, X, XI there are only two of them. Having
a given value of the WN, it could be that depending on
wiring, a different box to attain it is required. Interest-
ingly, we have found a box which we call a representative
for this WN, as for any wiring its WN can be obtained
on some local relabeling of this box. For instance, there
are two representative boxes for the NSS class for the two
values of the WN: 3 and 14/5 (see Table IV and V for the
analogous results for the TTS class). For the representa-
tive boxes the upper bound on the MWN of the Theorem
1 is computed, as well as lower bounds on non-locality
cost and robustness. These results are presented in Ta-
bles IV and VI, for the TTS and NNS class respectively.
For the representative box 1 in the case of the TTS and
the NNS correlations the upper bound on the MWN is
tight. For the other classes of correlations we have not
succeeded in finding representative box.

In some cases, using wiring, it is possible to deter-
mine to which class of correlations a given box cannot
belong to. If βrst(Wγ,η(P )) is higher than the value of
WNXY Z(Wγ̄,η) for some XYZ, it implies that P 6∈ XY Z.
For instance, if after any wiring from a Table VIII with
the WN = 14

5 value of any CHSH expression is higher
than this WN, the box cannot belong to the NNS and
NTS class.

Distributing non-locality in a local-like manner.- In [21]
it is shown that one can distribute entanglement ”with-
out entanglement”: using ancillary state, that in each
step is separable with the rest of the system. Corre-
lations belonging to the NNS, NTS and TTS class are
such that in cut 1:23, and 2:13 they cannot be wired to a
non-local box, while in cut 3:12, after suitable wiring, the
WN is non-zero. Therefore using these boxes and the ap-
propriate wiring it is possible to distribute non-locality
in a local-like manner. For instance, it could be that
initially system 2 is possessed by one party (Alice) and
systems 13 are possessed by the other one (Bob). Then
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Box
〈Ax1〉 〈Bx2〉 〈Cx3〉 〈Ax1Bx2〉 〈Ax1Cx3〉 〈Bx2Cx3〉 〈Ax1Bx2Cx3〉
0 1 0 1 0 1 00 01 10 11 00 01 10 11 00 01 10 11 000 001 010 011 100 101 110 111

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2

0 1
2
− 1

2
1
2

1
2
− 1

2
1
2

1
2
− 1

2
− 1

2

2 1
13

1
13
− 3

13
5
13

1
13
− 1

13
1
13

1
13

1
13

5
13

9
13
− 5

13
1
13
− 1

13
5
13

7
13

5
13

7
13
− 3

13
3
13

5
13
− 5

13
5
13

7
13
− 7

13
− 5

13

TABLE IV: The representative boxes from the TTS class associated to the groups of wiring.

Box Representative wiring WN(Wγ,η) Upper bound on MWN Lower bound on non-locality cost Lower bound on robustness

1 a1, a2 3 3 C ≥ 1
2

R ≥ 1
7

2 a1, a2 + a1a2x1
38
13

50
13

C ≥ 6
13

R ≥ 2
15

TABLE V: Wiring that together with the boxes from Table IV attain the maximum of the WN (local relabeling of boxes is not
required). In subsequent columns the value of the WN, upper bound on the MWN for boxes from Table IV, as well as Lower
bound on non-locality cost and robustness are presented.

Box
〈Ax1〉 〈Bx2〉 〈Cx3〉 〈Ax1Bx2〉 〈Ax1Cx3〉 〈Bx2Cx3〉 〈Ax1Bx2Cx3〉
0 1 0 1 0 1 00 01 10 11 00 01 10 11 00 01 10 11 000 001 010 011 100 101 110 111

1 0 0 − 1
20

1
20

0 0 0 0 0 0 1
20
− 1

20
1
20
− 1

20
0 1

2
0 1

2
− 1

2
1
2

1
2
− 1

2
1
2

1
2
− 1

2
− 1

2

2 − 2
5

1
5
− 3

5
1
5

1
5
− 1

5
0 0 1

5
1
5

0 − 2
5

1
5
− 1

5
1
5

3
5

1
5

3
5
− 2

5
0 2

5
− 4

5
1
5

3
5
− 3

5
− 1

5

TABLE VI: The representative boxes from the NNS class associated to the groups of wiring.

Box Representative wiring WN(Wγ,η) Upper bound on MWN Lower bound on non-locality cost Lower bound on robustness

1 a1, a2 3 3 C ≥ 1
2

R ≥ 1
7

2 a1, a1 + a1a2x
14
5

18
5

C ≥ 2
5

R ≥ 1
17

TABLE VII: Wiring that together with boxes from Table VI attains the maximum of the WN (local relabeling of boxes is not
required). In subsequent columns the value of WN, upper bound on the MWN for boxes from Table VI, as well as lower bound
on non-locality cost and robustness are presented.

no non-locality between Alice and Bob can be created by
the wiring applied to the Bob’s devices. The situation
transforms when the system 1 is transferred from Bob
to Alice (see Figure 3). Then, after applying wiring to
subsystem 12, the effective box shared by Alice and Bob
will become non-local.

It is often the case in the Quantum Information The-
ory that new resources and (more or less) real life sce-
narios, become related. The Quantum Key Distribution
is the most profound example of such an approach [32].
Suppose that in the NNS/NTS/TTS there is a box which
after wiring is useful for the so called Device Independent
QKD. Then the contrived, whereas still possible crypto-
graphic scenario can be introduced. Consider a situation
in which an agent Alice would like to communicate with
an agent Bob in a secure way. One of the possible solu-
tions would be to equip the both agents with the secure
devices. However, due to the character of her activity, Al-
ice may be caught and her device may be at some point
in the hands of enemies. In order to prevent enemies
from using her device, one more element of the system
would be desirable. This element is kept in a secure lo-
cation C and enables security. Such a tripartite system
can be built from the box, which was mentioned above,

belonging to the NNS/NTS/TTS class. Let us focus on
a box belonging to the TTS class presented in Figure 3.
One equips agent Alice with a pocket device consisting
of a subsystem 2 of the considered box, another part of
the device with subsystem 1 is kept in the secure loca-
tion known to Alice, and agent Bob is in possession of
a pocket device with a subsystem 3. When Alice has an
access to the two specific subsystems of the complete box
(a subsystem 2 in her pocket and a subsystem 1 in the
secure location C), she can perform appropriate wiring
and then the effective box shared by Alice and Bob will
become non-local. Otherwise, due to the observation 1,
the box shared by Alice and Bob (consisting of subsys-
tems 2 and 3) is local and therefore it cannot be used to
perform any cryptographic task. From the security point
of view in order to set up such a system against quantum
adversary one can also use the quantum states from [21],
provided that secure key can be extracted from them.

VI. CONCLUSIONS

The phenomenon of non-locality emerging from the
application of wiring involving 2 parties, to a 3-partite
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FIG. 3: A box-analogue of distribution of entanglement by
separable ancilla. a) A box from the TTS class, such that no
non-locality can be created by wiring in cuts 1:23 and 2:13. In
cut 3:12 this box admits fully bilocal decomposition. b) When
the system 1 is transferred to 2, after wiring on systems 12,
the initial tripartite box P (a1, a2, a3|x1, x2, x3) becomes an
effective bipartite, non-local box P (a′1, a3|x1, x3).

boxes with binary inputs and outputs have been studied
quantitatively. In particular, the natural counterparts of
the known bipartite non-locality measures, such as cost
of non-locality and its robustness have been introduced,
placing a lower bound on these measures in the terms
of explicit functions of maximal violation of the CHSH
inequality after wiring.

Presented approach can be generalized to the case of
a tripartite non-signaling box with a larger number of
inputs and/or outputs. However, then the Bell expres-
sions other than the CHSH must be considered. It is also
straightforward to generalize these definitions to the mul-
tipartite case with m ≥ 4 parties, however the bounds
should then involve the violation of some multipartite
Bell inequality for more than 2 parties.

The class of partially local boxes can be defined in a
more general way, that is, as boxes admitting in biparti-
tion the fully bilocal decomposition.

We have shown, that maximal attainable non-locality
via wiring is upper bounded by the weight of boxes sig-
naling in opposite direction to the wiring in fully bilocal
decomposition of a box. It would be also interesting to
place some lower bounds based on this description. Fi-
nally, we have studied the MWN using the Linear Pro-
gramming. In particular, we have identified the boxes
which fall into an interesting class enabling the distribu-
tion of non-locality in a local manner. The boxes which
maximize the value of the WN in each of the considered
classes are manifestly non-quantum (reaching 3 > 2

√
2 of

violation of the CHSH inequality). It would be interest-

ing to find their quantum-realizable versions like the one
demonstrated in [14]. We have also classified different
wiring proving that some of them are equivalent as far as
the increase of the non-locality under their application is
concerned. These findings shed some light on the phe-
nomenon of non-locality emerging from processing of the
multipartite non-locality via wiring.
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puter Center in Gdańsk. K.H. and J.T. acknowledge the
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aly supported by the ERC AdG grant QOLAPS.

VII. APPENDIX

A. The conversion of expectation values

The conversion of expectation values between notation
in which a1, a2, a3,∈ {−1, 1} and ã1, ã2, ã3 ∈ {0, 1} is
given by [24]:

〈Ax1
〉 = 1− 2

〈
Ãx1

〉
(54)

〈Ax1
Bx2
〉 = 1− 2

〈
Ãx1

+ B̃x2

〉
〈Ax1

Bx2
Cx3
〉 = 1− 2

〈
Ãx1

+ B̃x2
+ C̃x3

〉
,

where〈
Ãx1

〉
=

∑
ã1

P (ã1|x1)ã1〈
Ãx1

+ B̃x2

〉
=

∑
ã1 ã2

P (ã1ã2|x1x2)ã1ã2〈
Ãx1 + B̃x2 + C̃x3

〉
=

∑
ã1 ã2 ã3

P (ã1ã2ã3|x1x2x3)ã1ã2ã3.

B. Proofs and examples

In this section the details of the proof of lemma 2
and theorem 3 are demonstrated. We initiate with
some useful facts about robustness for the bipartite case.
In particular, it was shown in [25] that for isotropic
boxes Pαrs(a1, a2|x1, x2) = αBrst(a1, a2|x1, x2) + (1 −
α)Brst̄(a1, a2|x1, x2) there is:

R̄(A) =
3

4α
(55)

and for A such that βrst(A) ≥ 2 there is:

R̄(A) = R̄(τrs(A)). (56)

From this fact, one obtains that for α > 3/4:

R(Pαrs) =
4α− 3

4α
=
βrst(P

α
rs)− 2

βrst(Pαrs) + 4
(57)
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for any binary r, s, t.
Having collected the known facts for robustness in a

2 × 2 case lemma 2 can be proved which states that ro-
bustness of a 2 × 2 × 2 box is monotonous under wiring
on two subsystems. It is demonstrated for the class X,
as for other classes the proof is analogous.

Proof of lemma 2
Let us fix Y and Z arbitrarily and wiring Wγ,η on

systems 2 and 3 with arbitrary direction. It could be
assumed that R(Wγ,η(P )) = p̃ and R(P ) = p. Then,
there exists a box L ∈ {NSBL, TOBL} with respect to
1:23 cut, such that pX + (1 − p)P = L. By linearity of
wiring the following is obtained:

pWγ,η(X) + (1− p)Wγ,η(P ) = Wγ,η(L). (58)

Now, by the fact that classes N and T yield local boxes
under wiring on 2nd and 3rd subsystems, it is obtained
that Wγ,η(L) = L′ is a 2 × 2 local box. Hence, the de-
composition (58) is valid decomposition of a local box L′

into Wγ,η(P ) and some other box which confirms p ≥ p̃
as expected.�

As a result the Robustness for a 2× 2× 2 box is lower
bounded by the linear function of the CHSH expression
of a 2×2 box resulting from wiring which is stated in the
theorem 3. The proof of this theorem is presented below:

Proof of the theorem 3 . Let us fix γ, η arbitrar-
ily. Then, by lemma 2, RXY Z(P ) ≥ R(Wγ,η(P )) where
wiring acting on subsystems 2 and 3 is considered. Let
us fix r and s arbitrarily, and denote τrs(Wγ,η(P )) ≡
τrs(P

′). In analogy to the proof of the theorem 2, the
case when for all r′s′t′ there is |βr′s′t′(τrs(P ′))| ≤ 2 im-
plies that R(P ′) is zero (the box is local) [25] and the
RHS of (52) is not positive, hence the claimed inequality
is satisfied.

Let us consider now the non-trivial case when there
exist r′s′ such that for all t′, there is |βr′s′t′(τrs(P ′))| > 2.
The box τrs(P

′) as τrs(P
′) = Pαrst is now described for

α ∈ ( 3
4 , 1] which fixes the value of t ∈ {0, 1}. Now, due to

the observation 3 r′ = r, s′ = s, by choosing also t′ = t:

βrst(P
α
rst) > 2. (59)

Then, from the equation (57), there is:

R(τrs(P
′)) =

βrst(τrs(P
′))− 2

βrst(τrs(P ′)) + 4
. (60)

From the equation (56) there is R(τrs(P
′)) = R(P ′) as

robustness (like anti-robustness), is invariant under ap-
propriate twirling: namely, if a box B has βrst(B) > 2
then after τrs, R(τrs(B)) = R(B).

Finally, it is worth noticing that βrst(τrs(P
′)) =

βrst(P
′) by observation 3. Since, as in the proof of theo-

rem 2, r, s, t are such, that:

βrst(P
′)− 2

βrst(P ′) + 4
≥ βr′′s′′t′′(P

′)− 2

βr′′s′′t′′(P ′) + 4
(61)

for any r′′, s′′, t′′ ∈ {0, 1}, the LHS of the above inequality
is the highest value of the RHS expression over r′′, s′′, t′′.
After maximization over W :

RXY Z(P ) ≥ max
W

R(W (P )) ≥ max
β,W

β(W (P ))− 2

β(W (P )) + 4
, (62)

as desired. �

Proof of observation 5. It is worth to con-
sider a wiring (x2 = a1, a

′
1 = a2) performed

on a box P (a1, a2, a3|x1, x2, x3) leading to the box
P1(a′1, a3|x1, x3). The output of P (a1, a2, a3|x1, x2, x3)
can be locally changed, defining ã1 = a1 + a1x1. Now,
the wiring (x2 = ã1, ã

′
1 = a2) leading to the re-

sulting box P2(ã′1, a3|x1, x3) is considered. The same
box P2(ã′1, a3|x1, x3) can be obtained by performing
the wiring (x2 = a1 + a1x1, a

′
1 = a2) on the box

P (a1, a2, a3|x1, x2, x3). So the investigation of (x2 = a1+
a1x1, a

′
1 = a2) can be performed using (x2 = a1, a

′
1 = a2)

and a locally relabeled box P (ã1, a2, a3|x1, x2, x3) with
ã1 = a1 + a1x1 . In general, there is a correspondence
between (x2 = a1, a

′
1 = a2) and all local relabellings

l(.) of the output a1 which results in (x2 = l(a1), a′1 =

⊕ijkηijk(l(a1)ixj1a
k
2)).�
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No. WNNNS a1’ No. WNNNS a1’

1 3 a2 19 14
5

a1a2 + a2x1 + a1a2x1

2 3 a1 + a2 20 14
5

a1a2 + x1 + a2x1 + a1a2x1

3 3 a2 + x1 21 14
5

a1a2 + a1x1 + a2x1 + a1a2x1

4 3 a1 + a2 + x1 22 14
5

a1a2 + x1 + a1x1 + a2x1 + a1a2x1

5 14
5

a2 + a1a2x1 23 14
5

a2 + a2x1 + a1a2x1

6 14
5

a2 + a1x1 + a1a2x1 24 14
5

a2 + a1x1 + a2x1 + a1a2x1

7 14
5

a2 + x1 + a1a2x1 25 14
5

a2 + x1 + a2x1 + a1a2x1

8 14
5

a2 + x1 + a1x1 + a1a2x1 26 14
5

a2 + x1 + a1x1 + a2x1 + a1a2x1

9 14
5

a2 + a1a2 + a1a2x1 27 14
5

a2 + a1a2 + a1x1 + a1a2x1

10 14
5

a2 + a1a2 + x1 + a1a2x1 28 14
5

a2 + a1a2 + x1 + a1x1 + a1a2x1

11 14
5

a1 + a2 + a1a2x1 29 14
5

a1 + a2 + a2x1 + a1a2x1

12 14
5

a1 + a2 + a1x1 + a1a2x1 30 14
5

a1 + a2 + a1x1 + a2x1 + a1a2x1

13 14
5

a1 + a2 + x1 + a1a2x1 31 14
5

a1 + a2 + x1 + a2x1 + a1a2x1

14 14
5

a1 + a2 + x1 + a1x1 + a1a2x1 32 14
5

a1 + a2 + x1 + a1x1 + a2x1 + a1a2x1

15 14
5

a1 + a2 + a1a2 + a1a2x1 33 14
5

a1 + a2 + a1a2 + a1x1 + a1a2x1

16 14
5

a1 + a2 + a1a2 + x1 + a1a2x1 34 14
5

a1 + a2 + a1a2 + x1 + a1x1 + a1a2x1

17 14
5

1 + a1a2 + a2x1 + a1a2x1 35 14
5

1 + a1a2 + a1x1 + a2x1 + a1a2x1

18 14
5

1 + a1a2 + x1 + a2x1 + a1a2x1 36 14
5

1 + a1a2 + x1 + a1x1 + a2x1 + a1a2x1

TABLE VIII: The value of the WN for Wiring acting on sub-
systems 12 of boxes P (a1, a2, a3|x1, x2, x3) belonging to the
NNS correlations (namely, the maximal violation over the
CHSH inequalities (14) obtained using given wiring on the
boxes belonging to the NNS class). Due to the observation
5 an input to the second subsystem is given by x2 = a1. An
output of the effective box P (a′1, a3|x1, x3) is given by a′1.
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No. WNTTS a1’ No. WNTTS a1’

1 3 a2 23 38
13

a1a2 + a2x1 + a1a2x1

2 3 a2 + x1 24 38
13

a1a2 + x1 + a2x1 + a1a2x1

3 3 a1 + a2x1 25 38
13

a2 + a1a2x1

4 3 a1 + a2 26 38
13

a2 + a1x1 + a1a2x1

5 3 a1 + a2 + x1 27 38
13

a2 + x1 + a1a2x1

6 3 1 + a1 + a2x1 28 38
13

a2 + x1 + a1x1 + a1a2x1

7 3 a2 + a1x1 + a2x1 29 38
13

a1a2 + a1x1 + a2x1 + a1a2x1

8 3 a2 + x1 + a1x1 + a2x1 30 38
13

a1a2 + x1 + a1x1 + a2x1 + a1a2x1

9 3 a1 + a1x1 + a2x1 31 38
13

a2 + a2x1 + a1a2x1

10 3 a1 + a2 + a2x1 32 38
13

a2 + a1x1 + a2x1 + a1a2x1

11 3 a1 + a2 + x1 + a2x1 33 38
13

a2 + x1 + a2x1 + a1a2x1

12 3 1 + a1 + a1x1 + a2x1 34 38
13

a2 + x1 + a1x1 + a2x1 + a1a2x1

13 38
13

a2 + a1a2 + a1a2x1 35 38
13

a2 + a1a2 + a1x1 + a1a2x1

14 38
13

a2 + a1a2 + x1 + a1a2x1 36 38
13

a2 + a1a2 + x1 + a1x1 + a1a2x1

15 38
13

a1 + a2 + a1a2x1 37 38
13

a1 + a2 + a2x1 + a1a2x1

16 38
13

a1 + a2 + a1x1 + a1a2x1 38 38
13

a1 + a2 + a1x1 + a2x1 + a1a2x1

17 38
13

a1 + a2 + x1 + a1a2x1 39 38
13

a1 + a2 + x1 + a2x1 + a1a2x1

18 38
13

a1 + a2 + x1 + a1x1 + a1a2x1 40 38
13

a1 + a2 + x1 + a1x1 + a2x1 + a1a2x1

19 38
13

a1 + a2 + a1a2 + a1a2x1 41 38
13

a1 + a2 + a1a2 + a1x1 + a1a2x1

20 38
13

a1 + a2 + a1a2 + x1 + a1a2x1 42 38
13

a1 + a2 + a1a2 + x1 + a1x1 + a1a2x1

21 38
13

1 + a1a2 + a2x1 + a1a2x1 43 38
13

1 + a1a2 + a1x1 + a2x1 + a1a2x1

22 38
13

1 + a1a2 + x1 + a2x1 + a1a2x1 44 38
13

1 + a1a2 + x1 + a1x1 + a2x1 + a1a2x1

TABLE IX: The value of the WN for Wiring acting on subsys-
tems 12 of boxes P (a1, a2, a3|x1, x2, x3) belonging to the TTS
correlations (namely, the maximal violation over the CHSH
inequalities (14) obtained using given wiring on boxes belong-
ing to the TTS class). Due to the observation 5 an input to
the second subsystem is given by x2 = a1. An output of the
effective box P (a′1, a3|x1, x3) is given by a′1.
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No. WNNSS a1’ No. WNNSS a1’

1 4 a2 + a1x1 21 3 a1a2 + a2x1 + a1a2x1

2 4 a1 + a2 + a1x1 22 3 a1a2 + x1 + a2x1 + a1a2x1

3 4 a2 + x1 + a1x1 23 3 a1a2 + a1x1 + a2x1 + a1a2x1

4 4 a1 + a2 + x1 + a1x1 24 3 a1a2 + x1 + a1x1 + a2x1 + a1a2x1

5 3 a2 25 3 a2 + a1a2x1

6 3 a2 + a2x1 + a1a2x1 26 3 a2 + a1x1 + a1a2x1

7 3 a2 + a1x1 + a2x1 + a1a2x1 27 3 a2 + x1

8 3 a2 + x1 + a1a2x1 28 3 a2 + x1 + a2x1 + a1a2x1

9 3 a2 + x1 + a1x1 + a1a2x1 29 3 a2 + x1 + a1x1 + a2x1 + a1a2x1

10 3 a2 + a1a2 + a1a2x1 30 3 a2 + a1a2 + a1x1 + a1a2x1

11 3 a2 + a1a2 + x1 + a1a2x1 31 3 a2 + a1a2 + x1 + a1x1 + a1a2x1

12 3 a1 + a2 32 3 a1 + a2 + a1a2x1

13 3 a1 + a2 + a2x1 + a1a2x1 33 3 a1 + a2 + a1x1 + a1a2x1

14 3 a1 + a2 + a1x1 + a2x1 + a1a2x1 34 3 a1 + a2 + x1

15 3 a1 + a2 + x1 + a1a2x1 35 3 a1 + a2 + x1 + a2x1 + a1a2x1

16 3 a1 + a2 + x1 + a1x1 + a1a2x1 36 3 a1 + a2 + x1 + a1x1 + a2x1 + a1a2x1

17 3 a1 + a2 + a1a2 + a1a2x1 37 3 a1 + a2 + a1a2 + a1x1 + a1a2x1

18 3 a1 + a2 + a1a2 + x1 + a1a2x1 38 3 a1 + a2 + a1a2 + x1 + a1x1 + a1a2x1

19 3 1 + a1a2 + a2x1 + a1a2x1 39 3 1 + a1a2 + a1x1 + a2x1 + a1a2x1

20 3 1 + a1a2 + x1 + a2x1 + a1a2x1 40 3 1 + a1a2 + x1 + a1x1 + a2x1 + a1a2x1

TABLE X: The value of the WN for Wiring acting on sub-
systems 12 of boxes P (a1, a2, a3|x1, x2, x3) belonging to the
NSS correlations (namely, maximal violation over the CHSH
inequalities (14) obtained using given wiring on the boxes be-
longing to NSS class). Due to observation 5 an input to the
second subsystem is given by x2 = a1. An output of the
effective box P (a′1, a3|x1, x3) is given by a′1.
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No. WNTSS a1’ No. WNTSS a1’

1 4 a2 + a1x1 25 3 a1a2 + a2x1 + a1a2x1

2 4 a1 + a2 + a1x1 26 3 a1a2 + x1 + a2x1 + a1a2x1

3 4 a2 + x1 + a1x1 27 3 a1a2 + a1x1 + a2x1 + a1a2x1

4 4 a1 + a2 + x1 + a1x1 28 3 a1a2 + x1 + a1x1 + a2x1 + a1a2x1

5 3 a2 29 3 a2 + a1a2x1

6 3 a2 + a2x1 + a1a2x1 30 3 a2 + a1x1 + a1a2x1

7 3 a2 + a1x1 + a2x1 31 3 a2 + a1x1 + a2x1 + a1a2x1

8 3 a2 + x1 32 3 a2 + x1 + a1a2x1

9 3 a2 + x1 + a2x1 + a1a2x1 33 3 a2 + x1 + a1x1 + a1a2x1

10 3 a2 + x1 + a1x1 + a2x1 34 3 a2 + x1 + a1x1 + a2x1 + a1a2x1

11 3 a2 + a1a2 + a1a2x1 35 3 a2 + a1a2 + a1x1 + a1a2x1

12 3 a2 + a1a2 + x1 + a1a2x1 36 3 a2 + a1a2 + x1 + a1x1 + a1a2x1

13 3 a1 + a2x1 37 3 a1 + a1x1 + a2x1

14 3 a1 + a2 38 3 a1 + a2 + a1a2x1

15 3 a1 + a2 + a2x1 39 3 a1 + a2 + a2x1 + a1a2x1

16 3 a1 + a2 + a1x1 + a1a2x1 40 3 a1 + a2 + a1x1 + a2x1 + a1a2x1

17 3 a1 + a2 + x1 41 3 a1 + a2 + x1 + a1a2x1

18 3 a1 + a2 + x1 + a2x1 42 3 a1 + a2 + x1 + a2x1 + a1a2x1

19 3 a1 + a2 + x1 + a1x1 + a1a2x1 43 3 a1 + a2 + x1 + a1x1 + a2x1 + a1a2x1

20 3 a1 + a2 + a1a2 + a1a2x1 44 3 a1 + a2 + a1a2 + a1x1 + a1a2x1

21 3 a1 + a2 + a1a2 + x1 + a1a2x1 45 3 a1 + a2 + a1a2 + x1 + a1x1 + a1a2x1

22 3 1 + a1a2 + a2x1 + a1a2x1 46 3 1 + a1a2 + a1x1 + a2x1 + a1a2x1

23 3 1 + a1a2 + x1 + a2x1 + a1a2x1 47 3 1 + a1a2 + x1 + a1x1 + a2x1 + a1a2x1

24 3 1 + a1 + a2x1 48 3 1 + a1 + a1x1 + a2x1

TABLE XI: The value of the WN for Wiring acting on subsys-
tems 12 of boxes P (a1, a2, a3|x1, x2, x3) belonging to the TSS
correlations (namely, the maximal violation over the CHSH
inequalities (14) obtained using given wiring on the boxes be-
longing to TSS class). Due to the observation 5 an input to
the second subsystem is given by x2 = a1. An output of the
effective box P (a′1, a3|x1, x3) is given by a′1.
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