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Distributions of protein families and folds in genomes are highly skewed, having a small number of
prevalent superfamiles/superfolds and a large number of families/folds of a small size. Why are the
distributions of protein families and folds skewed? Why are there only a limited number of protein families?
Here, we employ an information theoretic approach to investigate the protein sequence-structure
relationship that leads to the skewed distributions. We consider that protein sequences and folds constitute
an information theoretic channel and computed the most efficient distribution of sequences that code all
protein folds. The identified distributions of sequences and folds are found to follow a power law, consistent
with those observed for proteins in nature. Importantly, the skewed distributions of sequences and folds are
suggested to have different origins: the skewed distribution of sequences is due to evolutionary pressure to
achieve efficient coding of necessary folds, whereas that of folds is based on the thermodynamic stability of
folds. The current study provides a new information theoretic framework for proteins that could be widely
applied for understanding protein sequences, structures, functions, and interactions.

I
t is well known from observation of protein sequence and structure databases that distributions of protein
sequences, families, and folds are highly skewed1–5, having a small number of prevalent families (superfamilies)
or folds (superfolds) and a large number of families/folds of a small size. Sequences of known proteins only

utilize a small fraction of all the possible combinations of amino acid sequences6,7. Similarly, it is estimated that the
number of protein folds is limited in nature6–9. The number of membrane proteins is also estimated to be limited8.
Protein families and folds are typical examples of biological entities that have skewed, power-law distributions1.
The discovery of superfamilies and superfolds as well as the skewness of the sequence and fold distributions is one
of the important achievements of bioinformatics and network science in the past two decades. The origin of the
skewed distribution of protein families and folds has long been discussed from various aspects: a mathematical
evolution model was proposed, which explains the power-law distribution with gene duplications and acquisition
of new genes through gene transfer1. Using a computational simulation on a protein model, superfamilies with
thermodynamically stable folds were observed to emerge10,11. Finkelstein discussed that the number of protein
folds is limited due to their topological constraints12. Why some protein sequence superfamilies and folds have
many members and why their overall distributions are skewed are fundamental questions in molecular biology,
evolution, and bioinformatics. Explanations of the questions also have strong implications for experimental
evolution and protein design.

Here, we employ an information theoretic approach13 to investigate the relationship between sequences and
structures that leads to the skewed distribution of families and folds. Information theory deals with quantification
of flow of information in communication. Following Anfinsen’s postulate that a protein sequence encodes
information of its tertiary structure14, we consider that protein sequences and folds constitute an information
theoretic channel. A channel is a system which takes input signals (here protein sequences) and transfers them to
produce output messages (here protein folds). To construct the channel, we used a lattice model of proteins,
which allows enumeration of all possible sequences and folds as well as computation of the probability that each
sequence folds into a particular fold. By computing the capacity of the channel, we obtained the most efficient
distribution of sequences that code all protein folds. It is often said that biology is about information flow and one
of the most fundamental information flows in biology is observed in translation of DNA to an amino acid
sequence, which codes for a protein tertiary structure. However, to the best of our knowledge, this is the first
time that the protein sequence-structure relationship has been investigated formally as an information theoretic
channel. Lattice models have been frequently used for investigating physical aspects of protein sequences and
folds15,16; but this is the first time that the protein sequence-structure relationship is examined as the entire
population of proteins in an organism.
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The identified distribution of sequences and folds are found to
follow a power law, consistent with those observed for proteins in
nature. These results suggest that underlying evolutionary pressure
for protein sequences includes efficient coding of protein folds.
Importantly, the skewed distributions of sequences and folds are
suggested to have different origins: the skewed distribution of
sequences is due to evolutionary pressure to achieve efficient coding
of necessary folds, whereas that of folds is based on the thermodyn-
amics of folds. Close investigation found that, consistent with pre-
vious works15,16, highly populated sequences tend to code a single fold
that has a distinctively low energy compared to the other folds,
whereas the least populated sequences code multiple unstable folds
with an equal, small probability. Thus, the current work uniformly
explains the behavior of protein sequences and folds as the entire
population as well as energetic characteristics of populated and less
populated individual proteins.

Results
Protein sequence-fold channel. We used a two-dimensional protein
lattice model of 16-residue length17 to model protein sequences and
folds. In this model a protein sequence is represented as a string of
two types of amino acids, hydrophobic (H) and hydrophilic (P) ones.
Thus there are in total 216 sequences. The total interaction energy of a
fold for a given sequence is defined as the sum of non-adjacent
contact energies, i.e. E 5 Si,jQ(Ai, Aj), j ? i11, where Ai and Aj

are amino acids (H or P) at position i and j in the sequence and Q is
the interaction energy between the two amino acids, which is given
by Q(H,H) 5 22.3, Q(H,P) 5 21.0, and Q(P,P) 5 011. We assumed
that the equilibrium probability for a sequence s to fold into a
particular fold fi follows the Boltzmann distribution18,19, i.e.

p(fijs)~
exp ({E fijsð Þ=kBTP

fk[ Foldsf g
exp ({E fkjsð Þ=kBT

, ð1Þ

where kB is the Boltzmann constant and T is the temperature. The
denominator is the partition function Z, which sums the probability

of s over all the folds considered. kB is set to 115,18. As the set of the
possible folds, we considered all the 41 compact folds that fit in the
4 3 4 square as well as semi-compact folds that fit within 5 3 5 (493
folds) or 6 3 6 squares (1588 folds). We consider that the compact
(or semi-compact) folds correspond to native folds of proteins, since
usually native folds have well-defined tertiary structures as opposed
to unfolded states of proteins. We suppose that the compact (or semi-
compact) native folds carry out essential functions of an organism20,
which are needed for sustaining life. Thus, an organism needs to code
all of the folds in its genome sequence in an energy-efficient manner.
To this end, we investigated how the essential folds can be coded
efficiently by a genome sequence (i.e. a set of amino acid sequences)
of an organism and its outcome in terms of the sequence and fold
distribution. By efficient coding, we mean that the information of
folds possessed by the sequences is maximized.

This question can be readily rephrased in information theoretic
terms using the concept of the capacity of a noisy channel13. More
concretely, a fundamental question regarding communication over a
noisy channel is the following: what is the maximum amount of
information per input symbol that can be reliably transmitted?
This maximum transmission rate C is called the capacity of the
channel. It turns out that C is equal to the maximum, taken over
all possible input distributions, of a quantity called the mutual
information I(S; F) between the input S and output F, i.e. C 5

maxp(s)I(S; F). The mutual information between two random vari-
ables can be thought of as a measure of the statistical dependence
between them. It is given by I(S; F) 5 H(F) - H(FjS), where H(F) and
H(FjS) are the entropy of F and conditional entropy of F given S,
respectively. In this study F corresponds to the set of protein folds
and S is the set of sequences. When a sequence s folds into f with a
probability of p(fjs), we would like to know the sequence distribution
that maximizes the mutual information with all the necessary protein
folds, i.e. the sequence distribution that is almost achieving the chan-
nel capacity. The channel, which we call the protein sequence-fold
channel, is illustrated in Figure 1. The channel is defined by p(fjs), the
Boltzmann distribution, which takes an input sequence distribution

Figure 1 | Schematic diagram of the protein channel. (A) The protein sequence-fold channel codes protein folds with sequences according to the

conditional probability defined by the Boltzmann distribution. (B) The duplicator channel is connected to the protein sequence-fold channel. The

duplicator channel duplicates each fold by an arbitrary number of copies and is used to force the fold to have a power law distribution.
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and outputs a fold distribution. The mutual information I(S; F) was
maximized using the Arimoto-Blahut algorithm21,22, which itera-
tively increases I(S; F) by revising the sequence distribution
(Materials and Methods) and reports the resulting mutual informa-
tion and distributions of sequences and folds. Practically, the algo-
rithm was run until the increase of I(S; F) by an iteration was
sufficiently small (see Figure 2 caption).

Sequence distribution that nearly achieve channel capacity. The
resulting sequence distributions that nearly achieve the channel
capacity are shown in Figure 2. Two temperatures T were used for
computing the Boltzmann distribution: one that is equal to or less
than the folding temperature18 Tf of 50% of the sequences while
another one is set to lower than the former such that it is equal to
or less than Tf of 80% of the sequences. Tf for a protein sequence s is
defined as the largest temperature where the native (most dominant)
fold fnative shares over 50% of the probability, i.e. P(fnativejs) $ 0.518. Tf

is different in principle for each sequence. To compute the two
temperatures, only sequences that have a unique dominant fold
were considered. The fraction of sequences whose Tf is equal to or
lower than each temperature was plotted (Supplementary Figure 1).

Figure 2A is the resulting histogram of the fraction of sequences
that have each given probability P(s) when the 41 compact folds that
fit within the 4 3 4 lattice were considered. The distribution of
fractions of sequences is highly skewed for both temperatures.
Using the temperature 1.26 (0.67), 99.6 (97.1)% of sequences having
a probability below 1024 while only 0.18 (0.28)% of sequences have a
probability over 1023. In each case the distribution follows a power
law, i.e. Fraction(P(s)) / P(s)2c with c 5 0.92 (1.48). (In the par-
entheses, values for T5 0.67 were shown.) The overall trend does not
change when we also take semi-compact folds into consideration

(Figs. 2B, 2C). The sequence distributions for folds that fit to 5 3 5
and 6 3 6 clearly follow a power law with the degree exponent (c) of
1.06 (1.42) and 1.07 (1.36) for 5 3 5 and 6 3 6, respectively. (In the
parentheses, values for a lower temperature were shown.)

The histogram of sequence fractions remains skewed at different
high temperatures up to 20 (Fig. 2D). At even higher temperatures
(T 5 50, 75, 100, 150, and 200 were tested), the distribution became
flat with all the sequences having almost the same probability, since
probability of folds for a sequence will become less distinguishable
between each other. On the other hand, the mutual information
I(S; F) showed a two state transition as the temperature increases
(Fig. 2E)23. At the temperature of around 1.1 to 1.2, which is slightly
higher than Tf, I(S; F) decreases to almost to 0 since all the sequences
have almost equal probability.

The results in Figure 2A–C indicate that a set of indispensable
protein folds are most efficiently coded when the histogram of
sequences follows a power law distribution. As a probability assigned
to each HP sequence in our model can be interpreted as the popu-
lation that the sequence shares, an HP sequence would corresponds
to a protein family in nature. Indeed, the sequence histogram
observed for the lattice models closely resembles the distribution of
actual protein sequence families. Figure 2F shows the distributions of
superfamilies that belong to each fold in the CATH protein structure
classification database. It follows a power law distribution with the
degree exponent values c 5 1.24. The power law distribution of
protein families shown here is consistent with what was previously
reported1,2.

Protein fold distribution. Next, having discussed the nearly capacity-
achieving sequence distribution obtained from the Arimoto-Blahut
algorithm, we ask what the corresponding fold distribution looks

Figure 2 | Histogram of sequences with different probabilities, which nearly achieves channel capacity. The sequence distribution was obtained after an

increase of mutual information by the Arimoto-Blahut algorithm was reduced to less than 0.01% of what was achieved after 1000 iterations.

(A) Computed for folds that fit to the 4 3 4 lattice. The two temperatures (T) used were 1.26 and 0.67. The x-axis represents the probability P(s) of

sequences, and the y-axis shows the fraction of such sequences, Fraction(P(s)). (B) Computed for folds that fit to the 5 3 5 lattice. T 5 0.70, 0.45. (C) Folds

that fit to the 6 3 6 lattice were considered. T 5 0.62, 0.41. c is computed for the sequence probability range from 1.5 3 1025 to 1.0 3 1023. (D) Slope (-c)

of the log-log plots of sequence distributions at different temperatures. (E) Capacity estimates of the channel at different temperatures. (F) The

distribution of populations of actual protein families. The CATH database was used for this analysis. For each superfamily (the Homology level in the

CATH hierarchy) the number of families classified with 35% sequence identity (S35 family in CATH) was counted.
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like. This distribution, in which the probability of a fold is calculated

by conditioning on sequences (i.e. p fð Þ~
XN

i~1

p(si)p f jsið Þ, where N is

the total number of sequences), does not exhibit a power law
(Supplementary Figure 2); rather, it is somewhat close to a
uniform distribution. This phenomenon may be explained if we
consider that the mutual information is defined as I(S; F) 5 H(F)
2 H(FjS), which can be maximized by having a fold distribution as
uniform as possible. However, the folds do exhibit a power law
distribution when each sequence s is assigned with a single fold
that has the maximum probability according to the Boltzmann
distribution (i.e. f �~ arg max

f
p(fjjsi)) (Fig. 3A). Skewness of the

distributions is clear for folds within 5 3 5 and 6 3 6, which
include a large enough number of folds. Assigning a single fold to

a sequence would be more natural, because in general a protein is
folded into its lowest free energy19. The fold distribution shown in
Figure 3A is consistent with actual protein folds in nature1,5 (Fig. 3B)
as well as those shown in previous theoretical studies10,11. Thus,
importantly, the origins of the power-lawness for the sequence and
the fold distribution are suggested to be different; the former comes
from the information theoretic nature of the sequence-fold channel
while the latter comes from thermodynamics of proteins.

Fold duplicator channel that achieves a power-law distribution for
folds. Knowing that the protein folds exhibit a power law from their
thermodynamical nature but not from a direct outcome of the
information theoretic protein sequence-fold channel, we next
modified the channel such that the fold distribution follows a
power law and reexamined the near capacity-achieving sequence
distribution. In the modified channel, individual instances of

Figure 3 | Distribution of folds. (A) The probability of a fold is determined following the Boltzmann distribution: each sequence s is assigned with a

single fold that has the maximum probability according to the Boltzmann distribution (i.e. arg max
f

p fj sij
� �

). (B) Fold distribution in the CATH database.

For each fold (the topology, CAT level), the number of all the protein sequences (black) and sequence families clustered with 95%, 60%, 35% identity

cutoff (red, green, and yellow, respectively) was counted. The degree exponent c of the three distributions, computed for a range of 1 to 100 of the number

of protein families are -1.11, -1.38, -1.41, and -1.40, for all the sequences, 95% family, 60% family, and 35% family, respectively.
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arbitrarily selected folds are multiplicated by cascading the original
channel with a new duplicator channel that maps each fold f to
elements in the set Fold’(f) according to a certain conditional
distribution (Fig. 1B) with two important properties: distinct folds

f1 and f2 map to disjoint sets (i.e. Fold’(f1) and Fold’(f2) share no
elements), and each set Fold’(f) has elements with conformation
identical to that of f. To realize a power law distribution, the size of
each Fold’(f) is chosen so that most sets are small, while a few are
large. We proved a proposition stating that the capacity and the
optimal sequence distribution are exactly the same in the original
sequence-fold channel (Fig. 1A) and the modified sequence-fold-
duplicator channel, regardless of choices of sizes of the Fold’ sets
and of conditional distributions. The mathematical proof is shown
in Supplemental Material. Thus, even when we require a power law
fold distribution, the optimal sequence distribution remains skewed.

Characteristics of sequences and folds in the capacity-achieving
channel. In the near capacity-achieving sequence histogram, folds
coded by a sequence with a large probability P(s) also have a high
probability, which indicates that well populated sequences code more
stable folds. To illustrate this, we show the conditional probability of
folds for the ten most populated sequences (Figs. 4A, 4B) and for the
ten least populated sequences (Figs. 4C, 4D) for the case of the 5 3 5
lattice with T50.45 as an example. The fold distributions of the ten
most and least populated sequences for all 4 3 4, 5 3 5, and 6 3 6
lattices are further provided in the supplemental material
(Supplementary Figure 3). There is a striking difference between
fold distributions coded by the most and least probable sequences:
The most populated sequences code a dominant fold that has a high
probability of 0.8 to 1.0 (Figs. 4A, 4B). In contrast, the least populated
sequences do not have a single fold with a distinctively high
probability; rather they have multiple folds with an equal, small
probability, which often cover almost the entire fold space

Figure 4 | Conditional probability of folds for (A) the five most populated sequences; (B) the 6th to 10th most popular sequences; (C) the 6th to 10th least

populated sequences (ranked 65527 to 65531); and (D) the five least populated sequences (ranked 65532 to 65536) for the case of the 5 3 5 lattice.

Temperature was set to 0.45.

Figure 5 | Folds coded by the ten highest and lowest populated sequences
for the 5 3 5 lattice. The temperature was set to 0.45. Black and white

nodes denote hydrophobic and hydrophilic amino acids, respectively.

(A) Folds for the ten most populated sequences. The folds are ordered from

left to right according to the probability of the sequences. (B) Folds for the

ten least popular sequences.
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(Figs. 4C, 4D). This trend holds for the compact (4 3 4) and semi-
compact (5 3 5, and 6 3 6) folds. The results imply that the nature
removes protein sequences which ambiguously code many different
structures with the same probabilities. Figure 4 and Supplementary
Figure 3 show limited examples but the positive correlation between
the probability of sequences and that of folds coded by the sequences
was observed for the entire sequences (Supplementary Fig. 4). This
observation is consistent with what was reported by Sali et al.16 and a
recent work which reports that highly abundant proteins favor more
stable 3D structures in a genome24. By visual inspection of high- and
low-probability sequences and their folds we found that folds with a
high probability have a hydrophobic core while low-probability
sequences are dominated by either one of the amino acid types (H,
P) or H and P come one after another and unable to make energetic
distinction between folds. In Figure 5, we show folds coded by the ten
highest and lowest populated sequences for the 5 3 5 lattice when
T50.45. Folds coded by ten highest and lowest populated sequences
for the 4 3 5, 5 3 5, and 6 3 6 lattices are further provided in
Supplementary Figure 5.

Discussion and Conclusions
The hypothesis that sequences are chosen in a way so as to achieve
the capacity of the sequence-to-structure channel explains the
skewed, power law character of the sequence distribution as
observed in nature, even when external conditions constrain the
fold distribution to also follow a power law. Previous works pro-
posed mathematical evolutionary models that result in power law
behavior of protein sequences1,25–27, without explaining why such
mechanisms are beneficial. The current work provides an explana-
tion why it is beneficial – it can maximize information of folds
contained per sequence unit (e.g. amino acid). Another important
conclusion is that the origin of the power law distribution is sug-
gested to be different for sequences and folds: protein sequences
exhibit a power law distribution to achieve efficient coding of
necessary folds, whereas the power lawness of the fold distribution
can be attributed to the Boltzmann distribution of energy levels of
folds for each sequence. The results may also suggest that power
law distributions observed in various biological instances, includ-
ing protein families1,2,27, domains25, folds1,5, and networks28,29, may
be of different origins.

Methods
Channel Capacity Computation with Arimoto-Blahut algorithm. We explain how
the capacity-achieving distribution for the sequence-to-structure channel is
computed. The capacity C of the channel, as well as the optimizing sequence
distribution Pr*(S), is computed using the Arimoto-Blahut algorithm, whose
inputs are the channel and an e . 0 whose purpose is to determine the
termination condition of the algorithm. Roughly speaking, the key insight is that
the original optimization problem can be reformulated in terms of two variables
whose values can easily be alternatingly optimized until a desired level of
convergence is achieved.

We define the objective function

J(r,q)~
X

s

X

f

p(f js)r(s) log
q(sjf )

r(s)
ð2Þ

In the above, p(fjs) is the probability of fold f given sequence s, which is given by the
channel.

The variable r(s) is the probability of sequence s, and q is a conditional distribution
over sequences given folds.

For a fixed input distribution r, the maximum of J with respect to q is attained when

q(sjf )~
p(f js)r(s)P

s
p(f js)r(s)

ð3Þ

For a fixed q, it can be shown that the maximizing value of r is

r(s)~
hsP

s
hs

ð4Þ

hs~P
f

(q(sjf ))p(f js) ð5Þ

The capacity can then be shown to be

C~ max
r

max
q

J(r,q) ð6Þ

The core of the algorithm is as follows.
1. Choose an initial guess r0 for the optimizing sequence distribution. Execute the

following steps to compute r1, r2, … rt, where rt is the first r such that the Euclidean
metric d(rt, rt21) # e. In what follows, the current iteration number is given by k.

2. Maximize J(rk, q) with respect to q according to (2) to get qk.
3. Maximize J(r, qk) with respect to r according to (1) to get rk11.
From Pr*(S) and the channel, the optimizing distribution over structures is given

by, for each f g Fold,

Pr� F~fð Þ~
X

s[Seq

Pr (f js)Pr�(s) ð7Þ
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