
Discrete Applied Mathematics 166 (2014) 204–209

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

On the partition dimension of trees
Juan A. Rodríguez-Velázquez a, Ismael González Yero b,∗,
Magdalena Lemańska c

a Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
b Departamento de Matemáticas, Escuela Politécnica Superior, Universidad de Cádiz, Av. Ramón Puyol s/n, 11202 Algeciras, Spain
c Department of Technical Physics and Applied Mathematics, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233
Gdańsk, Poland

a r t i c l e i n f o

Article history:
Received 24 January 2012
Received in revised form 25 June 2013
Accepted 27 September 2013
Available online 21 October 2013

Keywords:
Resolving sets
Resolving partition
Partition dimension

a b s t r a c t

Given an ordered partition Π = {P1, P2, . . . , Pt} of the vertex set V of a connected graph
G = (V , E), the partition representation of a vertex v ∈ V with respect to the partition Π is
the vector r(v|Π) = (d(v, P1), d(v, P2), . . . , d(v, Pt)), where d(v, Pi) represents the dis-
tance between the vertex v and the set Pi. A partition Π of V is a resolving partition of G if
different vertices of G have different partition representations, i.e., for every pair of vertices
u, v ∈ V , r(u|Π) ≠ r(v|Π). The partition dimension of G is the minimum number of sets in
any resolving partition of G. In this paper we obtain several tight bounds on the partition
dimension of trees.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The concepts of resolvability and location in graphs were described independently by Harary and Melter [9] and
Slater [17]. After these papers were published several authors developed diverse theoretical works about this topic [3,2,
4–10,14,19]. Slater described the usefulness of these ideas into long range aids to navigation [17]. Also, these concepts have
some applications in chemistry for representing chemical compounds [12,13] or to problems of pattern recognition and
image processing, some of which involve the use of hierarchical data structures [15]. Other applications of this concept to
navigation of robots in networks and other areas appear in [5,11,14]. Some variations on resolvability or location have been
appearing in the literature, like those about conditional resolvability [16], locating domination [10], resolving domination [1]
and resolving partitions [4,7,8,19].

Given a graph G = (V , E) and an ordered set of vertices S = {v1, v2, . . . , vk} of G, the metric representation of a vertex
v ∈ V with respect to S is the vector r(v|S) = (d(v, v1), d(v, v2), . . . , d(v, vk)), where d(v, vi)denotes the distance between
the vertices v and vi, 1 ≤ i ≤ k. We say that S is a resolving set of G if different vertices of G have differentmetric representa-
tions, i.e., for every pair of distinct vertices u, v ∈ V , r(u|S) ≠ r(v|S). Themetric dimension1 of G is the minimum cardinality
of any resolving set of G, and it is denoted by dim(G). The metric dimension of graphs is studied in [3,2,4–6,18].

Given an ordered partition Π = {P1, P2, . . . , Pt} of the vertices of G, the partition representation of a vertex v ∈ V with
respect to the partition Π is the vector r(v|Π) = (d(v, P1), d(v, P2), . . . , d(v, Pt)), where d(v, Pi), with 1 ≤ i ≤ t , repre-
sents the distance between the vertex v and the set Pi, i.e., d(v, Pi) = minu∈Pi{d(v, u)}. We say that Π is a resolving partition
ofG if different vertices ofGhavedifferent partition representations, i.e., for every pair of distinct verticesu, v ∈ V , r(u|Π) ≠
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Fig. 1. In this tree the vertex 3 is an exterior major vertex of terminal degree two: 1 and 4 are terminal vertices of 3.

Fig. 2. Π = {{1, 4, 9, 12}, {3, 5, 8, 11}, {2, 6, 7, 10}} is a resolving partition.

r(v|Π). The partition dimension ofG is theminimumnumber of sets in any resolving partition ofG and it is denoted by pd(G).
The partition dimension of graphs is studied in [4,7,8,18].

2. The partition dimension of trees

It is natural to think that the partition dimension and metric dimension are related; in [7] it was shown that for any
nontrivial connected graph Gwe have

pd(G) ≤ dim(G) + 1. (1)

We know that the partition dimension of any path is two. That is, for any path graph P , it follows pd(P) = dim(P) + 1 = 2.
A formula for the dimension of trees that are not paths has been established in [5,9,17]. In order to present this formula, we
need additional definitions. A vertex of degree at least 3 in a tree T will be called amajor vertex of T . Any leaf u of T is said to
be a terminal vertex of a major vertex v of T if d(u, v) < d(u, w) for every other major vertex w of T . The terminal degree of a
major vertex v is the number of terminal vertices of v. A major vertex v of T is an exterior major vertex of T if it has positive
terminal degree.

Let n1(T ) denote the number of leaves of T , and let ex(T ) denote the number of exterior major vertices of T . We can now
state the formula for the dimension of a tree [5,9,17]: if T is a tree that is not a path, then

dim(T ) = n1(T ) − ex(T ). (2)

As a consequence, if T is a tree that is not a path, then

pd(T ) ≤ n1(T ) − ex(T ) + 1. (3)

The above bound is tight, it is achieved for the graph in Fig. 1 where Π = {{8}, {4, 9}, {1, 2, 3, 5, 6, 7}} is a resolving
partition and pd(T ) = 3. However, there are graphs for which the following bound gives better result than bound (3), for
instance, the graph in Fig. 2.

Let S = {s1, s2, . . . , sκ} be the set of exterior major vertices of T = (V , E) with terminal degree greater than one; let
{si1, si2, . . . , sili} be the set of terminal vertices of si and let τ = max1≤i≤κ{li}. With the above notationwe have the following
result.

Theorem 1. For any tree T which is not a path,

pd(T ) ≤ κ + τ − 1.

Proof. For a terminal vertex sij of a major vertex si ∈ S we denote by Sij the set of vertices of T , different from si, belonging
to the si − sij path. If li < τ − 1, we assume Sij = ∅ for every j ∈ {li + 1, . . . , τ − 1}. Now for every j ∈ {2, . . . , τ − 1}, let
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Bj = ∪
κ
i=1 Sij and, for every i ∈ {1, . . . , κ}, let Ai = Si1. Let us show that Π = {A, A1, A2, . . . , Aκ , B2, . . . , Bτ−1} is a resolving

partition of T , where A = V −


∪
κ
i=1 Ai


∪


∪

τ−1
j=2 Bj


. We consider two different vertices x, y ∈ V . Note that if x and y

belong to different sets of Π , we have r(x|Π) ≠ r(y|Π).
Case 1: x, y ∈ Sij. If j = τ , then we have that x, y ∈ A and it follows that d(x, Ai) ≠ d(y, Ai). Otherwise, we obtain that

d(x, A) = d(x, si) ≠ d(y, si) = d(y, A).
Case 2: x ∈ Sij and y ∈ Skl, i ≠ k. If j = 1 or l = 1, then x and y belong to different sets of Π . So we suppose j ≠ 1 and

l ≠ 1. Hence, if d(x, Ai) = d(y, Ai), then

d(x, Ak) = d(x, si) + d(si, sk) + 1
= d(x, Ai) + d(si, sk)
= d(y, Ai) + d(si, sk)
= d(y, sk) + 2d(sk, si) + 1
= d(y, Ak) + 2d(sk, si)
> d(y, Ak).

Case 3: x ∈ Siτ and y ∈ A − ∪
κ
l=1 Slτ . If d(x, Ai) = d(y, Ai), then d(x, si) = d(y, si). Since y ∉ Slτ , l ∈ {1, . . . , κ}, there

exists Aj ∈ Π, j ≠ i, such that si does not belong to the y − sj path. Now let Y be the set of vertices belonging to the y − sj
path, and let v ∈ Y such that d(si, v) = minu∈Y {d(si, u)}. Hence,

d(x, Aj) = d(x, si) + d(si, v) + d(v, sj) + 1
= d(y, si) + d(si, v) + d(v, sj) + 1
= d(y, v) + 2d(v, si) + d(v, sj) + 1
= d(y, Aj) + 2d(v, si)
> d(y, Aj).

Case 4: x, y ∈ A′
= A − ∪

κ
l=1 Slτ . If for some exterior major vertex si ∈ S, the vertex x belongs to the y − si path or the

vertex y belongs to the x − si path, then d(x, Ai) ≠ d(y, Ai). Otherwise, there exist at least two exterior major vertices si, sj
such that the x − y path and the si − sj path share more than one vertex (if not, then x, y ∉ A′). Let W be the set of vertices
belonging to the si − sj path. Let u, v ∈ W such that d(x, u) = minz∈W {d(x, z)} and d(y, v) = minz∈W {d(y, z)}. We suppose,
without loss of generality, that d(si, u) > d(v, si). Hence, if d(x, v) = d(y, v), then d(x, u) ≠ d(y, u), and if d(x, u) = d(y, u),
then d(x, v) ≠ d(y, v). We have

d(x, Aj) = d(x, u) + d(u, sj) + 1
≠ d(y, u) + d(u, sj) + 1
= d(y, Aj)

or

d(x, Ai) = d(x, v) + d(v, si) + 1
≠ d(y, v) + d(v, si) + 1
= d(y, Ai).

Therefore, for different vertices x, y ∈ V , we have r(x|Π) ≠ r(y|Π). �

One example where pd(T ) = κ + τ − 1 is the tree in Fig. 1.
Any vertex adjacent to a leaf of a tree T is called a support vertex. In the following result ξ denotes the number of support

vertices of T and θ denotes the maximum number of leaves adjacent to a support vertex of T .

Corollary 2. For any tree T of order n ≥ 2, pd(T ) ≤ ξ + θ − 1.

Proof. If T is a path, then ξ = 2 and θ = 1, so the result follows. Nowwe suppose T is not a path. Let v be an exterior major
vertex of terminal degree τ . Let x be the number of leaves adjacent to v and let y = τ − x. Since κ + y ≤ ξ and x ≤ θ , we
deduce κ + τ ≤ ξ + θ . �

The above bound is achieved, for instance, for the graph of order six composed of two support vertices a and b, where a
is adjacent to b and four leaves; two of them are adjacent to a and the other two leaves are adjacent to b. One example of a
graph for which Theorem 1 gives a better result than Corollary 2 is the graph in Fig. 1.

Since the number of leaves, n1(T ), of a tree T is bounded below by ξ + θ − 1, Corollary 2 leads to the following bound.

Remark 3. For any tree T of order n ≥ 2, pd(T ) ≤ n1(T ).

Now we are going to characterize all the trees for which pd(T ) = n1(T ). It was shown in [7] that pd(G) = 2 if and only if
the graph G is a path. So by the above remark we obtain the following result.
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Fig. 3. A comet graph where 3 = θ = pd(T ) < n1(T ).

Remark 4. Let T be a tree of order n ≥ 4. If n1(T ) = 3, then pd(T ) = 3.

Theorem 5. Let T be a tree with n1(T ) ≥ 4. Then pd(T ) = n1(T ) if and only if T is the star graph.

Proof. If T = Sn is a star graph, it is clear that pd(T ) = n1(T ). Now, let T = (V , E) ≠ Sn, such that pd(T ) = n1(T ) ≥ 4. Note
that by (3) we have ex(T ) = 1. Let t = n1(T ) and let Ω = {u1, u2, . . . , ut} be the set of leaves of T . Let u ∈ V be the unique
exterior major vertex of T . Let us suppose, without loss of generality, ut is a leaf of T such that d(ut , u) = maxui∈Ω{d(ui, u)}.

For the leaves u1, u2, ut ∈ Ω let the paths P = uut1ut2, . . . , utrtut ,Q = uu11u12, . . . , u1r1u1 and R = uu21u22, . . . , u2r2u2.
Now, let us form the partition Π = {A1, A2, . . . , At−2, A}, such that A1 = {u11, u12, . . . , u1r1 , u1, ut2, ut3, . . . , utrt , ut}, A2 =

{u21, u22, . . . , u2r2 , u2, ut1}, Ai = {ui}, i ∈ {3, . . . , t−2} and A = V −∪
t−2
i=1 Ai. Let us consider two different vertices x, y ∈ V .

Hence, we have the following cases.
Case 1: x, y ∈ A1. Let us suppose x ∈ P and y ∈ Q . If d(x, A2) = d(y, A2), then we have

d(x, A) = d(x, ut1) + 1
= d(x, A2) + 1
= d(y, A2) + 1
= d(y, A) + 2
> d(y, A).

Now, if x, y ∈ P or x, y ∈ Q , then d(x, A) ≠ d(y, A).
Case 2: x, y ∈ A2. If x = ut1 or y = ut1, then let us suppose for instance, x = ut1, so we have d(x, A1) = 1 < 2 ≤ d(y, A1).

On the contrary, if x, y ∈ R, then d(x, A) ≠ d(y, A).
Case 3: x, y ∈ A. If d(x, A1) = d(y, A1), then t ≥ 5 and there exists a leaf ui, i ≠ 1, 2, t − 1, t , such that d(x, Ai) =

d(x, ui) ≠ d(y, ui) = d(y, Ai).
Therefore, for different vertices x, y ∈ V wehave r(x|Π) ≠ r(y|Π) andΠ is a resolving partition in T , a contradiction. �

Let T be the comet graph shown in Fig. 3. A resolving partition for T is Π = {A1, A2, A3}, where A1 = {x, t}, A2 = {y, z}
and A3 = {u, w}. In this case, θ = pd(T ) = 3 < 4 = n1(T ).

Remark 6. For any tree T of order n ≥ 2, pd(T ) ≥ θ .

Proof. Since different leaves adjacent to the same support vertex must belong to different sets of a resolving partition, the
result follows. �

Other examples where pd(T ) = θ are the star graphs and the graph in Fig. 2.

Theorem 7. Let T be a tree which is not a path. If every vertex belonging to the path between two exterior major vertices of
terminal degree greater than one is an exterior major vertex of terminal degree greater than one, then

pd(T ) ≤ max{κ, τ + 1}.

Proof. We suppose T = (V , E) is not a path. Let S = {s1, s2, . . . , sκ} be the set of exterior major vertices of T with terminal
degree greater than one and let Bi = {si}, i = 1, . . . , κ . If κ < τ + 1, then for i ∈ {κ + 1, . . . , τ + 1} we assume Bi = ∅. Let
li be the terminal degree of si, i ∈ {1, . . . , κ}. If li < i, then we denote by {si1, . . . , sili} the set of terminal vertices of si. On
the contrary, if li ≥ i, then the set of terminal vertices of si is denoted by {si1, . . . , sii−1, sii+1, . . . , sili+1}. Also, for a terminal
vertex sij of amajor vertex si we denote by Sij the set of vertices of T , different from si, belonging to the si−sij path. Moreover,
we assume Sij = ∅ for the following three cases: (1) i = j, (2) i ≤ li < τ and j ∈ {li + 2, . . . , τ + 1}, and (3) i > li and
j ∈ {li +1, . . . , τ +1}. Now, let t = max{κ, τ +1} and letΠ = {A1, A2, . . . , At} be composed of the sets Ai = Bi ∪


∪

κ
j=1 Sji


,

i = 1, . . . , t . Since every vertex belonging to the path between two exterior major vertices of terminal degree greater than
one is an exterior major vertex of terminal degree greater than one, then Π is a partition of V .

Let us show that Π is a resolving partition. Let x, y ∈ V be different vertices of T . If x, y ∈ Ai, we have the following three
cases.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


208 J.A. Rodríguez-Velázquez et al. / Discrete Applied Mathematics 166 (2014) 204–209

Fig. 4. Π = {{1, 8, 11, 14}, {2, 5, 12, 15}, {3, 6, 9, 16}, {4, 7, 10, 13}} is a resolving partition.

Case 1: x, y ∈ Sji. In this case d(x, Aj) = d(x, sj) ≠ d(y, sj) = d(y, Aj).
Case 2: x ∈ Sji and y ∈ Ski, j ≠ k. If d(x, Ak) = d(y, Ak) we have d(y, Aj) > d(y, sk) = d(y, Ak) = d(x, Ak) > d(x, sj) =

d(x, Aj).
Case 3: x = si and y ∈ Sji. As si has at least two terminal vertices, there exists a terminal vertex sil of si, l ≠ j, such that
d(x, Al) = d(x, Sil) = 1. Hence, d(y, Al) > d(y, sj) ≥ 1 = d(x, Al). Therefore, for different vertices x, y ∈ V , we have
r(x|Π) ≠ r(y|Π). �

The above bound is achieved, for instance, for the graph in Fig. 4.

3. On the partition dimension of generalized trees

A cut vertex in a graph is a vertex whose removal increases the number of components of the graph and an extreme vertex
is a vertex such that its closed neighborhood forms a complete graph. Also, a block is a maximal biconnected subgraph of the
graph. Now, let F be the family of sequences of connected graphs G1,G2, . . . ,Gk, k ≥ 2, such that G1 is a complete graph
Kn1 , n1 ≥ 2, and Gi, i ≥ 2, is obtained recursively from Gi−1 by adding a complete graph Kni , ni ≥ 2, and identifying a vertex
of Gi−1 with a vertex in Kni .

From this point we will say that a connected graph G is a generalized tree if and only if there exists a sequence {G1,G2,
. . . ,Gk} ∈ F such that Gk = G for some k ≥ 2. Notice that in these generalized trees every vertex is either a cut vertex or an
extreme vertex. Also, every complete graph used to obtain the generalized tree is a block of the graph. Note that if every Gi
is isomorphic to K2, then Gk is a tree, thus justifying the terminology used. In this section we will be centered in the study
of partition dimension of generalized trees.

Let G = (V , E) be a generalized tree and let R1, R2, . . . , Rk be the blocks of G. A cut vertex v ∈ V is a support cut vertex
if there is at least one block Ri of G, in which v is the unique cut vertex belonging to the block Ri. An extreme vertex is an
exterior extreme vertex if it is adjacent to only one cut vertex. Let S = {s1, s2, . . . , sζ } be the set of support cut vertices of
G and let {si1, si2, . . . , sili} be the set of exterior extreme vertices adjacent to si ∈ S. Also, let Q = {Q1,Q2, . . . ,Qϑ } be the
set of blocks of G which contain more than one cut vertex and more than one extreme vertex and let {qi1, qi2, . . . , qiti} be
the set of extreme vertices belonging to Qi ∈ Q . Now, let φ = max1≤i≤ζ ,1≤j≤ϑ {li, tj}. With the above notation we have the
following result.

Theorem 8. For any generalized tree G,

pd(G) ≤


ζ + ϑ + φ − 1, if φ ≥ 3;
ζ + ϑ + 1, if φ ≤ 2.

Proof. For each support cut vertex si ∈ S, let Ai = {si1} and for each block Qj ∈ Q , let Bj = {qj1}. Let us suppose φ ≥ 3.
For every j ∈ {2, . . . , li} we take Mij = {sij} and, if li < φ − 1, then for every j ∈ {li+1, . . . , φ − 1} we consider Mij = ∅.
Analogously, for every j ∈ {2, . . . , ti} we take Nij = {qij} and, if ti < φ − 1, then for every j ∈ {ti+1, . . . , φ − 1} we consider
Nij = ∅. Now, let Cj =

max{ζ ,ϑ}

i=1 (Mij ∪ Nij), with j ∈ {2, . . . , φ − 1}.
Let us prove that Π = {A, A1, A2, . . . , Aζ , B1, B2, . . . , Bϑ , C2, C3, . . . , Cφ−1} is a resolving partition of G, where A = V −

∪
ζ

i=1 Ai − ∪
ϑ
i=1 Bi − ∪

φ−1
i=2 Ci. To begin with, let x, y be two different vertices of G. We have the following cases.

Case 1: x is a cut vertex or y is a cut vertex. Let us suppose, for instance, x is a cut vertex. So there exists an extreme vertex
si1 such that x belongs to a shortest y − si1 path or y belongs to a shortest x − si1 path. Hence, we have d(x, Ai) = d(x, si1) ≠

d(y, si1) = d(y, Ai).
Case 2: x, y are extreme vertices. If x, y belong to the same block of G, then x, y belong to different sets of Π . On the

contrary, if x, y belong to different blocks in G, then let us suppose that there exists an extreme vertex c such that d(x, c) ≤ 1
or d(y, c) ≤ 1. We can suppose c ∈ Ai, for some i ∈ {1, . . . , ζ }, or c ∈ Bj, for some j ∈ {1, . . . , ϑ}. Without the loss of
generality, we suppose that d(x, c) ≤ 1. Since x and y belong to different blocks of G, we have d(y, c) > 1. So we obtain
either d(x, Ai) = d(x, c) ≤ 1 < d(y, c) = d(y, Ai) or d(x, Bj) = d(x, c) ≤ 1 < d(y, c) = d(y, Bj).
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Fig. 5. Π = {{4}, {7}, {10}, {5, 8, 11}, {1, 2, 3, 6, 9, 12}} is a resolving partition for the generalized tree.

Now, if there exists no such a vertex c , then there exist two blocks H, K ∉ Q with x ∈ H and y ∈ K , which contain more
than one cut vertex and only one extreme vertex. So x, y ∈ A. Let u ∈ H be a cut vertex such that d(y, u) = maxv∈H d(y, v).
Hence, there exists an extreme vertex si1 such that u belongs to a shortest x − si1 path and d(y, si1) = d(y, u) + d(u, si1). As
x, y belong to different blocks and d(y, u) = maxv∈H d(y, v) we have d(y, u) ≥ 2. Thus,

d(y, Ai) = d(y, si1)
= d(y, u) + d(u, si1)
≥ 2 + d(u, si1)
> 1 + d(u, si1)
= d(x, u) + d(u, si1)
= d(x, Ai).

Hence, we conclude that if φ ≥ 3, then for every x, y ∈ V , r(x|Π) ≠ r(y|Π). Therefore, Π is a resolving partition.
On the other hand, if φ ≤ 2, then Π ′

= {A, A1, A2, . . . , Aζ , B1, B2, . . . , Bϑ } is a partition of V . Proceeding as above we
obtain that Π ′ is a resolving partition. �

The above bound is achieved, for instance, for the graph in Fig. 5, where ζ = 3, ϑ = 0 and φ = 3. Also, notice that for
the particular case of trees we have ζ = ξ, φ = θ and ϑ = 0. So the above result leads to Corollary 2.
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