Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

On the partition dimension of trees

Juan A. Rodríguez-Velázquez^a, Ismael González Yero^{b,*}, Magdalena Lemańska^c

^a Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain

^b Departamento de Matemáticas, Escuela Politécnica Superior, Universidad de Cádiz, Av. Ramón Puyol s/n, 11202 Algeciras, Spain
^c Department of Technical Physics and Applied Mathematics, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233
Gdańsk, Poland

ARTICLE INFO

Article history: Received 24 January 2012 Received in revised form 25 June 2013 Accepted 27 September 2013 Available online 21 October 2013

Keywords: Resolving sets Resolving partition Partition dimension

1. Introduction

The concepts of resolvability and location in graphs were described independently by Harary and Melter [9] and Slater [17]. After these papers were published several authors developed diverse theoretical works about this topic [3,2, 4–10,14,19]. Slater described the usefulness of these ideas into long range aids to navigation [17]. Also, these concepts have some applications in chemistry for representing chemical compounds [12,13] or to problems of pattern recognition and image processing, some of which involve the use of hierarchical data structures [15]. Other applications of this concept to navigation of robots in networks and other areas appear in [5,11,14]. Some variations on resolvability or location have been appearing in the literature, like those about conditional resolvability [16], locating domination [10], resolving domination [1] and resolving partitions [4,7,8,19].

Given a graph G = (V, E) and an ordered set of vertices $S = \{v_1, v_2, \ldots, v_k\}$ of G, the *metric representation* of a vertex $v \in V$ with respect to S is the vector $r(v|S) = (d(v, v_1), d(v, v_2), \ldots, d(v, v_k))$, where $d(v, v_i)$ denotes the distance between the vertices v and v_i , $1 \le i \le k$. We say that S is a *resolving set* of G if different vertices of G have different metric representations, i.e., for every pair of distinct vertices $u, v \in V$, $r(u|S) \ne r(v|S)$. The *metric dimension*¹ of G is the minimum cardinality of any resolving set of G, and it is denoted by dim(G). The metric dimension of graphs is studied in [3,2,4–6,18].

Given an ordered partition $\Pi = \{P_1, P_2, \dots, P_t\}$ of the vertices of *G*, the *partition representation* of a vertex $v \in V$ with respect to the partition Π is the vector $r(v|\Pi) = (d(v, P_1), d(v, P_2), \dots, d(v, P_t))$, where $d(v, P_i)$, with $1 \le i \le t$, represents the distance between the vertex v and the set P_i , i.e., $d(v, P_i) = \min_{u \in P_i} \{d(v, u)\}$. We say that Π is a *resolving partition* of *G* if different vertices of *G* have different partition representations, i.e., for every pair of distinct vertices $u, v \in V$, $r(u|\Pi) \ne t$

ABSTRACT

Given an ordered partition $\Pi = \{P_1, P_2, \ldots, P_t\}$ of the vertex set *V* of a connected graph G = (V, E), the partition representation of a vertex $v \in V$ with respect to the partition Π is the vector $r(v|\Pi) = (d(v, P_1), d(v, P_2), \ldots, d(v, P_t))$, where $d(v, P_i)$ represents the distance between the vertex v and the set P_i . A partition Π of *V* is a *resolving partition* of *G* if different vertices of *G* have different partition representations, i.e., for every pair of vertices $u, v \in V, r(u|\Pi) \neq r(v|\Pi)$. The partition dimension of *G* is the minimum number of sets in any resolving partition of *G*. In this paper we obtain several tight bounds on the partition dimension of trees.

© 2013 Elsevier B.V. All rights reserved.

^{*} Corresponding author. Tel.: +34 956028061; fax: +34 977558512.

E-mail addresses: juanalberto.rodriguez@urv.cat (J.A. Rodríguez-Velázquez), ismael.gonzalez@uca.es (I. González Yero), magda@mifgate.mif.pg.gda.pl (M. Lemańska).

¹ Also called the locating number.

⁰¹⁶⁶⁻²¹⁸X/\$ - see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.dam.2013.09.026

Fig. 1. In this tree the vertex 3 is an exterior major vertex of terminal degree two: 1 and 4 are terminal vertices of 3.

Fig. 2. $\Pi = \{\{1, 4, 9, 12\}, \{3, 5, 8, 11\}, \{2, 6, 7, 10\}\}$ is a resolving partition.

 $r(v|\Pi)$. The partition dimension of G is the minimum number of sets in any resolving partition of G and it is denoted by pd(G). The partition dimension of graphs is studied in [4,7,8,18].

2. The partition dimension of trees

It is natural to think that the partition dimension and metric dimension are related; in [7] it was shown that for any nontrivial connected graph G we have

$$pd(G) < \dim(G) + 1. \tag{1}$$

We know that the partition dimension of any path is two. That is, for any path graph *P*, it follows $pd(P) = \dim(P) + 1 = 2$. A formula for the dimension of trees that are not paths has been established in [5,9,17]. In order to present this formula, we need additional definitions. A vertex of degree at least 3 in a tree *T* will be called a *major vertex* of *T*. Any leaf *u* of *T* is said to be a *terminal vertex* of a major vertex *v* of *T* if d(u, v) < d(u, w) for every other major vertex *w* of *T*. The *terminal degree* of a major vertex *v* is the number of terminal vertices of *v*. A major vertex *v* of *T* is an *exterior major vertex* of *T* if it has positive terminal degree.

Let $n_1(T)$ denote the number of leaves of T, and let ex(T) denote the number of exterior major vertices of T. We can now state the formula for the dimension of a tree [5,9,17]: if T is a tree that is not a path, then

$$\dim(T) = n_1(T) - \exp(T). \tag{2}$$

As a consequence, if T is a tree that is not a path, then

$$pd(T) \le n_1(T) - ex(T) + 1.$$

The above bound is tight, it is achieved for the graph in Fig. 1 where $\Pi = \{\{8\}, \{4, 9\}, \{1, 2, 3, 5, 6, 7\}\}$ is a resolving partition and pd(T) = 3. However, there are graphs for which the following bound gives better result than bound (3), for instance, the graph in Fig. 2.

Let $S = \{s_1, s_2, \ldots, s_{\kappa}\}$ be the set of exterior major vertices of T = (V, E) with terminal degree greater than one; let $\{s_{i1}, s_{i2}, \ldots, s_{il_i}\}$ be the set of terminal vertices of s_i and let $\tau = \max_{1 \le i \le \kappa} \{l_i\}$. With the above notation we have the following result.

Theorem 1. For any tree T which is not a path,

$$pd(T) \leq \kappa + \tau - 1.$$

Proof. For a terminal vertex s_{ij} of a major vertex $s_i \in S$ we denote by S_{ij} the set of vertices of T, different from s_i , belonging to the $s_i - s_{ij}$ path. If $l_i < \tau - 1$, we assume $S_{ij} = \emptyset$ for every $j \in \{l_i + 1, ..., \tau - 1\}$. Now for every $j \in \{2, ..., \tau - 1\}$, let

(3)

 $B_j = \bigcup_{i=1}^{\kappa} S_{ij}$ and, for every $i \in \{1, \ldots, \kappa\}$, let $A_i = S_{i1}$. Let us show that $\Pi = \{A, A_1, A_2, \ldots, A_{\kappa}, B_2, \ldots, B_{\tau-1}\}$ is a resolving partition of T, where $A = V - \left(\left(\bigcup_{i=1}^{\kappa} A_i \right) \cup \left(\bigcup_{j=2}^{\tau-1} B_j \right) \right)$. We consider two different vertices $x, y \in V$. Note that if x and y belong to different sets of Π , we have $r(x|\Pi) \neq r(y|\Pi)$.

Case 1: $x, y \in S_{ij}$. If $j = \tau$, then we have that $x, y \in A$ and it follows that $d(x, A_i) \neq d(y, A_i)$. Otherwise, we obtain that $d(x, A) = d(x, s_i) \neq d(y, s_i) = d(y, A)$.

Case 2: $x \in S_{ij}$ and $y \in S_{kl}$, $i \neq k$. If j = 1 or l = 1, then x and y belong to different sets of Π . So we suppose $j \neq 1$ and $l \neq 1$. Hence, if $d(x, A_i) = d(y, A_i)$, then

$$d(x, A_k) = d(x, s_i) + d(s_i, s_k) + 1$$

= $d(x, A_i) + d(s_i, s_k)$
= $d(y, A_i) + d(s_i, s_k)$
= $d(y, s_k) + 2d(s_k, s_i) + 1$
= $d(y, A_k) + 2d(s_k, s_i)$
> $d(y, A_k)$.

Case 3: $x \in S_{i\tau}$ and $y \in A - \bigcup_{l=1}^{\kappa} S_{l\tau}$. If $d(x, A_i) = d(y, A_i)$, then $d(x, s_i) = d(y, s_i)$. Since $y \notin S_{l\tau}$, $l \in \{1, ..., \kappa\}$, there exists $A_j \in \Pi$, $j \neq i$, such that s_i does not belong to the $y - s_j$ path. Now let Y be the set of vertices belonging to the $y - s_j$ path, and let $v \in Y$ such that $d(s_i, v) = \min_{u \in Y} \{d(s_i, u)\}$. Hence,

$$d(x, A_j) = d(x, s_i) + d(s_i, v) + d(v, s_j) + 1$$

= $d(y, s_i) + d(s_i, v) + d(v, s_j) + 1$
= $d(y, v) + 2d(v, s_i) + d(v, s_j) + 1$
= $d(y, A_j) + 2d(v, s_i)$
> $d(y, A_j)$.

Case 4: $x, y \in A' = A - \bigcup_{i=1}^{k} S_{i\tau}$. If for some exterior major vertex $s_i \in S$, the vertex x belongs to the $y - s_i$ path or the vertex y belongs to the $x - s_i$ path, then $d(x, A_i) \neq d(y, A_i)$. Otherwise, there exist at least two exterior major vertices s_i, s_j such that the x - y path and the $s_i - s_j$ path share more than one vertex (if not, then $x, y \notin A'$). Let W be the set of vertices belonging to the $s_i - s_j$ path. Let $u, v \in W$ such that $d(x, u) = \min_{z \in W} \{d(x, z)\}$ and $d(y, v) = \min_{z \in W} \{d(y, z)\}$. We suppose, without loss of generality, that $d(s_i, u) > d(v, s_i)$. Hence, if d(x, v) = d(y, v), then $d(x, u) \neq d(y, u)$, and if d(x, u) = d(y, u), then $d(x, v) \neq d(y, v)$. We have

$$d(x, A_j) = d(x, u) + d(u, s_j) + 1$$

$$\neq d(y, u) + d(u, s_j) + 1$$

$$= d(y, A_j)$$

or

$$d(x, A_i) = d(x, v) + d(v, s_i) + 1 \neq d(y, v) + d(v, s_i) + 1 = d(y, A_i).$$

Therefore, for different vertices $x, y \in V$, we have $r(x|\Pi) \neq r(y|\Pi)$. \Box

One example where $pd(T) = \kappa + \tau - 1$ is the tree in Fig. 1.

Any vertex adjacent to a leaf of a tree *T* is called a *support* vertex. In the following result ξ denotes the number of support vertices of *T* and θ denotes the maximum number of leaves adjacent to a support vertex of *T*.

Corollary 2. For any tree *T* of order $n \ge 2$, $pd(T) \le \xi + \theta - 1$.

Proof. If *T* is a path, then $\xi = 2$ and $\theta = 1$, so the result follows. Now we suppose *T* is not a path. Let *v* be an exterior major vertex of terminal degree τ . Let *x* be the number of leaves adjacent to *v* and let $y = \tau - x$. Since $\kappa + y \le \xi$ and $x \le \theta$, we deduce $\kappa + \tau \le \xi + \theta$. \Box

The above bound is achieved, for instance, for the graph of order six composed of two support vertices *a* and *b*, where *a* is adjacent to *b* and four leaves; two of them are adjacent to *a* and the other two leaves are adjacent to *b*. One example of a graph for which Theorem 1 gives a better result than Corollary 2 is the graph in Fig. 1.

Since the number of leaves, $n_1(T)$, of a tree *T* is bounded below by $\xi + \theta - 1$, Corollary 2 leads to the following bound.

Remark 3. For any tree *T* of order $n \ge 2$, $pd(T) \le n_1(T)$.

Now we are going to characterize all the trees for which $pd(T) = n_1(T)$. It was shown in [7] that pd(G) = 2 if and only if the graph *G* is a path. So by the above remark we obtain the following result.

Fig. 3. A comet graph where $3 = \theta = pd(T) < n_1(T)$.

Remark 4. Let *T* be a tree of order $n \ge 4$. If $n_1(T) = 3$, then pd(T) = 3.

Theorem 5. Let T be a tree with $n_1(T) \ge 4$. Then $pd(T) = n_1(T)$ if and only if T is the star graph.

Proof. If $T = S_n$ is a star graph, it is clear that $pd(T) = n_1(T)$. Now, let $T = (V, E) \neq S_n$, such that $pd(T) = n_1(T) \ge 4$. Note that by (3) we have ex(T) = 1. Let $t = n_1(T)$ and let $\Omega = \{u_1, u_2, \dots, u_t\}$ be the set of leaves of T. Let $u \in V$ be the unique exterior major vertex of T. Let us suppose, without loss of generality, u_t is a leaf of T such that $d(u_t, u) = \max_{u_t \in \Omega} \{d(u_t, u)\}$.

For the leaves $u_1, u_2, u_t \in \Omega$ let the paths $P = uu_{t1}u_{t2}, ..., u_{tr_t}u_t, Q = uu_{11}u_{12}, ..., u_{1r_1}u_1$ and $R = uu_{21}u_{22}, ..., u_{2r_2}u_2$. Now, let us form the partition $\Pi = \{A_1, A_2, ..., A_{t-2}, A\}$, such that $A_1 = \{u_{11}, u_{12}, ..., u_{1r_1}, u_1, u_{t2}, u_{t3}, ..., u_{tr_t}, u_t\}, A_2 = \{u_{21}, u_{22}, ..., u_{2r_2}, u_2, u_{t1}\}, A_i = \{u_i\}, i \in \{3, ..., t-2\}$ and $A = V - \bigcup_{i=1}^{t-2} A_i$. Let us consider two different vertices $x, y \in V$. Hence, we have the following cases.

Case 1: $x, y \in A_1$. Let us suppose $x \in P$ and $y \in Q$. If $d(x, A_2) = d(y, A_2)$, then we have

$$d(x, A) = d(x, u_{t1}) + 1$$

= $d(x, A_2) + 1$
= $d(y, A_2) + 1$
= $d(y, A) + 2$
> $d(y, A)$.

Now, if $x, y \in P$ or $x, y \in Q$, then $d(x, A) \neq d(y, A)$.

Case 2: $x, y \in A_2$. If $x = u_{t1}$ or $y = u_{t1}$, then let us suppose for instance, $x = u_{t1}$, so we have $d(x, A_1) = 1 < 2 \le d(y, A_1)$. On the contrary, if $x, y \in R$, then $d(x, A) \ne d(y, A)$.

Case 3: $x, y \in A$. If $d(x, A_1) = d(y, A_1)$, then $t \ge 5$ and there exists a leaf u_i , $i \ne 1, 2, t - 1, t$, such that $d(x, A_i) = d(x, u_i) \ne d(y, u_i) = d(y, A_i)$.

Therefore, for different vertices $x, y \in V$ we have $r(x|\Pi) \neq r(y|\Pi)$ and Π is a resolving partition in T, a contradiction. \Box

Let *T* be the comet graph shown in Fig. 3. A resolving partition for *T* is $\Pi = \{A_1, A_2, A_3\}$, where $A_1 = \{x, t\}, A_2 = \{y, z\}$ and $A_3 = \{u, w\}$. In this case, $\theta = pd(T) = 3 < 4 = n_1(T)$.

Remark 6. For any tree *T* of order $n \ge 2$, $pd(T) \ge \theta$.

Proof. Since different leaves adjacent to the same support vertex must belong to different sets of a resolving partition, the result follows.

Other examples where $pd(T) = \theta$ are the star graphs and the graph in Fig. 2.

Theorem 7. Let *T* be a tree which is not a path. If every vertex belonging to the path between two exterior major vertices of terminal degree greater than one is an exterior major vertex of terminal degree greater than one, then

$$pd(T) \leq \max{\kappa, \tau + 1}$$

Proof. We suppose T = (V, E) is not a path. Let $S = \{s_1, s_2, ..., s_{\kappa}\}$ be the set of exterior major vertices of T with terminal degree greater than one and let $B_i = \{s_i\}$, $i = 1, ..., \kappa$. If $\kappa < \tau + 1$, then for $i \in \{\kappa + 1, ..., \tau + 1\}$ we assume $B_i = \emptyset$. Let l_i be the terminal degree of s_i , $i \in \{1, ..., \kappa\}$. If $l_i < i$, then we denote by $\{s_{i1}, ..., s_{il_i}\}$ the set of terminal vertices of s_i . On the contrary, if $l_i \ge i$, then the set of terminal vertices of s_i is denoted by $\{s_{i1}, ..., s_{il_i-1}, s_{il_i+1}\}$. Also, for a terminal vertex s_{ij} of a major vertex s_i we denote by S_{ij} the set of vertices of T, different from s_i , belonging to the $s_i - s_{ij}$ path. Moreover, we assume $S_{ij} = \emptyset$ for the following three cases: (1) i = j, (2) $i \le l_i < \tau$ and $j \in \{l_i + 2, ..., \tau + 1\}$, and (3) $i > l_i$ and $j \in \{l_i + 1, ..., \tau + 1\}$. Now, let $t = \max\{\kappa, \tau + 1\}$ and let $\Pi = \{A_1, A_2, ..., A_t\}$ be composed of the sets $A_i = B_i \cup (\bigcup_{j=1}^{\kappa} S_{ji})$, i = 1, ..., t. Since every vertex belonging to the path between two exterior major vertices of terminal degree greater than one, then Π is a partition of V.

Let us show that Π is a resolving partition. Let $x, y \in V$ be different vertices of T. If $x, y \in A_i$, we have the following three cases.

Fig. 4. $\Pi = \{\{1, 8, 11, 14\}, \{2, 5, 12, 15\}, \{3, 6, 9, 16\}, \{4, 7, 10, 13\}\}$ is a resolving partition.

Case 1: $x, y \in S_{ij}$. In this case $d(x, A_j) = d(x, s_j) \neq d(y, s_j) = d(y, A_j)$. Case 2: $x \in S_{ii}$ and $y \in S_{ki}$, $j \neq k$. If $d(x, A_k) = d(y, A_k)$ we have $d(y, A_i) > d(y, s_k) = d(y, A_k) = d(x, A_k) > d(x, s_i) = d(x, A_k) = d(x,$ $d(x, A_i)$.

Case 3: $x = s_i$ and $y \in S_{ii}$. As s_i has at least two terminal vertices, there exists a terminal vertex s_{il} of s_i , $l \neq j$, such that $d(x, A_l) = d(x, S_{ll}) = 1$. Hence, $d(y, A_l) > d(y, s_l) \ge 1 = d(x, A_l)$. Therefore, for different vertices $x, y \in V$, we have $r(x|\Pi) \neq r(y|\Pi).$

The above bound is achieved, for instance, for the graph in Fig. 4.

3. On the partition dimension of generalized trees

A cut vertex in a graph is a vertex whose removal increases the number of components of the graph and an extreme vertex is a vertex such that its closed neighborhood forms a complete graph. Also, a block is a maximal biconnected subgraph of the graph. Now, let \mathfrak{F} be the family of sequences of connected graphs $G_1, G_2, \ldots, G_k, k \geq 2$, such that G_1 is a complete graph K_{n_1} , $n_1 \ge 2$, and G_i , $i \ge 2$, is obtained recursively from G_{i-1} by adding a complete graph K_{n_i} , $n_i \ge 2$, and identifying a vertex of G_{i-1} with a vertex in K_{n_i} .

 $\ldots, G_k \in \mathfrak{F}$ such that $G_k = G$ for some $k \ge 2$. Notice that in these generalized trees every vertex is either a cut vertex or an extreme vertex. Also, every complete graph used to obtain the generalized tree is a block of the graph. Note that if every G_i is isomorphic to K_2 , then G_k is a tree, thus justifying the terminology used. In this section we will be centered in the study of partition dimension of generalized trees.

Let G = (V, E) be a generalized tree and let R_1, R_2, \ldots, R_k be the blocks of G. A cut vertex $v \in V$ is a support cut vertex if there is at least one block R_i of G, in which v is the unique cut vertex belonging to the block R_i . An extreme vertex is an *exterior extreme vertex* if it is adjacent to only one cut vertex. Let $S = \{s_1, s_2, \ldots, s_{\zeta}\}$ be the set of support cut vertices of *G* and let $\{s_{i1}, s_{i2}, \ldots, s_{il_i}\}$ be the set of exterior extreme vertices adjacent to $s_i \in S$. Also, let $Q = \{Q_1, Q_2, \ldots, Q_\vartheta\}$ be the set of blocks of *G* which contain more than one cut vertex and more than one extreme vertex and let $\{q_{i1}, q_{i2}, \ldots, q_{it_i}\}$ be the set of extreme vertices belonging to $Q_i \in Q$. Now, let $\phi = \max_{1 \le i \le \ell} \{l_i, t_i\}$. With the above notation we have the following result.

Theorem 8. For any generalized tree G,

$$pd(G) \leq \begin{cases} \zeta + \vartheta + \phi - 1, & \text{if } \phi \ge 3; \\ \zeta + \vartheta + 1, & \text{if } \phi \le 2. \end{cases}$$

Proof. For each support cut vertex $s_i \in S$, let $A_i = \{s_{i1}\}$ and for each block $Q_j \in Q$, let $B_j = \{q_{j1}\}$. Let us suppose $\phi \geq 3$. For every $j \in \{2, ..., l_i\}$ we take $M_{ij} = \{s_{ij}\}$ and, if $l_i < \phi - 1$, then for every $j \in \{l_{i+1}, ..., \phi - 1\}$ we consider $M_{ij} = \emptyset$. Analogously, for every $j \in \{2, ..., t_i\}$ we take $N_{ij} = \{q_{ij}\}$ and, if $t_i < \phi - 1$, then for every $j \in \{t_{i+1}, ..., \phi - 1\}$ we consider $M_{ij} = \emptyset$. $N_{ij} = \emptyset. \text{ Now, let } C_j = \bigcup_{i=1}^{\max\{\zeta,\vartheta\}} (M_{ij} \cup N_{ij}), \text{ with } j \in \{2, \dots, \phi - 1\}.$ Let us prove that $\Pi = \{A, A_1, A_2, \dots, A_{\zeta}, B_1, B_2, \dots, B_{\vartheta}, C_2, C_3, \dots, C_{\phi-1}\}$ is a resolving partition of *G*, where A = V - V

 $\bigcup_{i=1}^{\zeta} A_i - \bigcup_{i=1}^{\vartheta} B_i - \bigcup_{i=2}^{\phi-1} C_i$. To begin with, let *x*, *y* be two different vertices of *G*. We have the following cases.

Case 1: x is a cut vertex or y is a cut vertex. Let us suppose, for instance, x is a cut vertex. So there exists an extreme vertex s_{i1} such that x belongs to a shortest $y - s_{i1}$ path or y belongs to a shortest $x - s_{i1}$ path. Hence, we have $d(x, A_i) = d(x, s_{i1}) \neq d(x, A_i)$ $d(y, s_{i1}) = d(y, A_i).$

Case 2: x, y are extreme vertices. If x, y belong to the same block of G, then x, y belong to different sets of Π . On the contrary, if x, y belong to different blocks in G, then let us suppose that there exists an extreme vertex c such that $d(x, c) \le 1$ or $d(y, c) \leq 1$. We can suppose $c \in A_i$, for some $i \in \{1, \ldots, \zeta\}$, or $c \in B_j$, for some $j \in \{1, \ldots, \vartheta\}$. Without the loss of generality, we suppose that $d(x, c) \le 1$. Since x and y belong to different blocks of G, we have d(y, c) > 1. So we obtain either $d(x, A_i) = d(x, c) \le 1 < d(y, c) = d(y, A_i)$ or $d(x, B_i) = d(x, c) \le 1 < d(y, c) = d(y, B_i)$.

Fig. 5. $\Pi = \{\{4\}, \{7\}, \{10\}, \{5, 8, 11\}, \{1, 2, 3, 6, 9, 12\}\}$ is a resolving partition for the generalized tree.

Now, if there exists no such a vertex *c*, then there exist two blocks *H*, $K \notin Q$ with $x \in H$ and $y \in K$, which contain more than one cut vertex and only one extreme vertex. So $x, y \in A$. Let $u \in H$ be a cut vertex such that $d(y, u) = \max_{v \in H} d(y, v)$. Hence, there exists an extreme vertex s_{i1} such that u belongs to a shortest $x - s_{i1}$ path and $d(y, s_{i1}) = d(y, u) + d(u, s_{i1})$. As x, y belong to different blocks and $d(y, u) = \max_{v \in H} d(y, v)$ we have $d(y, u) \ge 2$. Thus,

$$d(y, A_i) = d(y, s_{i1})$$

= $d(y, u) + d(u, s_{i1})$
 $\geq 2 + d(u, s_{i1})$
 $> 1 + d(u, s_{i1})$
= $d(x, u) + d(u, s_{i1})$
= $d(x, A_i).$

Hence, we conclude that if $\phi \geq 3$, then for every $x, y \in V$, $r(x|\Pi) \neq r(y|\Pi)$. Therefore, Π is a resolving partition.

On the other hand, if $\phi \leq 2$, then $\Pi' = \{A, A_1, A_2, \dots, A_{\zeta}, B_1, B_2, \dots, B_{\vartheta}\}$ is a partition of *V*. Proceeding as above we obtain that Π' is a resolving partition. \Box

The above bound is achieved, for instance, for the graph in Fig. 5, where $\zeta = 3$, $\vartheta = 0$ and $\phi = 3$. Also, notice that for the particular case of trees we have $\zeta = \xi$, $\phi = \theta$ and $\vartheta = 0$. So the above result leads to Corollary 2.

References

- [1] R.C. Brigham, G. Chartrand, R.D. Dutton, P. Zhang, Resolving domination in graphs, Mathematica Bohemica 128 (1) (2003) 25–36.
- [2] J. Cáceres, C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas, C. Seara, On the metric dimension of some families of graphs, Electronic Notes in Discrete Mathematics 22 (2005) 129–133.
- [3] J. Cáceres, C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas, C. Seara, D.R. Wood, On the metric dimension of Cartesian product of graphs, SIAM Journal of Discrete Mathematics 21 (2) (2007) 273–302.
- [4] G. Chappell, J. Gimbel, C. Hartman, Bounds on the metric and partition dimensions of a graph, Ars Combinatoria 88 (2008) 349–366.
- [5] G. Chartrand, L. Eroh, M.A. Johnson, O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Applied Mathematics 105 (2000) 99–113.
- [6] G. Chartrand, C. Poisson, P. Zhang, Resolvability and the upper dimension of graphs, Computers and Mathematics with Applications 39 (2000) 19–28.
- [7] G. Chartrand, E. Salehi, P. Zhang, The partition dimension of a graph, Aequationes Mathematicae 59 (1–2) (2000) 45–54.
- [8] M. Fehr, S. Gosselin, O.R. Oellermann, The partition dimension of Cayley digraphs, Aequationes Mathematicae 71 (2006) 1–18.
- [9] F. Harary, R.A. Melter, On the metric dimension of a graph, Ars Combinatoria 2 (1976) 191–195.
- [10] T.W. Haynes, M. Henning, J. Howard, Locating and total dominating sets in trees, Discrete Applied Mathematics 154 (2006) 1293–1300.
- [11] B.L. Hulme, A.W. Shiver, P.J. Slater, A Boolean algebraic analysis of fire protection, Algebraic and Combinatorial Methods in Operations Research 95 (1984) 215–227.
- [12] M.A. Johnson, Structure-activity maps for visualizing the graph variables arising in drug design, Journal of Biopharmaceutical Statistics 3 (1993) 203–236.
 [13] M.A. Johnson, Browsable structure-activity datasets, in: R. Carbó-Dorca, P. Mezey (Eds.), Advances in Molecular Similarity, JAI Press Connecticut, 1998,
- [13] M.A. Johnson, Browsable structure-activity datasets, in: R. Carbó-Dorca, P. Mezey (Eds.), Advances in Molecular Similarity, JAI Press Connecticut, 1998, pp. 153–170.
- [14] S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discrete Applied Mathematics 70 (1996) 217–229.
- [15] R.A. Melter, I. Tomescu, Metric bases in digital geometry, Computer Vision, Graphics, and Image Processing 25 (1984) 113-121.
- [16] V. Saenpholphat, P. Zhang, Conditional resolvability in graphs: a survey, International Journal of Mathematics and Mathematical Sciences 38 (2004) 1997–2017.
- [17] P.J. Slater, Leaves of trees, Congressus Numerantium 14 (1975) 549–559. Proc. 6th Southeastern Conference on Combinatorics, Graph Theory, and Computing.
- [18] I. Tomescu, Discrepancies between metric and partition dimension of a connected graph, Discrete Mathematics 308 (2008) 5026-5031.
- [19] I.G. Yero, J.A. Rodríguez-Velázquez, A note on the partition dimension of Cartesian product graphs, Applied Mathematics and Computation 217 (7) (2010) 3571–3574.