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Abstract

In this work we consider two two-criteria optimization problems: given an input
graph, the goal is to find its interval (or chordal) supergraph that minimizes the num-
ber of edges and its clique number simultaneously. For the interval supergraph, the
problem can be restated as simultaneous minimization of the pathwidth pw(G) and
the profile p(G) of the input graph G. We prove that for an arbitrary graph G and an
integert € {1, ..., pw(G) + 1}, there exists an interval supergraph G’ of G such that
for its clique number it holds w(G’) < (1 + %)(pw(G) + 1) and the number of its
edges is bounded by |E(G’)| < (¢t + 2) p(G). In other words, the pathwidth and the
profile of a graph can be simultaneously minimized within the factors of 1 4 % (plus
a small constant) and ¢ + 2, respectively. Note that for a fixed 7, both upper bounds
provide constant factor approximations. On the negative side, we show an example
that proves that, for some graphs, there is no solution in which both parameters are
optimal. In case of finding a chordal supergraph, the two corresponding graph param-
eters that reflect its clique size and number of edges are the treewidth and fill-in. We
obtain that the treewidth and the fill-in problems are also ‘orthogonal’ in the sense
that for some graphs, a solution that minimizes one of those parameters cannot min-
imize the other. As a motivating example, we recall graph searching games which
illustrates a need of simultaneous minimization of these pairs of graph parameters.
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1 Introduction

Multi-criteria optimization problems can be of interest for several reasons, includ-
ing theoretical insights their study provides or potential practical applications. The
selection of the parameters to be simultaneously optimized is dictated by those and
can lead to challenging research questions. Our selection is motivated in two ways.
First, the choice of the parameters themselves is made according to their importance
in graph theory and algorithm design. Second, we paired the parameters according
to a potential application that we describe in detail. The first pair of parameters that
we minimize is the pathwidth and profile, which can be viewed as computations of
linear graph layouts of certain characteristics. The second pair is the treewidth and
fill-in, which is a tree-like graph layout counterpart of the former.

1.1 Related Work

We point out several optimization problems in which pathwidth or treewidth is paired
with another parameter or with additional conditions that need to be satisfied. For an
example consider a problem of computing a path decomposition with restricted width
and length (defined as the number of bags in the path decomposition). It has been first
studied in [2] as a problem motivated by an industrial application and called the part-
ner unit problem but finds applications also in scheduling and register allocation [36]
or graph searching games [15]. It turns out that there exists a polynomial-time algo-
rithm for computing a path decomposition of width k¥ < 3 and minimum length for an
arbitrary input graph, but the problem becomes NP-hard for any width £ > 4 [15]. If
we fix the length to be 2 and ask for a minimum width path (or tree) decomposition,
then the problem is also NP-hard [24]. Also, a minimum length path decomposition
of a width k can be computed efficiently for k-connected graphs [22, 23]. A natural
treewidth counterpart of the ‘length’ minimization problem can be seen as minimiz-
ing, besides of the width of a tree decomposition, the number of its bags [33]. It
is known that such problem is NP-complete for any fixed k& > 4, it is polynomial
for k < 2 and for k = 3 it is polynomial for trees and 2-connected outerplanar
graphs [33]. See [10] for an algorithm of running time 29/1°27) that solves both
problems for a fixed k. For a more general approach through using a cost function on
tree decompositions see [7].

We refer the reader to a related problem of minimization of width and the diameter
of the underlying tree-structure of the decomposition [6, 9]. (The diameter of a tree
decomposition is defined to be the maximum distance between any two nodes of the
three decomposition.)

A very closely related research area includes several graph searching games. We
now restrict ourselves to a short and informal introduction and an overview, and in
Section 6 we give a formal statement of a graph searching problem, which gives a
motivation and a potential application of our results. The problem of graph search-
ing can be informally stated as one in which an agent called the fugitive is moving
around the graph with the goal to escape a group of agents called guards or searchers.
There are many variations of this problem specifying behavior of the fugitive and
the searchers, phase restrictions, speeds of both parties or their other capabilities like
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visibility, radius of capture etc. Numerous optimization criteria have been studied for
these games as well. However, the tradeoffs between different optimization param-
eters have not yet been throughly analyzed. In this work we refer to one of the two
classical formulations of the graph searching problem, namely the node search (see
a formal definition in Section 6).

In the original statement of the problem the fugitive is considered invisible (i.e., the
searchers can deduce its potential locations only based on the history of their moves)
and active, i.e., constantly moving with unbounded speed to counter the searchers’
strategy. It turns out that the minimum number of searchers sufficient to guarantee
the capture of the fugitive corresponds to the pathwidth of the underlying graph [12].
Later on, the lazy, also referred to as inert, fugitive variant has been defined in which
the fugitive only moves when the searchers are one move apart from catching it. The
latter version was first introduced in [12] where the authors show that minimizing
the number of searchers precisely corresponds to finding the treewidth of the input
graph. Seymour and Thomas proposed in [37] a variant of the game in which the
fugitive was visible and active. In the same paper they prove that the visible active
variant of the problem is equivalent to the invisible inert variant.

All previously mentioned problems considered the number of searchers used by a
strategy to be the optimization criterion. In [16], the authors analyzed the cost defined
(informally) as the sum of the guard counts over all steps of the strategy. This graph
searching parameter is the one that corresponds to the profile minimization.

Not much is known in terms of two-criteria optimization in the graph searching
games. To mention some, examples, there is an analysis of simultaneous minimiza-
tion of time (number of ‘parallel’ steps) and the number of searchers for the visible
variant (this corresponds precisely to the above-mentioned width and length mini-
mization of path decompositions) [15] and for the inert one [33] of the node search.
For more examples of very closely related two-criteria problems that can be found in
the graph searching games see e.g. [8, 14, 30].

The pathwidth or treewidth parameters have been also studied with additional
constraints which can be most generally stated as requiring certain connectivity struc-
tures to be induced by the bags. These include the parameter of connected pathwidth
introduced in [4] in the context of graph searching games and studied further e.g.
in [3, 13]. (A path decomposition is connected if the union of the bags from each
prefix of the path decomposition induced a connected subgraph.) For a relation with
the graph searching games we point out that pathwidth problem is equivalent to the
node search game, is equivalent up to an additive difference of 1 to the edge search
game and up to a multiplicative factor of 2 (plus a o(1) additive term) to the con-
nected search game, see e.g. [3, 13, 18]. Another example includes the connected
treewidth [19].

1.2 Outline
This work mostly deals with simultaneous minimization of width-like (namely path-
width and treewidth) and fill-like (namely profile and fill-in) graph parameters. In

order to state our results for pathwidth and profile formally, we introduce the neces-
sary notation in Section 2. For pathwidth and profile we give an upper bound (to be
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precise, a class of upper bounds that results in a tradeoff between the two parameters)
in Section 3 (Theorem 1) and, in Section 4, an example that shows that the two cannot
be simultaneously minimized in general (Theorem 2). The latter example also is valid
for the tradeoffs between the two corresponding parameters, treewidth and fill-in and
for this reason we introduce the two in Section 5 and state this result as a corol-
lary (Corollary 1). Section 6 recalls two classical graph searching problems which
serve as an example that illustrates a case in which it is natural to optimize the two
selected pairs of parameters. These connections are summarized there in Remarks 1
and 2. Thus, this part of the work serves as an additional motivation for this
research.

2 Preliminaries

We start with recalling some basic graph-theoretic terms used in this work. For a
graph G, we write V (G) and E(G) to denote the sets of its vertices and edges, respec-
tively. We say that a graph G’ is a subgraph of a graph G (and in such case G is a
supergraph of G') if V(G') € V(G) and E(G’) € E(G). Moreover, G’ is a sub-
graph of G induced by X C V(G) and denoted G[X] (or G’ is an induced subgraph
of G for short) if V(G') = X and E(G’) = {{u, v} € E(G) | u,v € X}. A clique is
a graph in which any two vertices are adjacent. For a vertex v of a graph G, Ng(v)
is the set of neighbors of v in G.

We now recall the graph parameters studied in this work. For a permutation

f:V(G) — {l,...,|V(G)|} of the vertices of G, define
G) = v) — min u) .
pi(G) UGVZ(G) (f( )= o min ))

Informally, f (v) —minye{vyung(v) f () can be interpreted as the maximum distance,
according to the permutation f, between v and its neighbors appearing in the permu-
tation prior to v (if all neighbors of v are ordered in f after v, then this difference is
by definition zero). Then, a profile of a graph G [21], denoted by p(G), is defined as

p(G) =min{ps(G) | f isapermutation of V(G)}. (1)

A tree decomposition [1, 35] of a simple graph G = (V(G), E(G)) is a pair
(X, T), where X = {Xy,..., Xy} is a collection of subsets of V(G), i.e., X; C
V(G) foreachi € {1,...,d},and T = ({1,...,d}, F) is a tree whose vertices
correspond to the elements of X, such that the following conditions are satisfied:

Ui:l ..... aXi =V(G),
o foreach {u, v} € E(G) there exists i € {1,...,d} suchthatu, v € X,
o foreachi, j, k,if j is on the path from i to k in T, then X; N X} C X;.

The width of the tree decomposition equals max;— 4 |X;| — 1, and the treewidth of
G, denoted by tw(G), is the smallest width of all path decompositions of G. A tree
decomposition is called a path decomposition if T is a path, and the corresponding
graph parameter that minimizes the width over all path decomposition is called the
pathwidth of G and is denoted by pw(G).
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2.1 Interval Graphs

A graph G is an interval graph if and only if for each v € V(G) there exists an
interval I, = (I, rp) such that for each edge u, v € V(G) it holds: {u, v} € E(G) if
and only if I, N I, # @. The collection Z = {I,, | v € V(G)} is called an interval
representation of G. An interval representation Z of G is said to be canonical if the
endpoints of I, are integers for eachv € V(G) and {l, | v € V(G)} = {1,...,n}.
This in particular implies that the left endpoints are pairwise different. Denote by
R(G) the set of all canonical interval representations of G. We will write R(G) for a
graph G that is not an interval graph to denote the set |y R(G’), where X is the
set of all interval supergraphs of G with the same vertex set as G. If Z is an interval
representation of an interval graph G and v € V(G), then Z(v) denotes the interval in
7 that corresponds to v. For any interval I, we write left(/) and right(7) to denote its
left and right endpoint, respectively. Note that we consider without loss of generality
only open intervals in the interval representations.

Let G be an interval graph. Given an interval representation Z of G and an integer
i, define

mi@)y=H1e€Z|iecl}

to be the cardinality of the set of all intervals that contain the point i. Let Iy, ..., I,
be the intervals in Z. Then, let f; (Z) = m;(Z), where j = left(l;),i € {1,...,n}.In
other words, f;(Z) is the number of intervals in Z containing the point left(/;). (Note
that left(;) ¢ I; and hence I; does not contribute to the value of f;(Z).)

Given a canonical interval representation Z of an interval graph G, define the
interval cost of T as

ic@) = Zfi(I), where n = |Z].
i=1

It turns out that ic(Z) equals the number of edges of the interval graph with interval
representation Z (see e.g. [16]). For a graph G, we define its interval cost as

ic(G) =min{ic(Z) | Z € R(G)}.
The next fact follows from [5] and [16].
Proposition 1 Let G be any graph and let k be an integer. The following inequalities
are equivalent:

() |E(G"| < k, where G’ is an interval supergraph of G having the minimum
number of edges,
(i) ic(G) <k,
(i) p(G) <k.

Let G be an interval graph and let Z € R(G). We define the width of Z as w(Z) =
max {m;(Z) | i € R}. The interval width of any simple graph G is then
iw(G) =min{w@) | Z € R(G)}.
We have the following fact [26-28, 31, 34]:
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Proposition 2 Let G be any graph and let k be an integer. The following inequalities
are equivalent:

(i) iw(G) <k,
(i) pw(G) <k — 1.

2.2 Problem Formulation

For the purposes of this work we need an ‘uniform’ formulation of the two graph-
theoretic problems that we study, namely pathwidth and profile, in order to be able to
formally apply the two optimization criteria to a single solution to a problem instance.
In view of Propositions 1 and 2, we can state the optimization version of our problem
as follows:

Problem PPM (Pathwidth & Profile Minimization):

Input: a graph G, integers k and c.
Question:  does there exist an interval supergraph G’ of G such that iw(G’) < k
and |E(G)| < ¢?

3 Pathwidth and Profile Tradeoffs

In this section we prove that for an arbitrary graph G there exists its interval super-
graph G’ with width at most (1 + %)(pw(G) + 1) and the number of edges at most
(t+2)p(G) foreacht € {1,...,iw(G)}. This is achieved by providing a procedure
that finds a desired interval supergraph (the procedure returns an interval representa-
tion of this supergraph). Since the goal is to prove an upper bound and not to provide
an efficient algorithm, this procedure relies on optimal algorithms for finding a min-
imum width and minimum cost interval supergraph of a given graph. (The latter
problems are NP-complete, see [20, 25, 32, 39].) Therefore, the running time of this
procedure is exponential.

We first give some intuitions on our method. We start by computing a ‘profile-
optimal’ (canonical) interval representation Z of some interval supergraph G” of G,
that is, ic(Z) = p(G). Then, in the main loop of the procedure this initial interval
representation is iteratively refined. Each refinement targets an interval (i, j) selected
in such a way that the width of Z exceeds k /¢ at each pointin (i, j),i.e.,m; (L) > k/t
foreachi’ € {i, ..., j}and i, j are taken so that the interval is maximum with respect
to this condition. The refinement on Z in (i, j) is done as follows (see the pseudocode
below for detail and Fig. 1 for an example):

e intervals that cover (i, j) entirely or have an empty intersection with it do not
change (see Case (i) in Fig. 1),

e intervals that contain one of i or j will be extended to cover entire interval,
except that we ensure that they have pairwise different left endpoints as required
in canonical representations (Cases (ii) and (iii) in Fig. 1),
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e for the intervals that originally are contained in (i, j), we recompute the inter-
val representation; while doing so we take care of the following: first, the
neighborhood relation in the initial graph is respected so that the new interval
representation provides an interval supergraph of G, and second, the width of the
new interval representation inside (7, j) is minimal (Case (iv) in Fig. 1).

The above refinement is performed for each interval (i, j) that satisfies given condi-
tions. Each refinement potentially increases the interval cost of Z but narrows down
its width appropriately in the interval for which the refinement is done.

A formal pseudocode is given below as Procedure IC (Inferval Completion)
that as an input takes any graph G and an integer ¢t € {I,...,iw(G)}, and
returns an Z € R(G). Then, in Lemma 1, we prove that the procedure is cor-
rect and in Theorem 1 we estimate the width and interval cost of Z'. See Fig. 1
for an example that illustrates the transition performed in a single iteration of the
procedure.

Procedure 1C (Interval Completion)

Input: A graph G and an integer ¢t € {1, ...,iw(G)}.
Output: An interval representation of some interval supergraph of G.
Compute an interval representation Z € R(G), where ic(Z) = p(G).
Setg <~ landZ” <« T.
while m;/(Z”) > (pw(G) + 1)/t for some i’ > ¢ do
Find minimum integers i, j such thatg <i < j, m;—1(Z") < (pw(G) + 1) /1,
mj1(Z") < (pw(G)+1)/tandmy(Z") > (pw(G)+1)/t foreachi’ € {i, ..., j}.
Setqg < j+ 1.
Let G be the subgraph of G induced by all vertices v such that Z”(v) < (i, j).
Let Z be a minimum width canonical interval representation of some interval
supergraph of G.
Construct an interval representation Z’ of G as follows:
(i) Letinitially Z’ ={I € Z” | IN(,j)=Wor () < I}.
(ii) For each v € V(G) such that i € Z”(v) and j ¢ Z”(v), add Z'(v) <«
(left(Z” (v)), j) to I'.
(iii) Let vy, ..., v, be all vertices of G such thati ¢ Z”(vy) and j € Z”(vy)
foreachs € {1, ..., p}.
Foreachs € {1,..., p},addZ'(vs) < (i +s—1, j)toZ'.
(iv) Foreach v € V(G), set Z'(v) < (i + p +1eft(Z(v)) — 1,i +p—2+
right(Z (v))).
SetZ"” < T'.
end while
return 7’

Lemma 1 Let G be any graph and let t € {1,...,iw(G)}. Procedure IC for
the given G and t returns a canonical interval representation of some interval
supergraph of G.
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[ : : - }} Case (i)
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C | } Case (i)

‘ = ] L ‘}Case(iii)

—t
‘ r—| i ‘}—{ }Case (iv)

Fig. 1 A single iteration of Procedure IC: transition from interval representation Z” to Z' with particular
intervals marked according in which of the cases (i)-(iv) they are processed in the pseudocode

Proof We start by noting that the execution of the procedure completes at some
point. This follows from an observation that in an iteration of the main loop,
a modification to Z” is made by changing the endpoints of some vertex cor-
responding intervals that are contained in an interval (7, j), where i and j are
selected specifically for this iteration. Also, the variable ¢ is set to be j + 1
in this iteration. By the choice of (i, j), and in particular by i > ¢, we
obtain that the subsequent iteration will modify an interval that is to the right
of (i, j). This, by an inductive argument, implies that the number of iterations
is bounded by the number of endpoints in a canonical representation, which is
O(n).

Let Z be the canonical interval representation of some interval supergraph of G
computed at the beginning of Procedure IC. We proceed by induction on the num-
ber of iterations of the main loop of Procedure IC, namely, we prove that the interval
representation Z” obtained in the s-th iteration is a canonical interval representa-
tion of some interval supergraph of G. For the purpose of the proof, we use the
symbol Z; to denote the interval representation obtained in the s-th iteration, taking
Io=1.

For the base case of s = 0 we have that Zp = Z and the claim follows. Hence, let
s > 0. Since Z; consists of |V (G)| intervals, Z is an interval representation of an
interval graph G’ on |V (G)| vertices. We need to prove that G is a subgraph of G’
and that Z; is canonical.
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By the induction hypothesis, there exists an interval supergraph G” of G and
Zs—1 € R(G"). Note that V(G) = V(G') = V(G").

To prove that G is a subgraph of G’, we argue that Ng(v) € Ng/(v) for each
v € V(G). Denote

X; ={xeV(G) | ieTy_1(x)and j ¢ T,_(x)} and
Xo={xeV(G) | i¢I1(x)and j € T;_1(x)},

where i and j have values as in the s-th iteration. Also, G refers to the subgraph
computed in the s-th iteration. For v € V(G) \ (X1 U X, U V(G)) we have that
Ng/(v) = Ngr(v) and hence, since G” is a supergraph of G, Ng (v) € Ngr(v) gives
the claim. If v € X| U X3, then
Ngr(v) = (Ngr(v) N (X1 U X2 U V(G))) U (Ngr(v) \ (X1 U X2UV(G))
C (X1UX2UV(G) U (Ngr(v) \ (X1 UX2UV(G))) = N (v).

Thus, for v € X; U X3 we also have Ng(v) S Ngr(v) S Vi (v) as required. If
v € V(G), then

Ng(v) € Ng(v) U X1 U Xy U X3 = Ngi(v),

where X3 is the set of vertices x € V (G) such that both i and j belong to Z;_ (x).
Now we argue that Z; is canonical. Since both endpoints of each interval in Zg

are clearly integers, it is sufficient to prove that for each i’ € {1, ..., |V(G)|} there
exists exactly one interval I € Z; whose left endpoint equals i’. If i’ € {1,...,i —
1} U{j, ...,V (G)]|}, then the claim follows from

[vev©@ | @ i'+D ST ) ={veV©G) | (i +1)<SLw),

i.e., the interval representations Z;_ and Z; are identical ‘outside’ of the interval
(i, j). Foreachi’ € {i,...,i + p — 1} the claim holds, since left(Zs(v;'_; 1)) = i’.
Finally, leti’ € {i+ p. ..., j — 1}. Since, Z,_, is canonical, |[V(G)| = j—i—p—1.
This implies that {left(Z) | Z € f} ={1,..., V(G)|} because 7 is canonical. Thus,
there exists v € V(G) such that left(Z(v)) =i’ —i — p + 1. By the construction of
Ty, left(Zs (v)) = i’ as required. O

Theorem 1 Let G be any graph and let t € {1,...,pw(G) + 1} be an integer.
There exists an interval supergraph G’ of G and I' € R(G’) such that w(Z') <
(1+ 3H(Ew(G) + 1) and ic(T') < (t +2)p(G).

Proof Suppose that Procedure IC is executed for the input G and ¢. Let Z be the
canonical interval representation of some interval supergraph of G computed at the
beginning of Procedure IC. Moreover, take such an Z that satisfies ic(Z) = ic(G).
Let » be the number of iterations performed by the main loop. Let Gq and 7., q €
{1,...,r}, be the graph G and its interval representation, respectively, computed in
the g-th iteration of the main loop. Also, let (i4, j,) be the interval used to select Gq,
i.e., G4 is the subgraph of G induced by all vertices v such that Z”(v) € (ig, jg) for
eachq € {1,...,r}.
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Note that Procedure IC does not specify how fq is selected foreachq € {1, ..., r}
and therefore for the purpose of this proof of upper bounds we may assume that the
interval representation 7, satisfies

w(Z,) = iw(Gy). (2)

By Lemma 1, 7’ returned by Procedure IC is a canonical representation of some
interval supergraph of G. By construction,

my(Z') = m,(Z) foreach p ¢ | Jlig. ... jg)- (3)
g=1

Since Gq is a subgra_ph of G, iw((_;q) < iw(G) for each g € {1,...,r} and hence
by (2) we obtain w(Z,;) < iw(G). By the choice of i and j,, we have mi,—1 @) <
iw(G)/t and mj,11(Z) < iw(G)/t. Hence, we obtain

- 2
mpT') <miy—1(D) +mj41(T) + wZy) < (1 + ;) iw(G) “)

for each p € {iy, ..., j;} and foreach ¢ € {1, ...,r}. (3) and (4) give that w(Z") <
1+ %)iw(G). Observe that, by (4), for each ¢ € {1,...,r} and for each p €
{ig, ..., jq} it holds

mp(Z') < (t 4+ 2)mp(I) (&)

because m,(Z) > iw(G)/t. By (3) and (5), ic(Z") < (t + 2)ic(Z). Finally note that
by Proposition 1, ic(Z) = p(G) and by Proposition 2, iw(G) = pw(G) + 1, which
completes the proof. O

4 Pathwidth and Profile are ‘Orthogonal’

In this section we prove that the two optimization criteria studied in this work cannot
be minimized simultaneously for some graphs. In other words, we prove by example,
that there exist graphs G such that any interval supergraph G’ of G that has the
minimum number of edges (i.e., E(G’)| = p(G)) cannot have minimum width (i.e.,
iw(G) > pw(G) — 1) and vice versa. The example that we construct will be also
used in the next section and for this reason we present it here in terms of chordal
graphs, which is a class of graphs that generalizes interval graphs. For that we need
some additional definitions.

We say that C is an induced cycle of length k > 3 in a graph G if C is a subgraph
of Gand {{u, v} € E(G) | u,v e V(C)} =V(C),i.e., the only edges in G between
vertices in V(C) are the ones in E(C). A graph is chordal if there is no induced
cycle of length greater than 3 in G. Any edge that does not belong to a cycle C and
connects two vertices of C is called a chord of C.

In this section we consider a graph G with vertex set V(G) = AUBU B’ UC and
edges placed in such a way that AU B, AU B’, BU C and B’ U C form cliques. In
our construction we take any sets that satisfy

|Al < |B|=|B'| <|C| and |A||C|> |B|*. (6)
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We have the following observation.

Lemma 2 If G’ is a minimal chordal supergraph of G, then each of the subgraphs
G'[AU Clor G'[B U B’ is either a clique or an union of two disconnected cliques.

Proof We prove that the subgraph of G’ induced by A U C’ is either a clique or is
disconnected and the proof for B U B’ is identical due to the symmetry. If A U C’
induces a clique, then the claim follows so suppose that there exist two vertices a €
AUC and ¢ € AUC that are not adjacent in G’. Without loss of generality leta € A
and ¢ € C — this is due to the fact that G'[A] and G’[C] are cliques. Take any two
vertices b € B and b’ € B’. Since G’ is chordal, the cycle induced by a, b, b’ and ¢
has a chord in G’. Thus, there is an edge between b and b’ in G’. Since b and b’ are
selected arbitrarily, G'[B U B'] is a clique. Note that a supergraph of G that has no
edge between any vertex in A and any vertex in C and in which B U B’ induces a
clique is chordal. Thus, by the minimality of G’, G'[A U C] consists of two cliques
G’'[A] and G’[C] with no edges between them, as required. O

Theorem 2 There exists a graph G such that no interval supergraph G’ of G satisfies
iw(G) =iw(G) and ic(G") = ic(G).

Proof Consider the graph G = (AU B U B’ U C, E(G)) constructed at the begin-
ning of this section. For any minimal chordal supergraph G’ of G, we say that it
is (A, C)-connected ((B, B’)-connected) if G'[A U C] is a clique (G'[B U B'] is a
clique, respectively). Denote by G4 ) (respectively, G, p/)) the minimal chordal
supergraph of G that is (A, C)-connected ((B, B’)-connected, respectively) but has
no edge joining a vertex in B (respectively A) with a vertex in B’ (respectively C).

Each interval graph is also chordal. On the other hand, both G4, c) and G,
are interval graphs.

Consider a minimal chordal supergraph G’ of G. By Lemma 2, G’ is (A, C)-
connected, (B, B’)-connected, both (A, C)- and (B, B’)-connected or neither
(A, C)- and (B, B’)-connected. Since it is minimal, it is not (A, C)- and (B, B')-
connected simultaneously. Also, it must be (A, C)- or (B, B’)-connected for other-
wise it is not chordal. This implies that G" equals either to Ga,c) or G (g ). We
have that G’ is an interval graph and hence, by (6), we obtain

iw(G,c)) —iw(Gp,py) = (Al + |B|+|C)) — (1Bl + |B'| +1C]) <0,

and
ic(Ga.c) —ic(Gs,p)) = |AlIC| = |B| |B'| > 0.

We conclude by noting that it is enough to consider minimal interval supergraphs
when minimizing interval cost or interval width. O

5 Treewidth and Fill-in

We refer the reader e.g. to [20, 38] for a definition of the NP-complete problem of
fill-in. The treewidth for a given graph G, denoted by tw(G), can be defined as the
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the minimum & such that there exists a chordal supergraph G’ of G such that the
maximum clique @ (G’) of G’ has size at most k + 1. The fill-in of G is the minimum
m such that there exists a chordal supergraph of G that can be constructed by adding
m edges to G. Hence, our corresponding combinatorial problem can be stated as
follows:

Problem TFM (Treewidth & Fill-in Minimization):

Input: a graph G, integers k and c.
Question:  does there exist a chordal supergraph G’ of G such that w(G’) < k and
|E(G)] < ¢?

By the same proof as in Theorem 2, we obtain that for some graphs there is no

solution to Problem TFM in which k = tw(G) —l and ¢ = |E(G)|+ £111-in(G).

Corollary 1 There exists a graph G such that no chordal supergraph G’ of G
satisfies tw(G) = o(G') — 1 and £111-in(G) + |E(G)| = |E(G")|.

6 Applications to Graph Searching
6.1 Formal Definitions
The following definitions of the node search problem are taken from or based on [16]
and [17]. An active search strategy S for a graph G is a sequence of pairs
(Ao, Zo), (A1, Z1), ..., (Am, Zm)
that satisfies the following axioms:

i) A; CV(G)and Z; C V(G) foreachi € {0, ..., m},
i) Ag=Zo=0,A, =V(G)and Z,, =0,

(i) (placing/removing searchers) For each i € {1, ..., m} there exist v; € V(G)
such that {v;} = A; \ Aj—1,vi € Z; and Z; C A;—1 U {v;}.
(vi) (possible recontamination) For eachi € {1, ..., m}, A; consists of v; and each

vertex u such that each path connecting u to a vertex in V(G) \ A;_1 has an
internal vertex in Z;.

An inert search strategy S is one that satisfies axioms (i),(ii),(iii) and:

(vi’) (possible recontamination) For each i € {l,...,m}, A; consists of v; and
each vertex u such that each path connecting u to v; has an internal vertex in
Zi—1.

We say that, in the i-th step of S, the vertices in Z; are guarded, the vertices in A; are
cleared and the vertices in V (G) \ A; are contaminated. The search cost of a search
strategy S is defined as

y(S) =1zl
i=0
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and the number of searchers it uses is
ns(S) =max{|Z;| | i €{0,...,m}}.

Informally speaking, in an active search strategy recontamination can ‘spread’ from
any contaminated vertex while in inert strategies recontamination can only spread
from v;.

We say that a strategy (active or inert) S = ((Ag, Zo), - - -, (A, Zy)) is monotone
if A; € Ajyq foreachi € {1,...,m — 1}.
6.2 Consequences of our Results

We have the following equivalences:

Theorem 3 ([16]) For each graph G, if S an active monotone search strategy of
minimum cost, then y (S) = ic(G).

Theorem 4 ([26-28, 34]) For each graph G, if S an active search strategy that uses
the minimum number of searchers, then ns(S) = pw(G) + 1.

Hence we obtain the following equivalence:

Remark 1 An optimal solution to Problem PPM corresponds to an active search
strategy that simultaneously minimizes the number of searchers and the cost.

For the second pair of parameters, we recall the following theorems.

Theorem 5 ([17]) For each graph G, if S an inert monotone search strategy of
minimum cost, then y(S) = |E(G)| + £111-1in(G).

Theorem 6 ([37]) For each graph G, if S an inert search strategy that uses the
minimum number of searchers, then ns(S) = tw(G) + 1.

This leads us to the following theorem:
Remark 2 An optimal solution to Problem TFM corresponds to an inert search
strategy that simultaneously minimizes the number of searchers and the cost.
7 Conclusions and Open Problems
We note that the reason why Procedure IC is exponential is its first step, i.e., the
computation of the profile-minimizing interval representation. Thus, having this as
an input, our constructive method is of polynomial running time.

The first open problem we leave is the one of existence of a similar tradeoff
between fill-in and treewidth to the one we have in Theorem 1. More particularly, is it
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possible to find chordal supergraphs that approximate both parameters to within con-
stant factors of their optimal values? Our approach used in Procedure IC most likely
cannot be extended from interval graphs to chordal graphs as the latter have tree-like
representations: the constant factor in our tradeoff relies on the fact that we iteratively
‘reorganize’ subintervals of the initial representation. More precisely, each modifi-
cation performed for an interval (i, j) ‘extends’ the intervals intersecting the points
i and j, while in case of chordal graphs we would have to deal with ‘subtrees’ of
the corresponding representation. Since such subtrees have potentially many leaves
(as opposed to just two represented previously by the endpoints i and j), we cannot
ensure keeping constant width of the final representation.

A challenging open problem is the one that refers to the concept of recontamina-
tion in the graph searching games that has been posed in [17]: does recontamination
help to obtain a minimum-cost inert search strategy? Formally, does there exist,
for some graph G, an inert search strategy whose cost is smaller than |E(G)| +
£i11-in(G)? In yet other words, does there exist a graph for which an inert search
strategy that minimizes the cost must necessarily allow for recontamination and as
a result some vertex v is searched twice in step (iii), i.e., v = v; for two different
indices i?

We remark that another example that shows that the problems of finding the min-
imum fill-in and the minimum clique size of an arbitrary graph are ‘orthogonal’ has
been independently reported in [11] (see also [29] for some comments).
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