On trees with double domination number equal to total domination number plus one

Marcin Krzywkowski
e-mail: marcin.krzywkowski@gmail.com

Faculty of Applied Physics and Mathematics
Gdańsk University of Technology
Narutowicza 11/12, 80-233 Gdańsk, Poland

Abstract

A total dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D. A vertex of a graph is said to dominate itself and all of its neighbors. A double dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D. The total (double, respectively) domination number of a graph G is the minimum cardinality of a total (double, respectively) dominating set of G. We characterize all trees with double domination number equal to total domination number plus one.

Keywords: total domination, double domination, tree.
$\mathcal{A}_{\mathcal{M S}}$ Subject Classification: 05C05, 05C69.

1 Introduction

Let $G=(V, E)$ be a graph. By the neighborhood of a vertex v of G we mean the set $N_{G}(v)=\{u \in V(G): u v \in E(G)\}$. The degree of a vertex v, denoted by $d_{G}(v)$, is the cardinality of its neighborhood. By a leaf we mean a vertex of degree one, while a support vertex is a vertex adjacent to a leaf. We say that a support vertex is strong (weak, respectively) if it is adjacent to at least two leaves (exactly one leaf, respectively). The path on n vertices we denote by P_{n}. By a star we mean a connected graph in which exactly one vertex has degree greater than one. By a double star we mean a graph obtained from a star by joining a positive number of vertices to one of its leaves. Let $u v$ be an edge of a graph G. By subdividing the edge $u v$ we mean removing it, and adding a new vertex, say x, along with two new edges $u x$ and $x v$. Subdivided star is a graph obtained from a star by subdividing each one of its edges.

A subset $D \subseteq V(G)$ is a dominating set of G if every vertex of $V(G) \backslash D$ has a neighbor in D, while it is a total dominating set, abbreviated TDS, of G if every vertex of G has a neighbor in D. The domination (total domination, respectively) number of a graph G, denoted by $\gamma(G)\left(\gamma_{t}(G)\right.$, respectively), is the minimum cardinality of a dominating (total dominating, respectively) set of G. Total domination in graphs was introduced by Cockayne, Dawes, and Hedetniemi [1]. For a comprehensive survey of domination in graphs, see $[3,4]$.

A vertex of a graph is said to dominate itself and all of its neighbors. A subset $D \subseteq V(G)$ is a double dominating set, abbreviated DDS, of G if every vertex of G is dominated by at least two vertices of D. The double domination number of a graph G, denoted by $\gamma_{d}(G)$, is the minimum cardinality of a double dominating set of G. The study of double domination in graphs was initiated by Harary and Haynes [2].

A paired dominating set of a graph G is a dominating set of vertices whose induced subgraph has a perfect matching. The authors of [5] characterized all trees with equal total domination and paired domination numbers.

We characterize all trees with double domination number equal to total domination number plus one.

2 Results

Since the one-vertex graph does not have double dominating set, in this paper, by a tree we mean only a connected graph with no cycle, and which has at least two vertices.

We begin with the following four straightforward observations.
Observation 1 Every support vertex of a graph G is in every $\gamma_{t}(G)$-set.
Observation 2 For every connected graph G of diameter at least three there exists a $\gamma_{t}(G)$-set that contains no leaf.

Observation 3 Every leaf of a graph G is in every $\gamma_{d}(G)$-set.
Observation 4 Every support vertex of a graph G is in every $\gamma_{d}(G)$-set.
It is easy to see that $\gamma_{d}\left(P_{2}\right)=\gamma_{t}\left(P_{2}\right)=2$. Now we prove that for every tree different than P_{2} the double domination number is greater than the total domination number.

Lemma 5 For every tree $T \neq P_{2}$ we have $\gamma_{d}(T)>\gamma_{t}(T)$.

Proof. Let n mean the number of vertices of the tree T. We proceed by induction on this number. Since $T \neq P_{2}$, we have $\operatorname{diam}(T) \geq 2$. If $\operatorname{diam}(T)=2$, then T is a star $K_{1, m}$. We have $\gamma_{d}(T)=m+1 \geq 2+1$ $>2=\gamma_{t}(T)$. Now let us assume that $\operatorname{diam}(T)=3$. Thus T is a double star. We have $\gamma_{d}(T)=n \geq 4>2=\gamma_{t}(T)$.

Now assume that $\operatorname{diam}(T) \geq 4$. Thus the order of the tree T is an integer $n \geq 5$. The result we obtain by the induction on the number n. Assume that the lemma is true for every tree T^{\prime} of order $n^{\prime}<n$.

First assume that some support vertex of T, say x, is strong. Let y and z mean leaves adjacent to x. Let $T^{\prime}=T-y$. Let D^{\prime} be any $\gamma_{t}\left(T^{\prime}\right)$-set. By Observation 1 we have $x \in D^{\prime}$. Of course, D^{\prime} is a TDS of the tree T. Thus $\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)$. Now let D be any $\gamma_{d}(T)$-set. By Observations 3 and 4 we have $y, z, x \in D$. It is easy to see that $D \backslash\{y\}$ is a DDS of the tree T^{\prime}. Therefore $\gamma_{d}\left(T^{\prime}\right) \leq \gamma_{d}(T)-1$. Now we get $\gamma_{d}(T) \geq \gamma_{d}\left(T^{\prime}\right)+1>\gamma_{t}\left(T^{\prime}\right)+1 \geq \gamma_{t}(T)+1>\gamma_{t}(T)$. Henceforth, we can assume that every support vertex of T is weak.

We now root T at a vertex r of maximum eccentricity $\operatorname{diam}(T)$. Let t be a leaf at maximum distance from r, v be the parent of t, u be the parent of v, and w be the parent of u in the rooted tree. By T_{x} let us denote the subtree induced by a vertex x and its descendants in the rooted tree T.

First assume that $d_{T}(u) \geq 3$. Assume that u is adjacent to a leaf, say x. Let $T^{\prime}=T-T_{v}$. Let D^{\prime} be any $\gamma_{t}\left(T^{\prime}\right)$-set. By Observation 1 we have $u \in D^{\prime}$. It is easy to see that $D^{\prime} \cup\{v\}$ is a TDS of the tree T. Thus $\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)+1$. Now let D be any $\gamma_{d}(T)$-set. By Observations 3 and 4 we have $t, x, v, u \in D$. It is easy to see that $D \backslash\{v, t\}$ is a DDS of the tree T^{\prime}. Therefore $\gamma_{d}\left(T^{\prime}\right) \leq \gamma_{d}(T)-2$. Now we get $\gamma_{d}(T) \geq \gamma_{d}\left(T^{\prime}\right)+2$ $>\gamma_{t}\left(T^{\prime}\right)+2 \geq \gamma_{t}(T)+1>\gamma_{t}(T)$.

Now assume that among the descendants of u there is a support vertex, say x, different than v. Let $T^{\prime}=T-T_{v}$. Let D^{\prime} be a $\gamma_{t}\left(T^{\prime}\right)$-set that contains no leaf. The vertex x has to have a neighbor in D^{\prime}, thus $u \in D^{\prime}$. It is easy to see that $D^{\prime} \cup\{v\}$ is a TDS of the tree T. Thus $\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)+1$. Now let D be any $\gamma_{d}(T)$-set. By Observations 3 and 4 we have $t, v, x \in D$. If $u \in D$, then it is easy to see that $D \backslash\{v, t\}$ is DDS of the tree T^{\prime}. Now assume that $u \notin D$. Let us observe that $D \cup\{u\} \backslash\{v, t\}$ is a DDS of the tree T^{\prime}. Therefore $\gamma_{d}\left(T^{\prime}\right) \leq \gamma_{d}(T)-1$. Now we get $\gamma_{d}(T) \geq \gamma_{d}\left(T^{\prime}\right)+1>\gamma_{t}\left(T^{\prime}\right)+1 \geq \gamma_{t}(T)$.

Now assume that $d_{T}(u)=2$. Let $T^{\prime}=T-T_{u}$. If $T^{\prime}=P_{2}$, then $T=P_{5}$. We have $\gamma_{d}\left(P_{5}\right)=4>3=\gamma_{t}\left(P_{5}\right)$. Now assume that $T^{\prime} \neq P_{2}$. Let D^{\prime} be any $\gamma_{t}\left(T^{\prime}\right)$-set. It is easy to see that $D^{\prime} \cup\{u, v\}$ is a TDS of the tree T. Thus $\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)+2$. Now let us observe that there exists a $\gamma_{d}(T)$-set that does not contain the vertex u. Let D be such a set. By Observations 3 and 4 we have $t, v \in D$. Observe that $D \backslash\{v, t\}$ is a DDS of the tree T^{\prime}. Therefore $\gamma_{d}\left(T^{\prime}\right) \leq \gamma_{d}(T)-2$. Now we get $\gamma_{d}(T) \geq \gamma_{d}\left(T^{\prime}\right)+2>\gamma_{t}\left(T^{\prime}\right)+2 \geq \gamma_{t}(T)$.

Now we give a necessary condition for that the double domination number of a tree is equal to its total domination number plus one.
Lemma 6 If $\gamma_{d}(T)=\gamma_{t}(T)+1$, then for every $\gamma_{d}(T)$-set D, every vertex of $V(T) \backslash D$ has degree two.
Proof. Suppose that there exists a $\gamma_{d}(T)$-set D that does not contain a vertex of T, say x, which has degree different than two. By Observation 3, every leaf belongs to the set D. Therefore $d_{T}(x) \geq 3$. First assume that some neighbor of x, say y, also does not belong to the set D. By T_{1} and T_{2} we denote the trees resulting from T by removing the edge $x y$. Let us observe that each one of those trees has at least three vertices. We define $D_{1}=D \cap V\left(T_{1}\right)$ and $D_{2}=D \cap V\left(T_{2}\right)$. Let us observe that D_{1} is a DDS of the tree T_{1} and D_{2} is a DDS of the tree T_{2}. Let D_{1}^{\prime} be any $\gamma_{t}\left(T_{1}\right)$-set and let D_{2}^{\prime} be any $\gamma_{t}\left(T_{2}\right)$-set. By Lemma 5 we have $\gamma_{d}\left(T_{1}\right) \geq \gamma_{t}\left(T_{1}\right)+1$ and $\gamma_{d}\left(T_{2}\right) \geq \gamma_{t}\left(T_{2}\right)+1$. Of course, $D_{1}^{\prime} \cup D_{2}^{\prime}$ is a TDS of the tree T. Thus $\gamma_{t}(T) \leq\left|D_{1}^{\prime} \cup D_{2}^{\prime}\right|$. Now we get $\gamma_{d}(T)=|D|=\left|D_{1} \cup D_{2}\right|=\left|D_{1}\right|+\left|D_{2}\right|$ $\geq \gamma_{d}\left(T_{1}\right)+\gamma_{d}\left(T_{2}\right) \geq \gamma_{t}\left(T_{1}\right)+1+\gamma_{t}\left(T_{2}\right)+1=\left|D_{1}^{\prime}\right|+\left|D_{2}^{\prime}\right|+2=\left|D_{1}^{\prime} \cup D_{2}^{\prime}\right|+2$ $\geq \gamma_{t}(T)+2>\gamma_{t}(T)+1$, a contradiction.

Now assume that all neighbors of x belong to the set D. First assume that there is a neighbor of x, say y, such that each one of the two trees resulting from T by removing the edge $x y$ has at least three vertices. We get a contradiction similarly as when some neighbor of x does not belong to the set D. Now assume that there is no neighbor of x such that each one of the two trees resulting from T by removing the edge between them has at least three vertices. This implies that T is a subdivided star of order at least seven. Let n mean the number of vertices of the tree T. We have $\gamma_{d}(T)=n-1=(n+1) / 2+1+(n-5) / 2=\gamma_{t}(T)+1+(n-5) / 2>\gamma_{t}(T)+1$, a contradiction.

We characterize all trees with double domination number equal to total domination number plus one. For this purpose we introduce a family \mathcal{T} $=\left\{P_{3}\right\} \cup \mathcal{A} \cup \mathcal{B}$, where $\mathcal{A}=\left\{A_{1}, A_{2}, \ldots\right\}$ and $\mathcal{B}=\left\{B_{1}, B_{2}, \ldots\right\}$ are families of trees elements of which are given in Figure 1. A tree A_{k} has $3 k+2$ vertices, and a tree B_{k} has $3 k+3$ vertices.

Now we prove that for every tree of the family \mathcal{T}, the double domination number is equal to the total domination number plus one.
Lemma 7 If $T \in \mathcal{T}$, then $\gamma_{d}(T)=\gamma_{t}(T)+1$.
Proof. Of course, $\gamma_{d}\left(P_{3}\right)=3=2+1=\gamma_{t}\left(P_{3}\right)+1$. Let k be a positive integer. For trees A_{k} and B_{k} we consider the labeling of the vertices as in Figure 1.

Let D be a $\gamma_{t}\left(A_{k}\right)$-set that contains no leaf. By Observation 1 we have

				\%	
		,		,	
		x		x	
	a_{1}	a_{k}	a_{1}		k
	b_{1}	b_{k}	b_{1}		b_{k}
	c_{1}	c_{k}	c_{1}		c_{k}
P_{3}					

Figure 1: The path P_{3}, a tree A_{k} of the family \mathcal{A}, and a tree B_{k} of the family \mathcal{B}
$b_{1}, b_{2}, \ldots, b_{k}, x \in D$. Since each one of the vertices $b_{1}, b_{2}, \ldots, b_{k}$ has to have a neighbor in the set D, we have $a_{1}, a_{2}, \ldots, a_{k} \in D$. Therefore $\gamma_{t}\left(A_{k}\right)$ $\geq 2 k+1$. It is easy to observe that $\left\{b_{1}, c_{1}, b_{2}, c_{2}, \ldots, b_{k}, c_{k}, x, y\right\}$ is a DDS of the tree A_{k}. Thus $\gamma_{d}\left(A_{k}\right) \leq 2 k+2$. Now we get $\gamma_{d}\left(A_{k}\right) \leq 2 k+2$ $\leq \gamma_{t}\left(A_{k}\right)+1$. On the other hand, by Lemma 5 we have $\gamma_{d}\left(A_{k}\right) \geq \gamma_{t}\left(A_{k}\right)+1$.

Now let D be a $\gamma_{t}\left(B_{k}\right)$-set that contains no leaf. By Observation 1 we have $b_{1}, b_{2}, \ldots, b_{k}, y \in D$. Since each one of the vertices $b_{1}, b_{2}, \ldots, b_{k}, y$ has to have a neighbor in D, we have $a_{1}, a_{2}, \ldots, a_{k}, x \in D$. Therefore $\gamma_{t}\left(B_{k}\right) \geq 2 k+2$. It is easy to observe that $\left\{b_{1}, c_{1}, b_{2}, c_{2}, \ldots, b_{k}, c_{k}, x, y, z\right\}$ is a DDS of the tree B_{k}. Thus $\gamma_{d}\left(B_{k}\right) \leq 2 k+3$. Now we get $\gamma_{d}\left(B_{k}\right)$ $\leq 2 k+3 \leq \gamma_{t}\left(B_{k}\right)+1$. This implies that $\gamma_{d}\left(B_{k}\right)=\gamma_{t}\left(B_{k}\right)+1$.

Now we prove that if the double domination number of a tree is equal to its total domination number plus one, then the tree belongs to the family \mathcal{T}.

Lemma 8 Let T be a tree. If $\gamma_{d}(T)=\gamma_{t}(T)+1$, then $T \in \mathcal{T}$.
Proof. Let n mean the number of vertices of the tree T. We proceed by induction on this number. If $\operatorname{diam}(T)=1$, then $T=P_{2}$. We have $\gamma_{d}(T)=2=\gamma_{t}(T) \neq \gamma_{t}(T)+1$. If $\operatorname{diam}(T)=2$, then T is a star $K_{1, m}$. If $T=P_{3}$, then $T \in \mathcal{T}$. Now assume that T is a star different than P_{3}. We have $\gamma_{d}(T)=m+1 \geq 3+1>2+1=\gamma_{t}(T)+1$. Now let us assume that $\operatorname{diam}(T)=3$. Thus T is a double star. We have $\gamma_{d}(T)=n \geq 4>3$ $=2+1=\gamma_{t}(T)+1$.

Now assume that $\operatorname{diam}(T) \geq 4$. Thus the order of the tree T is an integer $n \geq 5$. The result we obtain by the induction on the number n. Assume that the lemma is true for every tree T^{\prime} of order $n^{\prime}<n$.

First assume that some support vertex of T, say x, is strong. Let y and z mean leaves adjacent to x. Let $T^{\prime}=T-y$. Let D^{\prime} be any $\gamma_{t}\left(T^{\prime}\right)$-set. By Observation 1 we have $x \in D^{\prime}$. Of course, D^{\prime} is a TDS of the tree T. Thus $\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)$. Now let D be any $\gamma_{d}(T)$-set. By Observations 3 and 4 we have $y, z, x \in D$. It is easy to see that $D \backslash\{y\}$ is a DDS of the tree T^{\prime}. Therefore $\gamma_{d}\left(T^{\prime}\right) \leq \gamma_{d}(T)-1$. Now we get $\gamma_{d}\left(T^{\prime}\right) \leq \gamma_{d}(T)-1=\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)$. This is a contradiction as by Lemma 5 we have $\gamma_{d}\left(T^{\prime}\right)>\gamma_{t}\left(T^{\prime}\right)$. Thus every support vertex of T is weak.

We now root T at a vertex r of maximum eccentricity $\operatorname{diam}(T)$. Let t be a leaf at maximum distance from r, v be the parent of t, u be the parent of v, and w be the parent of u in the rooted tree. By T_{x} let us denote the subtree induced by a vertex x and its descendants in the rooted tree T.

First assume that $d_{T}(u) \geq 3$. Assume that u is adjacent to a leaf, say x. Let $T^{\prime}=T-T_{v}$. Let D^{\prime} be any $\gamma_{t}\left(T^{\prime}\right)$-set. By Observation 1 we have $u \in D^{\prime}$. It is easy to see that $D^{\prime} \cup\{v\}$ is a TDS of the tree T. Thus $\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)+1$. Now let D be any $\gamma_{d}(T)$-set. By Observations 3 and 4 we have $t, x, v, u \in D$. It is easy to see that $D \backslash\{v, t\}$ is a DDS of the tree T^{\prime}. Therefore $\gamma_{d}\left(T^{\prime}\right) \leq \gamma_{d}(T)-2$. Now we get $\gamma_{d}\left(T^{\prime}\right) \leq \gamma_{d}(T)-2$ $=\gamma_{t}(T)-1 \leq \gamma_{t}\left(T^{\prime}\right)$, a contradiction.

Thus every descendant of u is a support vertex. Let x mean a child of u different than v. Let $T^{\prime}=T-T_{v}$. Let D^{\prime} be a $\gamma_{t}\left(T^{\prime}\right)$-set that contains no leaf. The vertex x has to have a neighbor in D^{\prime}, thus $u \in D^{\prime}$. It is easy to see that $D^{\prime} \cup\{v\}$ is a TDS of the tree T. Thus $\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)+1$. Now let D be any $\gamma_{d}(T)$-set. By Observations 3 and 4 we have $t, v, x \in D$. By Lemma 6 we have $u \in D$. It is easy to see that $D \backslash\{v, t\}$ is a DDS of the tree T^{\prime}. Therefore $\gamma_{d}\left(T^{\prime}\right) \leq \gamma_{d}(T)-2$. Now we get $\gamma_{d}\left(T^{\prime}\right) \leq \gamma_{d}(T)-2$ $=\gamma_{t}(T)-1 \leq \gamma_{t}\left(T^{\prime}\right)$, a contradiction.

Now assume that $d_{T}(u)=2$. Let $T^{\prime}=T-T_{u}$. If $T^{\prime}=P_{2}$, then $T=P_{5}$. Obviously, $P_{5}=A_{1} \in \mathcal{T}$. Now assume that $T^{\prime} \neq P_{2}$. Let D^{\prime} be any $\gamma_{t}\left(T^{\prime}\right)$-set. It is easy to see that $D^{\prime} \cup\{u, v\}$ is a TDS of the tree T. Thus $\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)+2$. Now let us observe that there exists a $\gamma_{d}(T)$-set that does not contain the vertex u. Let D be such a set. By Observations 3 and 4 we have $t, v \in D$. Observe that $D \backslash\{v, t\}$ is a DDS of the tree T^{\prime}. Therefore $\gamma_{d}\left(T^{\prime}\right) \leq \gamma_{d}(T)-2$. Now we get $\gamma_{d}\left(T^{\prime}\right) \leq \gamma_{d}(T)-2=\gamma_{t}(T)-1 \leq \gamma_{t}\left(T^{\prime}\right)+1$. This implies that $\gamma_{d}\left(T^{\prime}\right)=\gamma_{t}\left(T^{\prime}\right)+1$. By the inductive hypothesis we have $T^{\prime} \in \mathcal{T}$. If $T^{\prime}=P_{3}$, then $T=P_{6}$. Obviously, $P_{6}=B_{1} \in \mathcal{T}$. Now assume that $T^{\prime} \neq P_{3}$. We distinguish between the following two cases: $T^{\prime} \in \mathcal{A}$ and $T^{\prime} \in \mathcal{B}$.

Case 1. $T^{\prime} \in \mathcal{A}$. Let $T^{\prime}=A_{k}$. We consider the labeling of the vertices as in Figure 1. If w corresponds to x, then it is easy to observe that $T=A_{k+1} \in \mathcal{T}$.

Now assume that w corresponds to y. It is easy to see that $\left\{a_{1}, b_{1}\right.$, $\left.a_{2}, b_{2}, \ldots, a_{k}, b_{k}, u, v\right\}$ is a TDS of the tree T. Thus $\gamma_{t}(T) \leq 2 k+2$. Now let
D be any $\gamma_{d}(T)$-set. By Observations 3 and 4 we have $c_{1}, b_{1}, c_{2}, b_{2}, \ldots, c_{k}, b_{k}$, $t, v \in D$. By Lemma 6 we have $x \in D$. It is easy to see that those vertices do not form a DDS of the tree T. Therefore $\gamma_{d}(T) \geq 2 k+4$. Now we get $\gamma_{d}(T) \geq 2 k+4>2 k+3 \geq \gamma_{t}(T)+1$, a contradiction.

Now assume that w corresponds to a_{i}, for some i. It is easy to see that $\left\{a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{k}, b_{k}, x, u, v\right\}$ is a TDS of the tree T. Thus $\gamma_{t}(T)$ $\leq 2 k+3$. Now let D be any $\gamma_{d}(T)$-set. By Observations 3 and 4 we have $c_{1}, b_{1}, c_{2}, b_{2}, \ldots, c_{k}, b_{k}, y, x, t, v \in D$. By Lemma 6 we have $a_{i} \in D$. Therefore $\gamma_{d}(T) \geq 2 k+5$. Now we get $\gamma_{d}(T) \geq 2 k+5>2 k+4 \geq \gamma_{t}(T)+1$, a contradiction.

Now assume that w corresponds to b_{i}, for some i. Let us observe that $\left\{a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{i-1}, b_{i-1}, b_{i}, a_{i+1}, b_{i+1}, \ldots, a_{k}, b_{k}, x, u, v\right\}$ is a TDS of the tree T. Thus $\gamma_{t}(T) \leq 2 k+2$. Now let D be any $\gamma_{d}(T)$-set. By Observations 3 and 4 we have $c_{1}, b_{1}, c_{2}, b_{2}, \ldots, c_{k}, b_{k}, y, x, t, v \in D$. Therefore $\gamma_{d}(T) \geq 2 k+4$. Now we get $\gamma_{d}(T) \geq 2 k+4>2 k+3 \geq \gamma_{t}(T)+1$, a contradiction.

Now assume that w corresponds to c_{i}, for some i. Observe that $\left\{a_{1}, b_{1}\right.$, $\left.a_{2}, b_{2}, \ldots, a_{i-1}, b_{i-1}, a_{i}, a_{i+1}, b_{i+1}, \ldots, a_{k}, b_{k}, x, u, v\right\}$ is a TDS of the tree T. Thus $\gamma_{t}(T) \leq 2 k+2$. Now let D be any $\gamma_{d}(T)$-set. By Observations 3 and 4 we have $c_{1}, b_{1}, c_{2}, b_{2}, \ldots, c_{i-1}, b_{i-1}, c_{i+1}, b_{i+1}, \ldots, c_{k}, b_{k}, y, x, t, v \in D$. Observe that adding any one of the remaining vertices to those vertices does not give us a DDS of the tree T. Therefore $\gamma_{d}(T) \geq 2 k+4$. Now we get $\gamma_{d}(T) \geq 2 k+4>2 k+3 \geq \gamma_{t}(T)+1$, a contradiction.

Case 2. $T^{\prime} \in \mathcal{B}$. Let $T^{\prime}=B_{k}$. Let us consider the labeling of the vertices as in Figure 1. If w corresponds to x, then it is easy to see that $T=B_{k+1} \in \mathcal{T}$.

Now assume that w corresponds to z. Observe that $\left\{a_{1}, b_{1}, a_{2}, b_{2}, \ldots\right.$, $\left.a_{k}, b_{k}, z, u, v\right\}$ is a TDS of the tree T. Thus $\gamma_{t}(T) \leq 2 k+3$. Now let D be any $\gamma_{d}(T)$-set. By Observations 3 and 4 we have $c_{1}, b_{1}, c_{2}, b_{2}, \ldots, c_{k}, b_{k}, t, v \in D$. By Lemma 6 we have $x \in D$. Let us observe that adding any one of the remaining vertices to those vertices does not give us a DDS of the tree T. Therefore $\gamma_{d}(T) \geq 2 k+5$. Now we get $\gamma_{d}(T) \geq 2 k+5>2 k+4 \geq \gamma_{t}(T)+1$, a contradiction.

Now assume that w corresponds to y. Observe that $\left\{a_{1}, b_{1}, a_{2}, b_{2}, \ldots\right.$, $\left.a_{k}, b_{k}, y, u, v\right\}$ is a TDS of the tree T. Thus $\gamma_{t}(T) \leq 2 k+3$. Now let D be any $\gamma_{d}(T)$-set. By Observations 3 and 4 we have $c_{1}, b_{1}, c_{2}, b_{2}, \ldots, c_{k}, b_{k}, z, y, t, v$ $\in D$. By Lemma 6 we have $x \in D$. Therefore $\gamma_{d}(T) \geq 2 k+5$. Now we get $\gamma_{d}(T) \geq 2 k+5>2 k+4 \geq \gamma_{t}(T)+1$, a contradiction.

Now assume that w corresponds to a_{i}, for some i. Observe that $\left\{a_{1}, b_{1}\right.$, $\left.a_{2}, b_{2}, \ldots, a_{k}, b_{k}, x, y, u, v\right\}$ is a TDS of the tree T. Thus $\gamma_{t}(T) \leq 2 k+4$. Now let D be any $\gamma_{d}(T)$-set. By Observations 3 and 4 we have $c_{1}, b_{1}, c_{2}, b_{2}, \ldots$, $c_{k}, b_{k}, z, y, t, v \in D$. By Lemma 6 we have $x, a_{i} \in D$. Therefore $\gamma_{d}(T)$ $\geq 2 k+6$. Now we get $\gamma_{d}(T) \geq 2 k+6>2 k+5 \geq \gamma_{t}(T)+1$, a contradiction.

Now assume that w corresponds to b_{i}, for some i. Let us observe that $\left\{a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{i-1}, b_{i-1}, b_{i}, a_{i+1}, b_{i+1}, \ldots, a_{k}, b_{k}, x, y, u, v\right\}$ is a TDS of the tree T. Thus $\gamma_{t}(T) \leq 2 k+3$. Now let D be any $\gamma_{d}(T)$-set. By Observations 3 and 4 we have $c_{1}, b_{1}, c_{2}, b_{2}, \ldots, c_{k}, b_{k}, z, y, t, v \in D$. By Lemma 6 we have $x \in D$. Therefore $\gamma_{d}(T) \geq 2 k+5$. Now we get $\gamma_{d}(T)$ $\geq 2 k+5>2 k+4 \geq \gamma_{t}(T)+1$, a contradiction.

Now assume that w corresponds to c_{i}, for some i. Let us observe that $\left\{a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{i-1}, b_{i-1}, a_{i}, a_{i+1}, b_{i+1}, \ldots, a_{k}, b_{k}, x, y, u, v\right\}$ is a TDS of the tree T. Thus $\gamma_{t}(T) \leq 2 k+3$. Now let D be any $\gamma_{d}(T)$-set. By Observations 3 and 4 we have $c_{1}, b_{1}, c_{2}, b_{2}, \ldots, c_{i-1}, b_{i-1}, c_{i+1}, b_{i+1}, \ldots, c_{k}, b_{k}, z, y$, $t, v \in D$. By Lemma 6 we have $x \in D$. Observe that adding any one of the remaining vertices to those vertices does not give us a DDS of the tree T. Therefore $\gamma_{d}(T) \geq 2 k+5$. Now we get $\gamma_{d}(T) \geq 2 k+5>2 k+4 \geq \gamma_{t}(T)+1$, a contradiction.

As an immediate consequence of Lemmas 7 and 8 , we have the following characterization of the trees with double domination number equal to total domination number plus one.

Theorem 9 Let T be a tree. Then $\gamma_{d}(T)=\gamma_{t}(T)+1$ if and only if $T \in \mathcal{T}$.

References

[1] E. Cockayne, R. Dawes, and S. Hedetniemi, Total domination in graphs, Networks 10 (1980), 211-219.
[2] F. Harary, T. Haynes, Double domination in graphs, Ars Combinatoria 55 (2000), 201-213.
[3] T. Haynes, S. Hedetniemi, and P. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[4] T. Haynes, S. Hedetniemi, and P. Slater (eds.), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
[5] M. Henning, L. Kang, and E. Shan, A characterization of trees with equal total domination and paired-domination numbers, Australasian Journal of Combinatorics 30 (2004), 31-39.

