On trees with equal 2-domination and 2-outer-independent domination numbers

Marcin Krzywkowski*†
marcin.krzywkowski@gmail.com

Abstract

For a graph $G=(V, E)$, a subset $D \subseteq V(G)$ is a 2-dominating set if every vertex of $V(G) \backslash D$ has at least two neighbors in D, while it is a 2-outerindependent dominating set if additionally the set $V(G) \backslash D$ is independent. The 2-domination (2-outer-independent domination, respectively) number of G, is the minimum cardinality of a 2 -dominating (2-outer-independent dominating, respectively) set of G. We characterize all trees with equal 2-domination and 2 -outer-independent domination numbers.

Keywords: 2-domination, 2-outer-independent domination, tree.
$\mathcal{A}_{\mathcal{M S}}$ Subject Classification: 05C05, 05C69.

1 Introduction

Let $G=(V, E)$ be a graph. By the neighborhood of a vertex v of G we mean the set $N_{G}(v)=\{u \in V(G): u v \in E(G)\}$. The degree of a vertex v, denoted by $d_{G}(v)$, is the cardinality of its neighborhood. By a leaf we mean a vertex of degree one, while a support vertex is a vertex adjacent to a leaf. We say that a subset of $V(G)$ is independent if there is no edge between any two vertices of this set. A path on n vertices we denote by P_{n}. By a star we mean a connected graph in which exactly one vertex has degree greater than one. Let $u v$ be an edge of a graph G. By subdividing the edge $u v$ we mean removing it, and adding a new vertex, say x, along with two new edges $u x$ and $x v$.

A subset $D \subseteq V(G)$ is a dominating set of G if every vertex of $V(G) \backslash D$ has a neighbor in D, while it is a 2-dominating set, abbreviated 2DS, of G if

[^0]every vertex of $V(G) \backslash D$ has at least two neighbors in D. The domination (2domination, respectively) number of G, denoted by $\gamma(G)\left(\gamma_{2}(G)\right.$, respectively), is the minimum cardinality of a dominating (2-dominating, respectively) set of G. A 2-dominating set of G of minimum cardinality is called a $\gamma_{2}(G)$-set. Note that 2-domination is a type of multiple domination in which each vertex, which is not in the dominating set, is dominated at least k times for a fixed positive integer k. Multiple domination in graphs was introduced by Fink and Jacobson [2], and was further studied for example in $[1,3,4]$. For a comprehensive survey of domination in graphs, see [5].

A subset $D \subseteq V(G)$ is a 2-outer-independent dominating set, abbreviated 2OIDS, of G if every vertex of $V(G) \backslash D$ has at least two neighbors in D, and the set $V(G) \backslash D$ is independent. The 2-outer-independent domination number of G, denoted by $\gamma_{2}^{o i}(G)$, is the minimum cardinality of a 2 -outer-independent dominating set of G. A 2-outer-independent dominating set of G of minimum cardinality is called a $\gamma_{2}^{o i}(G)$-set. The study of 2 -outer-independent domination in graphs was initiated in [6].

We characterize all trees with equal 2-domination and 2-outer-independent domination numbers.

2 Results

We begin with the following three straightforward observations.
Observation 1 For every graph G we have $\gamma_{2}^{o i}(G) \geq \gamma_{2}(G)$.
Observation 2 Every leaf of a graph G is in every $\gamma_{2}(G)$-set and in every $\gamma_{2}^{o i}(G)$ set.

Observation 3 For every path there is a minimum 2-dominating set that contains all vertices that are at even distance from one of the leaves.

Let T be a tree. We say that two vertices of T of degree at least three are linked, if all interior vertices of the path joining them in T have degree two. Then the path is called a link. Paths joining leaves of T to the closest vertices of degree at least three we call chains. The length of a link or a chain is the number of its edges. A link or a chain is even (odd, respectively) if its length is even (odd, respectively). We say that a vertex of T of degree at least three, say x, is within even range of a leaf, if there is a leaf, say y, such that all links and chains of the path joining x and y in T are even.

Let \mathcal{T}_{0} be a family of trees in which for every pair of adjacent vertices of degree at least three, at least one of them is within even range of a leaf.

Lemma 4 If $T \in \mathcal{T}_{0}$, then $\gamma_{2}^{o i}(T)=\gamma_{2}(T)$.

Proof. Observation 3 implies that for every tree there is a minimum 2-dominating set that contains all vertices of degree at least three that are within even range of a leaf. Let D be such a set for the tree T. Suppose that some two adjacent vertices of T, say x and y, do not belong to the set D. Since $T \in \mathcal{T}_{0}$, at least one of them has degree two. This is a contradiction as that vertex must have at least two neighbors in D. We now conclude that for every pair of adjacent vertices of T, the set D contains at least one of them. Thus $V(T) \backslash D$ is an independent set. Consequently, D is a 2OIDS of the tree T. Therefore $\gamma_{2}^{o i}(T) \leq \gamma_{2}(T)$. On the other hand, by Observation 1 we have $\gamma_{2}^{o i}(T) \geq \gamma_{2}(T)$.

We characterize all trees with equal 2-domination and 2-outer-independent domination numbers. For this purpose we introduce a family \mathcal{T} of trees $T=T_{k}$ that can be obtained as follows. Let $T_{1} \in \mathcal{T}_{0}$. If k is a positive integer, then T_{k+1} can be obtained recursively from T_{k} by the following operation. Let x be a vertex of T_{k}, which belongs to some $\gamma_{2}^{o i}(T)$-set. Let y be the central vertex of a star, each edge of which can be subdivided any non-negative even number of times. Then join the vertices x and y.

For checking whether a given vertex of a tree belongs to some of its minimum 2-outer-independent dominating sets, let us consider the following algorithm, which labels vertices of a tree T as taken, omitted and undecided. Initialize by calling every leaf taken and every other vertex undecided. Root T at a non-leaf vertex, say r. Let $u \neq r$ be a vertex of T, which has not already been decided, and such that all its children have been decided. If some child of u has been omitted, then take u. Otherwise omit u and take its parent.

Proposition 5 Let T be a tree, and let v be a vertex of T. There exists a $\gamma_{2}^{o i}(T)$ set containing the vertex v if and only if v is a leaf or, rooting T at v, the above algorithm labels at least one child of v as omitted.

We now prove that for every tree of the family \mathcal{T}, the 2 -domination and the 2 -outer-independent domination numbers are equal.

Lemma 6 If $T \in \mathcal{T}$, then $\gamma_{2}^{o i}(T)=\gamma_{2}(T)$.
Proof. We use the induction on the number k of operations performed to construct the tree T. If $T \in \mathcal{T}_{0}$, then by Lemma 4 we have $\gamma_{2}^{o i}(T)=\gamma_{2}(T)$. Let k be a positive integer. Assume that the result is true for every $T^{\prime}=T_{k}$ of the family \mathcal{T} constructed by $k-1$ operations. Let x be a vertex of T^{\prime} to which is attached the new tree T_{1}. It is easy to notice that $\gamma_{2}^{o i}\left(T_{1}\right)=\gamma_{2}\left(T_{1}\right)$. The vertices of T_{1} at odd distance from the vertex of maximum degree, say y, form a $\gamma_{2}^{o i}\left(T_{1}\right)$ set. Let D^{\prime} be a $\gamma_{2}^{o i}\left(T^{\prime}\right)$-set that contains the vertex x. It is easy to observe that the elements of the set D^{\prime} together with the vertices of T_{1} at odd distance from y, form a 2OIDS of the tree T. Thus $\gamma_{2}^{o i}(T) \leq \gamma_{2}^{o i}\left(T^{\prime}\right)+\gamma_{2}^{o i}\left(T_{1}\right)$. Now
let us observe that there exists a $\gamma_{2}(T)$-set that does not contain the vertex y and the vertices of T_{1} at even distance from y. Let D be such a set. Notice that all vertices of T_{1} at odd distance from y belong to the set D. Observe that $D \cap V\left(T^{\prime}\right)$ is a 2 DS of the tree T^{\prime}. Therefore $\gamma_{2}\left(T^{\prime}\right) \leq \gamma_{2}(T)-\gamma_{2}\left(T_{1}\right)$. We now get $\gamma_{2}^{o i}(T) \leq \gamma_{2}^{o i}\left(T^{\prime}\right)+\gamma_{2}^{o i}\left(T_{1}\right)=\gamma_{2}\left(T^{\prime}\right)+\gamma_{2}\left(T_{1}\right) \leq \gamma_{2}(T)$. This implies that $\gamma_{2}^{o i}(T)=\gamma_{2}(T)$.

We now prove that if the 2-domination and the 2 -outer-independent domination numbers of a tree are equal, then the tree belongs to the family \mathcal{T}.

Lemma 7 Let T be a tree. If $\gamma_{2}^{o i}(T)=\gamma_{2}(T)$, then $T \in \mathcal{T}$.
Proof. The result we obtain by the induction on the order n of the tree T. Assume that the lemma is true for every tree T^{\prime} of order $n^{\prime}<n$. If at most one vertex of T has degree at least three, then it follows from the definition of the family \mathcal{T}_{0} that $T \in \mathcal{T}_{0} \subseteq \mathcal{T}$ as in the tree T there is no pair of adjacent vertices of degree at least three. Now assume that at least two vertices of T have degree at least three. Let x be a vertex of T of degree at least three, which is adjacent to exactly one link. Thus x is adjacent to at least two chains. First assume that some of them is even. Let T_{x} be the tree induced by the vertex x and the chains adjacent to x. Let S be the set of vertices of $V\left(T_{x}\right) \backslash\{x\}$ that are leaves or are at even distance from x. Let T^{\prime} be a tree obtained from T by replacing T_{x} with a path P_{3}, say $x y z$, where z is the leaf. Let D^{\prime} be a $\gamma_{2}\left(T^{\prime}\right)$ set that contains the vertices x and z. It is easy to observe that $D^{\prime} \cup S \backslash\{z\}$ is a 2DS of the tree T. Thus $\gamma_{2}(T) \leq \gamma_{2}\left(T^{\prime}\right)+|S|-1$. Now let us observe that there exists a $\gamma_{2}^{o i}(T)$-set that does not contain the vertices of T_{x}, which are not leaves and are at odd distance from x. Let D be such a set. Observe that $\{z\} \cup D \cap V\left(T^{\prime}\right)$ is a 2OIDS of the tree T^{\prime}. Therefore $\gamma_{2}^{o i}\left(T^{\prime}\right) \leq \gamma_{2}^{o i}(T)-|S|+1$. We now get $\gamma_{2}^{o i}\left(T^{\prime}\right) \leq \gamma_{2}^{o i}(T)-|S|+1=\gamma_{2}(T)-|S|+1 \leq \gamma_{2}\left(T^{\prime}\right)$. This implies that $\gamma_{2}^{o i}\left(T^{\prime}\right)=\gamma_{2}\left(T^{\prime}\right)$. By the inductive hypothesis we have $T^{\prime} \in \mathcal{T}$. It follows from the definition of the family \mathcal{T} that $T \in \mathcal{T}$.

Now assume that all chains adjacent to x are odd. Let T_{x} be the tree induced by the vertex x and the chains adjacent to x. The neighbor of x that does not belong to $V\left(T_{x}\right)$ we denote by k. Let S be the set of vertices of T_{x} that are at odd distance from x. Let $T^{\prime}=T-T_{x}$. Let D^{\prime} be any $\gamma_{2}\left(T^{\prime}\right)$-set. It is easy to observe that $D^{\prime} \cup S$ is a 2 DS of the tree T. Thus $\gamma_{2}(T) \leq \gamma_{2}\left(T^{\prime}\right)+|S|$. Now let us observe that there exists a $\gamma_{2}^{o i}(T)$-set that does not contain the vertex x and the vertices of T_{x} at even distance from x. Let D be such a set. The set $V(T) \backslash D$ is independent, thus $k \in D$. Observe that $D \backslash S$ is a 2OIDS of the tree T^{\prime} of cardinality $\gamma_{2}^{o i}(T)-|S|$, and which contains the vertex k. Therefore $\gamma_{2}^{o i}\left(T^{\prime}\right) \leq \gamma_{2}^{o i}(T)-|S|$. We now get $\gamma_{2}^{o i}\left(T^{\prime}\right) \leq \gamma_{2}^{o i}(T)-|S|=\gamma_{2}(T)-|S| \leq \gamma_{2}\left(T^{\prime}\right)$. This implies that $\gamma_{2}^{o i}\left(T^{\prime}\right)=\gamma_{2}\left(T^{\prime}\right)$. By the inductive hypothesis we have $T^{\prime} \in \mathcal{T}$. Moreover, there exists a $\gamma_{2}^{o i}\left(T^{\prime}\right)$-set that contains the vertex k. The tree T_{x} is
obtained from a star by subdividing each one of its edges a non-negative even number of times. The tree T can be obtained from T^{\prime} by attaching the tree T_{x} by joining the central vertex to the vertex k. Thus $T \in \mathcal{T}$.

As an immediate consequence of Lemmas 6 and 7, we have the following characterization of trees with equal 2 -domination and 2 -outer-independent domination numbers.

Theorem 8 Let T be a tree. Then $\gamma_{2}^{o i}(T)=\gamma_{2}(T)$ if and only if $T \in \mathcal{T}$.

References

[1] M. Blidia, M. Chellali and L. Volkmann, Bounds of the 2-domination number of graphs, Utilitas Mathematica 71 (2006), 209-216.
[2] J. Fink and M. Jacobson, n-domination in graphs, Graph Theory with Applications to Algorithms and Computer Science, Wiley, New York, 1985, 282-300.
[3] J. Fujisawa, A. Hansberg, T. Kubo, A. Saito, M. Sugita and L. Volkmann, Independence and 2-domination in bipartite graphs, Australasian Journal of Combinatorics 40 (2008), 265-268.
[4] A. Hansberg and L. Volkmann, On graphs with equal domination and 2domination numbers, Discrete Mathematics 308 (2008), 2277-2281.
[5] T. Haynes, S. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[6] N. Jafari Rad and M. Krzywkowski, 2-outer-independent domination in graphs, submitted.

[^0]: *Research fellow at the Department of Mathematics, University of Johannesburg, South Africa.
 ${ }^{\dagger}$ Institute of Mathematics, Polish Academy of Sciences. Research supported by the Polish Ministry of Science and Higher Education grant IP/2012/038972.

