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Abstract. We introduce a new analytical method, which allows to find out
chaotic dynamics in non-smooth dynamical systems. A simple mechanical sys-
tem consisting of a mass and a dry friction element is considered as an example.
The corresponding mathematical model is represented. We show that the con-
sidered dynamical system is a skew product over a piecewise smooth mapping
of a segment (a base map). For this base map we demonstrate there is a do-
main of parameters where a robust chaotic dynamics can be observed. Namely,
we prove existence of an infinite set of periodic points of arbitrarily big period.
Moreover, a reduction of the considered map is semi-conjugated to a shift on
the set of one-sided infinite boolean sequences. Also, we find conditions, suf-
ficient for existence of a superstable periodic point of this map. The obtained
result partially solves a general problem: theoretical confirmation of chaotic
and periodic regimes numerically and experimentally observed for models of
percussion drilling.

Keywords: Li-Yorke chaos, mappings of segments, dry friction, reduction of
dimension.

1. Introduction.

Systems with dry friction form a wide and important class inside discontinu-
ous dynamical systems. They appear in many applications, especially in man-
ufacturing systems: vibrating conveyors, percussion drilling, metal cutting, etc
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(see [1,2,3,4,5,6,7,8,9,10,11,12] and references therein for review). Their prop-
erties manifest many principle differences with ones of smooth dynamics. For
instance, the uniqueness theorem is not valid any more. An approach to study
such systems has been developed by A.F. Filippov [13]. He offered to consider
piecewise continuous systems of differential equations as families of vector fields,
defined on disjoint domains of the phase space and define auxiliary tangent
flows on boundaries, respecting limit directions of vector fields. This approach
reduces a discontinuous system to differential inclusions. Moreover, the phase
space may become multidimensional e.g. a set of initial data of the full dimen-
sion may be transferred to a set of a lower dimension. The theory of discontin-
uous systems and specific bifurcation is well-developed [1,2,4,8,9,11,13,14,15].
It is also well-known that chaotic dynamics frequently occurs in such systems,
particularly in ones with dry friction [1,2,3,5,9,10,11,12,16,17,18,19].

Apart from numerical and experimental simulations, themost common analytic
approach involves a reduction of dimension. For some systems with dry friction
it is possible to demonstrate that there exists an invariant set of dimension 1
where the attractor resides. A method to find this attractor has been developed
by M.Wiercigroch, E. Pavlovskaya and A.Krivtsov in papers [6,7] and, in its
general form, in the paper [18]. In our paper we use some ideas of this approach.
Another powerful method has been proposed by R. Szalai and H.M.Osinga
[19]. They have proved that for a general class of systems with dry friction
the attractor resides in a polygon type set and demonstrated a possibility of
a chaotic dynamics there. Later [20] they have shown, using a modification of
their method that some complex structures like Arnold tongues can be observed
in a neighborhood of the so-called grazing-sliding bifurcation [1,2,15].

The main aim of this paper is to provide a new method which allows to
find chaotic invariant sets in systems with a dry friction. To demonstrate this
method, we use a very simple example of a system with dry friction, first con-
sidered be A. Krivtsov and M. Wiercigroch [6]. First of all, we show that the
considered dynamical system engenders a discontinuous mapping of a segment.
Here we use ideas from [18]. Then we study properties of this mapping which
allow us to find two disjoint segments such that the image of every one of them
covers their union. Moreover, we prove that the considered mapping is con-
tinuous on the union of these segments. This allows us to apply well-known
techniques of one dimensional dynamics [21, Part 3, Section 15] and to demon-
strate that a kind of chaotic dynamics, similar to one described by T. Li and J.
Yorke [22] is there.

The main advantages of the offered method are the following.

(1) We can obtain chaotic sets which, in general, are not attractors.
(2) For simple systems with dry fiction, the offered method gives coefficient

type criteria of chaos.

2

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


(3) Though we need a presence of a small parameter in our proofs, it is possible
to estimate numerically how small this parameter must be. In general,
presence of chaotic invariant sets does not correspond to a neighborhood
of any bifurcation.

(4) The fact of presence of chaotic behavior (but not corresponding invariant
sets) is robust.

(5) A corresponding invariant measure can be described using techniques of
[21, Part 3, Section 15].

The paper is organized as follows. In Section 2 we introduce the mathemati-
cal model of the considered system and describe possible regimes of motion. In
Section 3 we define the main object of our investigation: the one-dimensional
mapping, corresponding to phases of switching for solutions. For this, we de-
scribe all possible scenarios of behavior of solutions. In the next section we de-
scribe some properties of the introduced mapping. In Section 5 we study how
the segments of continuity of the constructed mapping look like and find out
two segments of continuity whose images cover their union. Sections 6 and 7
are technical. We prove existence of periodic points of all possible periods but
we cannot apply the theory of mappings of a segment directly since we deal
with a discontinuous mapping. However, still we can use standard methods
of this theory to finish our proof. Obtained chaotic invariant sets may coex-
ist with superstable fixed points of the considered map. This is discussed in
Section 8. Main results of the paper are formulated in Section 9. Discussion,
including notes on the robustness of the obtained set and some plans on the
future research is given at Section 10.

2. Description of the mathematical model.

Consider a single degree-of-freedom mechanical system, consisting of a point
mass and a delimiter with dry friction (Fig. 1) which gives a simple model of
percussion drilling. This system consists of a unit mass, whose motion is con-
trolled by a harmonic external force F (t) which is a sum of a positive constant
component equal to 2b and a harmonic component of a positive amplitude a
and a period equal to 2π. Also, the considered system includes a delimiter
which provides an additional dry friction as soon as the mass reaches it. The
maximal value of this dry friction force is q. Here and later we always suppose
that all considered parameters are non-dimensional.

Our main aim is to prove that provided some additional conditions are satis-
fied, the dynamics of the considered system is robustly chaotic in topological
sense. Let x be the current position of the mass and y be one of the delimiter.
We assume that the inequality x ≤ y is always satisfied i.e. the mass cannot
penetrate through the delimiter and that the delimiter cannot move to the left
so the value y is always non-decreasing.
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m=1

frictiony
x

F(t)

Fig. 1. The considered mechanical system.

Consider the value ϑ0 ∈ [0, π/2] such that

π − ϑ0 = cot(ϑ0/2). (1)

This value is unique and ϑ0 ≈ 0.81047, sin ϑ0 ≈ 0.724611.

We make the following assumptions on parameters of the system:

a > 0, b ∈ (0, a/2), q ∈ (a sinϑ0, a). (2)

We shall always suppose that b % a (which implies b % q). This means that
we always suppose that the ratio b/a is as small as necessary.

There are five types of motions of the considered system.

(1) No contact (free) motion (f). This motion takes place if x < y i.e. the
mass and the delimiter do not interact. Then

ẍ = F (t) = a sin t + 2b; ẏ = 0. (3)

(2) Contact with progression (p). In this regime we have an additional
friction. The motion is defined by equations

ẍ = F (t)− q = a sin t+ 2c = a sin t+ 2b− q; y = x. (4)

(3) Stop (s). Here the mass and the delimiter are both immobile, i.e.

x = y, ẋ = ẏ = 0. (5)

(4) Instantaneous stop (is). This happens if Condition (5) is satisfied for
a fixed instant of time but is not true in its small neighborhood. So, this
happens if the system switches from or to free motion or from/to motion
with progression.

(5) Instantaneous transition from the no contact regime to motion
with progression (fp).

We always suppose that free motion, motion with progression and stop regime
are observed at open intervals of time. This allows us to classify all instants of
transition.
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Let t0 < t1 be zeros of the function F (t) − q and t2 < t3 be ones of the
function F (t) on [0, 2π]. Later on we consider the phase ϕ = t mod 2π. Here
ϕ ∈ S1 = R/2πZ.

Solutions of Eqs. (3), (4) and (5) can easily be written down. If x(θ0) = x0,
ẋ(θ0) = x1 we have

x(t) = −a sin t+ b(t− θ0)
2 + (x1 + a cos θ0)(t− θ0) + x0 + a sin θ0

for Eq. (3) (free motion) and

x(t) = −a sin t+ c(t− θ0)
2 + (x1 + a cos θ0)(t− θ0) + x0 + a sin θ0 (6)

for motion with progression. For stop regime we always have x1 = 0 and
x(t) ≡ x0.

3. Reduction to dimension 1.

Now we describe how we may proceed from one regime to another.

Starting from the free motion, the mass will always return to the delimiter
since b > 0. If the velocity of the collision is non-zero, the system proceeds to
progression regime. The transition (f) → (is) → (s) is possible at t = θ0 if and
only if x(θ0) = y(θ0), ẋ(θ0) = 0. If F (θ0) > 0 then ẋ(t) is negative before t = θ0
which is impossible. If F (θ0) < 0, the mass returns back, ”ignoring” presence
of the delimiter. We have an instantaneous stop there. Otherwise, F (θ0) = 0.
If Ḟ (θ0) < 0 then again we have ẋ(t) < 0 in a left neighborhood of θ0. So,
Ḟ (θ0) ≥ 0 and, consequently, θ0 = t3 mod 2π. Then we have an instantaneous
stop and the stop regime later on.

In the motion with progression the derivative ẋ vanishes soon or later since
c < 0. If this happens when ϕ ∈ [t2, t3) we immediately proceed to free motion.
Otherwise, the mass stops. If this happens for ϕ ∈ [t1, t2) the mass stops until
ϕ = t2 and then switches to free motion. Note, that progression cannot be
stopped while t ∈ [t0, t1). If it is stopped on [t3, t0) the mass waits the next
instant t0 + 2πk and then starts moving according to Eq. (4). In this case, we
have θ0 = t0 and x1 = 0 in Eq. (6). Consequently,

ẋ(t) = −a(cos t− cos t0) + 2c(t− t0). (7)

This function increases (and, therefore, cannot vanish) until t = t1. However,
since b % q, we may say that cos t3 > cos t0 and the right hand side of Eq. (7) is
negative for t = t3. So, the motion stops somewhere at [t1, t3) and then proceeds
to the free flight regime. The stop regime may be finished by a transition to a
free motion at t = t2 + 2πk or by transition to the motion with a progression
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at t = t0 + 2πk. It is impossible neither on (t0, t1) nor on (t2, t3). See Fig.2 for
illustration.

F(t)

t0
2b

a+2b

2b-a

q

t0 t1 t3t2 2π 

no (s) regimes here
no transitions from (p)

(s)  >(is)  >(p)  

(s)   >(is)  >(f)  

(p)   >(is)  > (f) 

(p)   >(is)  >(s)

t4

Fig. 2. Possible regimes of the system and transitions according to the phase.

One of the following scenarios must take place for a motion, starting with no-
contact regime.

(1) Scenario A: (f) → (fp) → (p) → (is) → (f). This happens if the motion
with progression stops at t ∈ [t2 + 2πk, t3 + 2πk).

(2) Scenario B: (f) → (fp) → (p) → (is) → (s) → (is) → (f) – motion with
progression stops at t ∈ [t1 + 2πk, t2 + 2πk).

(3) Scenario C:

(f) → (fp) → (p) → (is) → (s) → (is) → (p) → (is) → (s) → (is) → (f).

In this case the first motion with progression stops at one of segments
[t3+2πk, t0+2π(k+1)) and a new progression starts at t0+2π(k+1)) with
initial velocity equal to zero. Parameters of the system must be selected
so that this second progression stops before t2 + 2π(k + 1) otherwise the
next scenario is observed

(4) Scenario D:

(f) → (fp) → (p) → (is) → (s) → (is) → (p) → (is) → (. . .).

Here (. . .) implies any sequence of regimes except (s) → (is) → (f),
corresponding to Scenario C.

Also, there are two degenerate scenarios, corresponding to a zero-velocity stop
of the free motion corresponding to t = t3 + 2πk:

(1) Scenario C’:

(f) → (is) → (s) → (is) → (p) → (is) → (s) → (is) → (f);

(2) Scenario D’:

(f) → (is) → (s) → (is) → (p) → (is) → (. . .).

6

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Here we omit all possible instantaneous stops after which the motion returns to
the same regime. This does not hurt to equations of motion. However, such stops
play an important role since they correspond to discontinuities of stroboscopic
mappings. Later on (Section 4) we study them more carefully.

Lemma 1.There exists a b0(q) > 0 such that if b < b0(q) the following statement
is true. Starting progression at the point t0 with an initial velocity equal to zero,
the motion must stop at the instant t4 ∈ [t1, t2]. Consequently, Scenarios D and
D’ are impossible for such motions.

Proof. If x(t) is a solution of Eq. (4) with ẋ(t0) = 0, we have

ẋ(t2) = −a cos t2 + a cos t0 + 2c(t2 − t0). (8)

In order to prove that this ẋ(t) vanishes somewhere at [t0, t2) it suffices to prove
that the right hand side of Eq. (8) is negative. Instead of this one could prove
that

a+ a cos t0 − (q − 2b)(π − t0) < 0.

Here we replaced t2 with π in (8) and respected the fact that 2c = 2b− q. If we
demonstrate for a fixed q that

a + a cos t0 − q(π − t0) < a(1 + cos t0 − sin t0(π − t0)) < 0. (9)

then there exists a b0(q) > 0 such that if b < b0(q) then the estimate (8) is true.

The second of inequalities (9) is equivalent to the following one: cot(t0/2) <
π − t0 which is true if t0 > ϑ0 (see Eq. (1)) or, equivalently if q > sinϑ0a. !

So, wherever and whenever the motion starts, finally, it has a transition to a
free motion via an instantaneous stop.

Take an initial instant θ ∈ [t2, t3) of such transition. There we have θ ∈ [t2, t3],
x(θ) = y(θ) (without loss of generality, we may assume that this value is zero)
and

ẋ(θ) = ẏ(θ) = 0 (10)

Then the value θ uniquely defines the farther dynamics.

If θ ∈ [t2, t3), initially the mass is moving in free regime and, after several
transitions, switches to free regime once again. Let T̂ (θ) > θ be the first moment
of such switching, T (θ) = T̂ (θ) mod 2π. Both these values are uniquely defined
by θ.

So, we may consider the 1D mapping T : [t2, t3) " which is, generally speaking,
discontinuous. Considering this mapping only, we lose some information about
initial dynamical system, for instance, we do not know any more how the
delimiter is shifted.
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4. Next hit mapping.

Let us introduce an auxiliary mapping T1 : [t2, t3) → R. Let θ ∈ [t2, t3). For
θ ∈ [t2, t3) we consider a motion with initial conditions (10) and take θ1 > θ,
the first instant when the mass hits the delimiter again. Set T1(θ) = θ1. Note
that the image of T1 is an instant, not phase, so it can be greater than 2π.

The value θ1 corresponds to the first zero of the equation

G1(θ, t) := b(t− θ)2 − a sin t+ a cos θ(t− θ) + a sin θ = 0. (11)

satisfying the condition t > θ. We rewrite this equation in the form

b

a
(t− θ)2 = sin t− cos θ(t− θ)− sin θ. (12)

The left hand side of Eq. (12) is always positive and proportional to the small
parameter b/a. The right hand side is initially positive and grows faster than the
left hand side (both first derivatives vanish for t = θ, but the second derivative
of the right hand side is greater since sin θ ≤ −b/a < 0).

Geometrically, the right hand side of (12) is the distance between the graph
of sine function and the tangent line to it, drawn at θ. If θ ∈ (3π/2, 2π) i.e.
cos θ > 0, the graph and its tangent line intersect once again on (θ,+∞) and,
therefore θ1 − θ < 2π. Otherwise, they do not intersect and, for small b, there
exists a constant C > 0 which does not depend on θ and is such that

θ1 − θ ≥
Ca

b
cos θ. (13)

The mapping T1 is, in general, discontinuous. All possible discontinuities cor-
respond to the case when θ1 is not a simple zero of (11). In this case derivative
∂G1/∂t vanishes for t = θ1 which means that the following condition is satisfied

−a cos θ1+2b(θ1−θ)+a cos θ = a

(

2
sin θ1 − sin θ

θ1 − θ
− cos θ − cos θ1

)

= 0. (14)

5. Points of discontinuity.

Lemma 2. The intersection of the set of discontinuity points of the mapping
T1 with the segment L0 = [101π/100, 3π/2] is finite.
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Proof. Take b/a so small that t2 < 101π/100. Note that if

θ1 < θ2, θ1,2 ∈ L0, (15)

then T1(θ1) > T1(θ2). Indeed, the derivative ∂G1/∂θ of the function G1 defined
by Eq. (11) equals to

− (2b+ a sin θ) (t− θ)

and is positive if θ ∈ (t2, t3) and t > θ. If θ1 and θ2 satisfy (15) and t1 is such
that G1(θ1, t1) = 0 then G1(θ2, t1) > 0 and the function G1(θ2, t), negative in
a right neighborhood of t = θ2 must have a zero on (θ2, t1).

So the function T1 is monotonous. Note that if θ1 ∈ L0 is a point of discontinuity
of T1 and t1 = T1(θ1) then

d2G1

dt2
(θ1, t1) = 2b+ a sin t1.

It follows from Eq. (14) that for any discontinuity points θ of the mapping T1

we must have
cos θ1 = − cos θ +O((θ1 − θ)−1). (16)

So, the there exists ρ > 0 such that the absolute value of second derivative of
the function G1(·, θ1) is greater than ρ. Consequently, distance between t1 and
the next zero of G(θ1, ·) that is ”jump” T1(θ1 − 0)− T1(θ1 + 0) is greater than
a fixed positive value. This proves that the number of discontinuity points on
L0 is finite. !

Grace to Eq. (13) and (16) we may take b/a so small that θ ∈ [t2, 5π/4] then
θ1 = T (θ) ∈ [3π/2, t3].

In non-degenerate scenarios ((A)–(C)) at the moment t = θ1 progression regime
starts. The initial velocity of the motion is x1 = −a cos θ1+2b(θ1−θ)+a cos θ.
The dynamics of this velocity is described by the formula ẋ(t) = x1 + 2c(t −
θ1)− a cos t+ a cos θ1. The progression regime stops as soon as this derivative
becomes negative and the next transition θ2 to free flight or to the stop may
be found from equations

G2(θ, θ1, θ2) := 2b(θ1 − θ) + a cos θ + 2c(θ2 − θ1)− a cos θ2 = 0. (17)

Lemma 3. The map T is such that T (θ) = θ2 mod 2π if θ2 mod 2π ∈ [t2, t3).
Otherwise, a motion with stop has been observed (Scenarios B and C) and
T (θ) = t2.

Proof. If θ2 ∈ [t2, t3) then a motion, starting near the delimiter with the
velocity, equal to zero, corresponds to the free regime, so T = θ2. If θ2 ∈ [t3, t0],
the mass stops until the instant t0 then starts moving in progression regime
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until t = t4 (see Lemma 1), stops until t2 and proceeds to a free regime. If
θ2 ∈ [t1, t2) the motion stops until t = t2 and also proceeds to the free regime.
Since θ2 cannot belong to (t0, t1), we obtain the statement of lemma. !

To finish our proof, we need the following lemma.

Lemma 4. There exist two disjoint subsegments J0 and J1 of the segment
[t2, 3π/2] such that

T (Ji) ⊃ [t2, 3π/2] (18)

and T is continuous on both segments Ji.

Remark. We may claim without loss of generality that T (Ji) = [t2, 3π/2].

Proof. Let L1 be the arc [197π/100, t3] of the unit circle and L2 be the arc

[101π/100, 51π/50].

The first arc is correctly defined if the ratio b/a is sufficiently small.

Let θ ∈ L1. Consider the solution x(t) such that x(θ) = y(θ) = 0, ẋ(θ) = 0.
Then, direct calculations show that for b = 0, the considered solution starts
from freemotion and then stops after motion with progression before t = t0+2π.
So, ẋ(t0 + 2π) = 0. Due to continuous dependence of the solution on the
parameter b, the same is true provided the ratio b/a is sufficiently small. In this
case, as we have already proved T (θ) = t2.

Let z1 < z2 < ... < zn (n ≥ 0) be discontinuity points of the map T1 inside the
interval L2. Denote z0 = 101π/100, zn+1 = 51π/50.

Suppose that n < 3. Then there exists i ∈ {0, . . . , n} such that there is a
subsegment I ⊂ (zi, zi+1) of the length not less than π/500. Let θ ∈ I, θ1 =
T1(θ).

It follows from Eq. (12) that

θ1 − θ =
a

b

(

− cos θ +
sin θ1 − sin θ

θ1 − θ

)

.

Consequently, if b/a is sufficiently small, the derivative ∂θ1/∂θ is big on I and
values

{θ1 mod 2π : θ ∈ I}

cover [0, 2π). Since T1 is continuous on I, due to (14) we have

2
sin θ1 − sin θ

θ1 − θ
− (cos θ1 + cos θ) ,= 0 (19)
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everywhere on I. However, due to Eq. (13), the maximum of the left hand side
of inequality (19) is positive while the minimum is negative. So this inequality
cannot hold true everywhere.

So, n ≥ 3. Then it suffices to prove that T ([zi, zi+1)) ⊃ [t2, 3π/2] for all i =
1, . . . , n − 1. Note that estimate (16) implies that T1(zi) > 3π/2 if b/a is
small. Since ẋ(T1(zi)) = 0, the corresponding motion proceeds to the free flight
immediately after t = T1(zi) and, consequently, T (zi) = T1(zi) ∈ L1.

On the other hand, T1(θ) −→ T1(T1(zi+1)) as θ −→ zi+1 − 0 (in the limit
case, we have a motion, which touches the delimiter with zero velocity). Since
T1(zi+1) ∈ L1 the corresponding motion is in the stop regime for t = t0 + 2π
and, consequently, T (θ) = t2 for all θ from a left neighborhood of zi+1. This
finishes the proof. !

6. Infinite set of periodic points.

So, for the mapping T we have obtained two disjoint segments J0 and J1 which
are subsets of the arc [t2, 2π/2] of the unit circle such that for both i = 0, 1
mappings T |Ji are continuous and T (Ji) ⊃ J0

⋃
J1. Let us prove that for any

m ∈ N the mapping T has a point of the minimal period m.

Take a sequence {σk ∈ {0, 1} : k ∈ Z+}. First of all, we note that there exists
a point p ∈ Jσ0

such that
T k(p) ∈ Jσk

(20)

for any k ∈ N.

There exists a segment Jσ0σ1
⊂ Jσ0

such that T (Jσ0σ1
) = Jσ1

. Then, we may
find a segment Jσ0σ1σ2

⊂ Jσ0σ1
such that T 2(Jσ0σ1σ2

) = Jσ2
. Repeating this

procedure, we obtain a nested sequence of segments

Jσ0
⊃ Jσ0σ1

⊃ Jσ0σ1σ2
⊃ . . .

The corresponding intersection is non-empty and, consequently, contains a
desired point p which may be non-unique.

Fix a number m and consider the sequence σ, obtained by infinite repetition
of a finite sequence 0, . . . , 0, 1 of the length m. Let I = J0...01 (see above).
Then I ⊂ Tm(I) and the mapping Tm is continuous on this segment. Applying
Weierstrass principle to the continuous function Tm(x)− x on the segment I,
we obtain a periodic point. Clearly, this point cannot be one of a lower period.

7. Symbolical patterns.

Inclusion (18) implies more than just existence of infinite set of periodic points.
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Here we demonstrate that the reduction of the map T to the union J0
⋃
J1

is topologically semi-conjugated to the shift of one-side sequences of boolean
values.

Let
Σ = {σ = {σk ∈ {0, 1} : k ∈ Z+}}.

Introduce the metrics d on the set Σ by the formula

d(σ, ς) =
∞∑

k=0

2−k|σk − ςk|.

Let J be the set of all points p ∈ J0
⋃
J1 such that T k(p) ∈ J0

⋃
J1 for all k ∈ N.

Clearly, this set is non-empty and compact. For any p ∈ J we may introduce the
sequence H(p) = {σk} ∈ Σ where values σk are uniquely defined by Eq. (20).

The map H : J → Σ is continuous since all iterations of the map T |J are
continuous. If S is the left shift of sequences of Σ, defined by the formula

S(σ) = ς ⇔ ςk = σk+1 ∀k ∈ Z+

the maps T |J and S are semi-conjugated:

H ◦ T |J = S ◦H.

8. Superstable fixed points.

Here we discuss sufficient conditions for existence of a stable fixed point of the
map T . Namely, this will be the point t2.

Take T1(t2) > t2 i.e. the the first zero of the equation

G1(t2, t) = 0

which is a particular case of Eq. (11) and θ2(t2) > θ1 is the first zero of the
equation

G2(t2, T1(t2), t) = 0

which is a particular case of Eq. (17).

Let one of inclusions
θ2(t2) mod 2π ∈ (t1, t2) (21)

or
θ2(t2) mod 2π ∈ (t3, 2π)

⋃
[0, t0) (22)
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be satisfied. Then, due to Lemma 3 there exists ε > 0 such that T ([t2, t2 +
ε)) = {t2} which means that the point t2 is a superstable fixed point of T ; a
neighborhood of this point in [t2, t3) is mapped to t2.

Due to Implicit Function Theorem conditions (21) and (22) are robust with re-
spect to small variations of parameters of the considered system if the following
conditions are satisfied:

∂G1

∂θ
(t2, θ)|θ=T1(t2) ,= 0;

∂G1

∂θ
(t2, T1(t2), θ)|θ=θ2(t2) ,= 0

Remark. If inclusion (21) is true, we do not need to assume that q > a sinϑ0

(see Eq. (2)). Moreover, we do not need the ratio b/a to be small in both cases.
We need weaker assumptions

a > 0, b > 0, q ∈ (0, a) (23)

instead.

The obtained superstable periodic solution may coexist with the chaotic in-
variant set, described in previous sections.

9. Conclusion.

Let us formulate principle results of the paper as theorems. Recall that the
external force F (t) equals a sin t+ 2b, t2 and t3 are zeros of F (t) inside [0, 2π),
q ∈ (0, a+2b) is the maximal value of the dry friction force, t0 and t1 are zeros
of F (t)− q.

Theorem 1. For all a and q, satisfying inequalities (2) there exists a b0 =
b0(a, q) > 0 such that for all b ∈ (0, b0) the mechanical system, described by
equations (3), (4) and (5) is chaotic in the following sense. The phase of transi-
tion to free motion uniquely defines the phase of the next transition. This defines
a discontinuous mapping T from the segment [t2, t3) into itself. There exist two
disjoint segments J0 and J1 of the segment [t2, 3π/2] such that T (Ji) ⊃ [t2, 3π/2]
and T is continuous on both segments Ji. Particularly, there exists an infinite
set P of periodic points of the mapping T . Minimal periods of points of P are
unbounded. Moreover, there exists a compact subset J ⊂ J0

⋃
J1 such that the

map T |J is continuously semi-conjugated with one-sided symbolic dynamics.

Theorem 2. Let inequalities (2) and (22) or inequalities (21) and (23) be
satisfied. Then the point t2 is superstable i.e. there exists ε > 0 such that
T ([t2, t2 + ε) = {t2}.

Remark. We always assumed that b < a/2. If this is not true, any motion
eventually does not have free regimes. Then we cannot define map T . However,
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in this case the dynamics of the considered system is very simple. If q ≥ a+2b
any solution eventually resides in the stop regime. If q ≤ 2b there exists an
instant when an ”eternal” motion with progression starts. If q ∈ (2b − a, a +
2b) any motion eventually behaves in one of following ways (depending on
parameters of the system but not on initial conditions): either it always moves
with progression or motion with progression starting at t0+2πk (k ∈ Z) stops
somewhere between t1 +2πk and t0 +2π(k+1), then motion with progression
starts at t0 + 2π(k + 1) and so on.

10. Discussion and plans.

First of all, let us note that the obtained chaotic dynamics is robust. Of course,
we cannot say anything about stability of points of the set P . Every particular
point of this set may appear or disappear if we slightly change parameters a,
b and q. The cardinality of the set P may be continuum for some values of
parameters, while this set is countable for other values. Neither, the method
we offer does not specify the topological structure of the set P and one of its
closure.

However, we can select a family of segments J0 and J1 from the statement
of Theorem 1 so that boundary points of these segments locally continuously
depend on parameters a, b and q. This can be proved similarly to Lemma 2. The
fact of presence of the one dimensional turbulence in the considered system is
robust. The same is true for the fact of existence of an infinite set P . Moreover,
for all fixed values a, b and q, satisfying inequalities (2), there exists an ε > 0
such that for any C2 function

G(t, x, ẋ) : S1 × R
2 → R

such that

|G(t, x, ẋ)| < ε,

∣∣∣∣∣
∂G

∂(t, x, ẋ)

∣∣∣∣∣ < ε

for all t, x and ẋ an analog of Theorem 1 is true for the system, where equation
(3) is replaced with

ẍ = F (t) +G(t, x, ẋ); ẏ = 0,

equation (4) is replaced with

ẍ = F (t) +G(t, x, ẋ)− q; ẏ = 0.

and equation (5) is the same.

Particularly, the presence of the considered chaotic dynamics must be observed
in simulations and experiments. However, in this paper, we are not going to
study the general case. We just offer a method how a non-classical chaos may be
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found. We plan to use this methods for more general systems with a dry friction
(see [18] as an example) and provide for these ”real life systems” theoretical
results accompanied with simulations and experimental data.

Acknowledgements. This second author was supported in part by Rus-
sian Foundation for Basic Researches, grant 12-01-00275-a, by Centre for Re-
search and by FEDER funds through COMPETE Operational Programme
Factors of Competitiveness (Programa Operacional Factores de Competitivi-
dade) and by Portuguese funds through the Center for Research and Devel-
opment in Mathematics and Applications and the Portuguese Foundation for
Science and Technology (FCT − Fundação para a Ciência e a Tecnologia),
within project PEst-C/MAT/UI4106/2011 with COMPETE number FCOMP-
01-0124-FEDER-022690. Authors are grateful to Prof. Ron Chen for his pre-
cious remarks.

References

[1] di Bernardo M, Budd ChJ, Champneys AR, Kowalczyk P, Nordmark AB, Tost
GO, Piiroinen PT (2008) Bifurcations in Nonsmooth Dynamical Systems. SIAM
Review 50:629 – 701

[2] di Bernardo M, Kowalczyk P, Nordmark AB (2003) Sliding bifurcations: a novel
mechanism for a sudden onset of chaos in dry friction oscillators. International
Journal of Bifurcation and Chaos 13:2935 - 2948

[3] Blazejczyk-Okolewska B, Kapitanak T (1996) Dynamics of Impact Oscillator
with Dry Friction. Chaos, Solitons and Fractals 7:1455 – 1459

[4] Csernák G, Stépán G, Shaw SW (2007) Sub-harmonic resonant solutions of a
harmonically excited dry friction oscillator. Nonlinear Dynamics 50:93 – 109

[5] Feeny B, Moon FC (1994) Chaos in a Forced Dry-Friction Oscillator:
Experiments and Numerical Modelling. Journal of Sound and Vibration, 170:303
- 323

[6] Krivtsov AM, Wiercigroch M (1999) Dry Friction Model of Percussive Drilling.
Meccanica 34:425 – 434

[7] Krivtsov AM, Wiercigroch M (2000) Penetration Rate Prediction for Percussive
Drilling via Dry Friction Model. Chaos, Solitons and Fractals, 11:2479 – 2485

[8] Kowalczyk P, Piiroinen PT (2008) Two-parameter sliding bifurcations of
periodic solutions in a dry-friction oscillator. Physica D: Nonlinear Phenomena
237:1053 – 1073

[9] Makarenkov O, Lamb JSW (2012) Dynamics and bifurcations of nonsmooth
systems: A survey. Physica D: Nonlinear Phenomena 241:1826 – 1844

15

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl
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