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Abstract 
 
Membranes, as the primary separation element of membrane-based processes, have greatly 

attracted the attention of researchers in several water treatment applications, including wastewater 

treatment, water purification, water disinfection, toxic and non-toxic chemical molecules, heavy 

metals, among others. Today, the removal of heavy metals from water has become challenging, in 

which chemical engineers are approaching new materials in membrane technologies. Therefore, 

the current review elucidates the progress of using different concepts of membranes and potential 

novel materials for such separations, identifying that polymeric membranes can exhibit a removal 

efficiency from 77 up to 99%; while novel nanocomposite membranes are able to offer a complete 

removal of heavy metals (up to 100%), together with unprecedented permeation rates (from 80 up 

to 1, 300 L m-2 h-1). Thereby, the review also addresses the highlighted literature survey of using 

polymeric and nanocomposite membranes for heavy metal removal, highlighting the relevant 

insights and denoted metal uptake mechanisms. Moreover, it gives up-to-date information related to 

those novel nanocomposite materials and their contribution to heavy metals separation. Finally, the 

concluding remarks, future perspectives, and strategies for new researchers in the field are given 

according to the recent findings of this comprehensive review. 

 

 
Keywords: Heavy metals; water treatment; membrane-based technologies, water 
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Response to Reviewers’ comments 

 

 

Chemosphere 

Ms. Ref. No.: CHEM78274R1 

 

Dear Editor, 

Please find enclosed the revised manuscript “Ongoing progress on novel nanocomposite membranes 

for the separation of heavy metals from contaminated water”, by Roberto Castro-Muñoz*, Luisa Loreti 

González-Melgoza, Octavio García-Depraect for publication in Chemosphere as review paper.  

We thank the reviewers and editor for their careful and thoughtful comments on our draft. We have 

carefully taken their comments into consideration in preparing our revision, which has resulted in a paper that 

is clearer and more compelling. Below are our responses to the comments raised by both the Editor and 

Reviewers, which are highlighted in yellow color.  

 

In any event, thanks in advance for your kind consideration. I look forward to hearing from you soon. 

Yours sincerely, 

 

Roberto Castro-Muñoz 

 

 

 

 

 

 

 

 

 

 

 

Response to reviewers/editor in question & answer format (word
file)



Comments from the editors and reviewers: 

-Reviewer #4: 

Specific remark 1 
 

1) Introduction lacks of state of the art applied in the field and the NOVELTY of "novel 

nanocomposite membranes", 

Response: We thank the reviewer for her/his effort revising our manuscript and hope to be able to 

improve it by following her/his remarks.  The state-of-art in the field, as well as novel composite 

materials, are included in revised manuscript: 

On lines 146-154…As a current trend in the field of development of new membrane materials, the 

merging of both materials to produce nanocomposite membranes is also a promising tool for the 

efficient removal of heavy metals. However, there is a lack of reviewing the progress and latest 

nanocomposite membrane concepts and their role in water treatment and separation of heavy metals. 

Very recently, novel breakthroughs in tailoring nanocomposite materials have been released, such 

as nanoscale zerovalent iron impregnated biochar entrapped in calcium-alginate matrix (Wan et al., 

2019), MnO2/chitosan (Dinh et al., 2020), core-shell structured nanocomposite of zero-valent iron 

with carbon (Zhou et al. 2020), Fe3O4/GO composite introduced into graphitic carbon nitride g-

C3N4 (Dai et al., 2020), to mention just a few of them.   

References: 

Zhou, N., Gong, K., Hu, Q., Cheng, X., Zhou, J., Dong, M., … Guo, Z. (2020). Optimizing nanocarbon shell in zero-valent 

iron nanoparticles for improved electron utilization in Cr(VI) reduction. Chemosphere, 242, 125235. 

Wan, Z., Cho, D. W., Tsang, D. C. W., Li, M., Sun, T., & Verpoort, F. (2019). Concurrent adsorption and micro-

electrolysis of Cr(VI) by nanoscale zerovalent iron/biochar/Ca-alginate composite. Environmental Pollution, 247, 410–

420. https://doi.org/10.1016/j.envpol.2019.01.047 

Dinh, V. P., Nguyen, M. D., Nguyen, Q. H., Do, T. T. T., Luu, T. T., Luu, A. T., … Tan, L. V. (2020). Chitosan-MnO2 

nanocomposite for effective removal of Cr (VI) from aqueous solution. Chemosphere, 257, 127147. 

https://doi.org/10.1016/j.chemosphere.2020.127147 

Dai, Z., Sun, Y., Zhang, H., Ding, D., & Li, L. (2020). Photocatalytic reduction of U(VI) in wastewater by mGO/g-C3N4 

nanocomposite under visible LED light irradiation. Chemosphere, 254, 3–9. 

https://doi.org/10.1016/j.chemosphere.2020.126671 

 

 

Specific remark 2 
 

2) More feedback concerning emerging membrane technologies (FULL SCALE) is required, 

especially for resource recovery. 

Response: We thank the reviewer for the comment. We added a feedback on emerging membrane 

technologies used at a large scale for resource recovery, as follows: 
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On lines 105-109… Membranes are involved in various prominent large-scale advanced treatment 

approaches applied worldwide for artificial groundwater recharge, indirect potable reuse, and 

industrial process-water production. Particularly, ultrafiltration, nanofiltration and reverse osmosis 

are among the emerging membrane technologies used at a large-scale for resource recovery (i.e. 

water) from wastewater treatment plants (Kehrein et al., 2020). 

References: 

Kehrein, P., van Loosdrecht, M., Osseweijer, P., Garfi, M., Dewulf, J., Posada, J. (2020). A critical review of resource 

recovery from municipal wastewater treatment plants – market supply potentials, technologies and bottlenecks. 

Enviromental Science Water Research & Technology, 6, 877-910. 

 

Specific remark 3 
 

3) Discussion could include more comparisons with the results of relevant studies. 

Response: We thank the reviewer for the comment. More discussion has been added including new 

relevant studies, as follows: 

On lines 644-665… Most of the nanocomposite materials and membranes tend to display impressive 

metal ion uptake, and more importantly, some composites can concurrently remove more than one 

type of ion. However, to core the complete resource recovery (i.e. water), it is important to consider 

the synthesis of nanocomposite membranes which may offer the simultaneous removal of heavy metal 

ions and organic contaminants, e.g. Zhang et al. (2020) developed composite membranes filling 

polydopamine-coated ferric oxide (Fe3O4@PDA) in PES. In addition to the higher permeabilities of 

the composite membranes (e.g. over 2600 L/m2 h bar corresponding to 20wt.% Fe3O4@PDA PES 

membrane) compared to the pristine PES, the composites achieved competitive adsorptive removal 

of Pb2+ and catalytic degradation of methylene blue, e.g. acceptable Pb2+ removal efficiency (above 

80%) together with high methylene blue degradation (above 90%). In this case of study, the authors 

strategically designed the composite to display a synergistic effect. For example, the phenolic hydroxy 

and amino groups on the surface of PDA were able to chelate the cations to promote the adsorption 

of heavy metal ions, while the electron transfer in the Fenton-like reaction was promoted due to the 

phenoquinone structure of the surface of the PDA, boosting the catalytic reaction.  With a similar 

scope, Fan et al. (2019) documented the simultaneous and rapid removal of organic micropollutants 

(bisphenol) and metal ions (Pb2+) using an electrospun β-cyclodextrin/chitosan/polyvinyl alcohol 

nanofibers. These novel nanocomposites exhibited a large number of adsorption sites, e.g. the 

cyclodextrin owed a featured molecule structure with a hydrophilic outer surface and hydrophobic 

inner cavity for binding organic contaminants while chitosan has plenty of hydroxyl and amino 

groups to form complex with metal ions and thus remove them. Both authors concluded that their 

nanocomposites represent a new pathway to deal with hard-to-be-treated wastewaters (e.g. paper 

making, leather, textile, etc.) 

References: 

Fan, J., Luo, J., Zhang, X., Zhen, B., Dong, C., Li, Y., Shen, J., Cheng, Y., Chen, H. (2019). A novel electrospun β-

CD/CS/PVA nanofiber membrane for simultaneous and rapid removal of organic micropollutants and heavy metal ions 

from water. Chemical Engineering Journal, 378, 122232. 

Zhang, L., Liu, Z., Zhou, X., Zhang, C., Cai, Q., Xie, R., Ju, X., Wang, W., Faraj, Y., Chu, L. (2020). Novel composite 

membranes for simultaneous catalytic degradation of organic contaminants and adsorption of heavy metal ions. 

Separation and Purification Technology, 237, 116364. 
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Guest editors comments: 
 

- Kindly check the formatting, spacing and spelling mistakes and please submit within the next 15 

days so that a final decision can be taken by the editors. 

Response: We thank the editor for the comment. We have carefully double checked the grammar 

over the revised manuscript, fixing all spacing and spelling mistakes. 
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Abstract  26 

Membranes, as the primary separation element of membrane-based processes, have greatly 27 

attracted the attention of researchers in several water treatment applications, including wastewater 28 

treatment, water purification, water disinfection, toxic and non-toxic chemical molecules, heavy 29 

metals, among others. Today, the removal of heavy metals from water has become challenging, in 30 

which chemical engineers are approaching new materials in membrane technologies. Therefore, 31 

the current review elucidates the progress of using different concepts of membranes and potential 32 

novel materials for such separations, identifying that polymeric membranes can exhibit a removal 33 

efficiency from 77 up to 99%; while novel nanocomposite membranes are able to offer complete 34 

removal of heavy metals (up to 100%), together with unprecedented permeation rates (from 80 up 35 

to 1, 300 L m-2 h-1). Thereby, the review also addresses the highlighted literature survey of using 36 

polymeric and nanocomposite membranes for heavy metal removal, highlighting the relevant 37 

insights and denoted metal uptake mechanisms. Moreover, it gives up-to-date information related 38 

to those novel nanocomposite materials and their contribution to heavy metals separation. Finally, 39 

the concluding remarks, future perspectives, and strategies for new researchers in the field are 40 

given according to the recent findings of this comprehensive review. 41 

 42 

Keywords 43 

Heavy metals; water treatment; membrane-based technologies, water purification, novel composite 44 

materials. 45 

 46 

Abbreviations: 47 

Ag: silver 48 

As: Arsenic 49 

APTS: 3-Aminopropyltriethoxysilane  50 
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CA: Cellulose acetate 51 

Cd: Cadmium 52 

CNT: Carbon Nanotubes  53 

Co: Cobalt 54 

Cr: Chromium 55 

Cu: copper 56 

DCMD: Direct contact membrane distillation 57 

ESPM: Polymer Mixed e-spinning Membranes 58 

Fe: Iron 59 

f-GO: functionalized Graphene Oxide 60 

GO: Graphene Oxide 61 

IPDI: Isophorone diisocyanate  62 

MD: Membrane distillation 63 

MF: Microfiltration 64 

MMGO: Modified magnetic Graphene Oxide 65 

MMM: Mixed Matrix Membranes  66 

MOF: Metal-Organic Frameworks 67 

MWCNT: Multi-walled carbon nanotubes 68 

NF: Nanofiltration 69 

Ni: Nickel 70 

NPs: Nanoparticles 71 

nZVI: nano– Zero Valent Iron 72 

PAH: Poly[styrene-alt-(N-4-benzoylglycine-maleamic acid)] cumene terminated 73 

PAN: Polyacrylonitrile 74 
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PBI: Polybenzimidazole 75 

PES: Polyethersulfone 76 

PMVEMA: Poly(methyl vinyl ether-alt-maleic acid) 77 

POSS: Polyhedral Oligomeric Silsesquioxane 78 

PSF: Polysulfone 79 

PSS: Poly(sodium 4-styrenesulfonate) 80 

PV: Pervaporation 81 

PVA: Polyvinyl alcohol 82 

PVP: Polyvinylpyrrolidone 83 

PVDF: Polyvinylidine fluoride 84 

RO: Reverse Osmosis 85 

TCE: Trichloroethylene 86 

UF: Ultrafiltration 87 

VFM: Vacuum filtered nembranes 88 

ZIF: Zeolite imidazolate framework 89 

 90 

 91 

 92 

1. Introduction  93 

The removal of pollutants (including metal ions) from water has been approached using several 94 

traditional treatments and protocols, such as chemical precipitation (Chabot et al., 2014), microbial 95 

decomposition (Yang et al., 2016), and physical adsorption (Kumar et al., 2013). Inherently, these 96 

pollutants represent strong issues to the environment (i.e. plants, animals, ecology climate) and 97 

humans. However, the removal of heavy metals through conventional protocols (such as flotation, 98 

chemical precipitation, ion exchange, adsorption, and electrochemical deposition) is still 99 
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challenging, requiring further efforts to circumvent the production of a high amount of toxic sludge 100 

and liquid waste, long time consumption, and extreme use of supplies (e.g. solvents, resins, among 101 

others), together with poor separation efficiency.  102 

Currently, according to the scarcity of drinking water and the increasingly serious water pollution 103 

(Marousek et al., 2019), water treatment with membrane-based processes has potentially attracted 104 

the attention of the research community. Membranes are involved in various prominent large-scale 105 

advanced treatment approaches applied worldwide for artificial groundwater recharge, indirect 106 

potable reuse, and industrial process-water production. Particularly, ultrafiltration, nanofiltration 107 

and reverse osmosis are among the emerging membrane technologies used at a large-scale for 108 

resource recovery (i.e. water) from wastewater treatment plants (Kehrein et al., 2020). To date, 109 

polymeric membranes are likely the most used membranes for water treatment applications 110 

(Castro-Muñoz et al., 2018a), including treatment of agro-food wastes (Castro-Muñoz et al., 2016), 111 

textile (Chao et al., 2016), petroleum industry streams (Alzahrani and Wahab, 2014), acid mine 112 

waters (Lopez et al., 2019), and seawater desalination (Castro-Muñoz, 2020a). Membranes are 113 

capable to separate the compounds from aqueous streams and thus reduce the contaminants 114 

contained in wastewater (Castro-Muñoz et al., 2018b). Extensive sources and a large number of 115 

molecules, as well as ions contained in polluted water, challenge the effective purification and 116 

separation of water by membranes. The membranes, based on their intrinsic properties, can be 117 

implemented among different types of membrane-based technologies including pressure-driven 118 

membrane processes, such as Microfiltration (MF), Ultrafiltration (UF), Nanofiltration (NF) and 119 

Reverse osmosis (RO). These are potentially recognized as excellent candidates for the removal 120 

of large amounts of organic macropollutants; in which NF and RO membranes are among the 121 

barriers with the highest efficiency in withdrawing micropollutants (Castro-Muñoz et al., 2017). 122 

Other membrane technologies, e.g. membrane distillation (MD) (Criscuoli and Carnevale, 2015), 123 
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membrane bioreactors (Santos and Judd, 2010), membrane contactors (Bey et al., 2010), have also 124 

been proven to remove specific heavy metal ions, such as arsenic (As), fluoride (F) and uranium 125 

(U). In particular, As is a natural tasteless and odorless element that may be highly toxic to humans 126 

exposed to it from air, food and water. It is known that this element exists in the earth’s crust at 127 

average levels between 2000–5000 µg per kg (Figoli et al., 2010). 128 

In this way, membranes have shown to be efficient in removing different metal ions (e.g. Cd2+, 129 

Pb2+, Ni2+, Cu2+, Al2+, Co2+, Zn2+, Mn2+, Cr4+) from water streams. A large number of studies has 130 

been now devoted to the manufacture of synthetic membranes for these particular separations, 131 

demonstrating compelling benefits, such as permeability, selectivity, enhanced chemical and 132 

physical properties within the removal of metal ions. When dealing with the removal efficiency of 133 

such membranes, the material properties, including chemical, physical, mechanical, play an 134 

important role in their efficiency, but also the membrane preparation protocols are crucial. In this 135 

context, several techniques have been used in membrane manufacture, such as stretching, track-136 

etching, sintering, electrospinning, phase inversion (Lalia et al., 2013), and interfacial 137 

polymerization (Peydayesh et al., 2018), in which plenty of organic and inorganic materials have 138 

been proposed and used in tailoring membranes (Castro-Muñoz et al. 2020). Polymers have been 139 

the most used organic materials in membrane preparation, followed by the inorganic ones (e.g. 140 

ceramics, metals and glass) (Ulbricht, 2006). Polymer membranes tend to present great design 141 

flexibility, while the advantages of inorganic membranes, e.g. ceramic membranes, compared with 142 

polymeric ones comprise their higher thermal, mechanical and chemical stability (Castro-Muñoz 143 

et al. 2018c). Also, the hydrophilicity and the surface charge in ceramic membranes are higher. 144 

Ceramic membranes can also be operated under extreme conditions of pH, temperature and high 145 

oxidizing environment (Yong et al., 2013). As a current trend in the field of development of new 146 

membrane materials, the merging of both materials to produce nanocomposite membranes is also 147 
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a promising tool for the efficient removal of heavy metals. However, there is a lack of reviewing 148 

the progress and latest nanocomposite membrane concepts and their role in water treatment and 149 

separation of heavy metals. Very recently, novel breakthroughs in tailoring nanocomposite 150 

materials have been released, such as nanoscale zerovalent iron impregnated biochar entrapped in 151 

calcium-alginate matrix (Wan et al., 2019), MnO2/chitosan (Dinh et al., 2020), core-shell 152 

structured nanocomposite of zero-valent iron with carbon (Zhou et al. 2020), Fe3O4/GO composite 153 

introduced into graphitic carbon nitride g-C3N4 (Dai et al., 2020), to mention just a few of them.  154 

Thereby, this review paper aims at providing the ongoing progress of using different concepts of 155 

membranes (polymeric, composite and nanocomposite) and potential novel materials for removing 156 

heavy metals. Herein, a highlighted literature survey of using polymeric and nanocomposite 157 

membranes for heavy metal removal from water is provided. Ultimately, the current advances and 158 

future trends of nanocomposite membranes in the field are also given. 159 

 160 

2. Metal ions removal using pristine polymeric and chemically modified polymeric 161 

membranes  162 

Polymers are probably the most widely applied membrane material for wastewater treatment. Due 163 

to their advantages including facile pore-forming mechanism, low cost and high flexibility (Yong 164 

et al., 2013), polymers are leading as the main material for membrane manufacture for different 165 

membrane-based technologies, such as electrodialysis, UF, NF and RO. Experimentally, 166 

polymeric membranes can remove different types of contaminants, such as organic matter, organic 167 

and inorganic compounds (e.g. heavy metal ions), and suspended pollutants (Wieszczycka and 168 

Staszak, 2017). 169 

Polymeric membranes are typically manufactured from natural or chemically-synthesized 170 

polymers. The membranes are creating a selective interface barrier between two adjacent phases 171 
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(feed and permeate) which governates the transport behavior of species between them. In general, 172 

the separation performance of the membrane depends on the properties of transported species (e.g. 173 

molecule size, shape and chemical nature), as well as physicochemical properties 174 

(hydrophilicity/hydrophobicity, surface charge, roughness) of the polymer membrane, especially 175 

porous structure. For instance, Table 1 enlists some of the reported studies in which the removal 176 

of heavy metal ions has been performed by means of different polymeric membranes and 177 

processes. It can be seen that the removal efficiency towards metal ions using polymer membranes 178 

has been reported between 77 to 99%. 179 

 180 

Table 1. Polymeric membranes used for the removal of metal ions. 181 

 182 

For instance, Qdais and Moussa (2004) evaluated the separation performance of the RO and NF 183 

technologies using polyamide spiral wound membranes for the removal of copper (Cu) and 184 

cadmium (Cd) metals from industrial wastewater. While the RO process showed Cu and Cd 185 

removal efficiencies of about 98 and 99%, respectively, the NF process exhibited more than 90% 186 

of Cu ions. Interestingly, the membranes were able to concurrently treat wastewater containing 187 

more than one heavy metal ion. As an example, these membranes reduced the ion concentration 188 

from 500 ppm to 3 ppm, meaning a removal efficiency of over 99%. Another typical polymeric 189 

membrane material is polyethersulfone (PES), which has been successfully consolidated in 190 

membrane preparation owing to its high thermal and mechanical stability, physiological and 191 

chemical neutrality and wide range pH resistance. PES, however, tends to present a hydrophobic 192 

nature which results in high membrane fouling when applied for organic aqueous filtration. Thus, 193 

with the aim of improving its separation performance and properties, efforts have been proposed 194 

to shift the surface properties of this hydrophobic polymer. It is known that hydrophobic polymers 195 
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are more prone to membrane fouling due to the particles contained in the feed bulk tend to 196 

accumulate on hydrophobic and rough surfaces, minimizing the interfacial tension between water 197 

and membrane (Pichardo-Romero et al., 2020). Therefore, the on-going strategies are aimed at 198 

mitigating the interaction between the foulants and the barrier layer. For example, an easy approach 199 

is to chemically modify the surface properties of the membrane by immersing it in a polyelectrolyte 200 

solution. It has been found that the polyelectrolyte adsorbed onto the membranes may significantly 201 

improve the membrane performance in terms of metal ions removal due to the presence of 202 

chelating functions in their structure. In this way, Mokhter et al. (2017) performed the chemical 203 

modification of PES membranes by polyelectrolyte multilayers, made of poly(allylamine 204 

hydrochloride) with poly(styrene sulfonate). The resulting membranes were employed to treat 205 

aqueous solutions containing single or mixed heavy metals, Cu2+, zinc (Zn2+)  and nickel (Ni2+), at 206 

various concentrations (50–1200 ppm). The tested membrane was efficient in separating all the 207 

tested metals either alone or mixed with high long-term stability and removal efficiencies over 208 

90%. Similarly, polyacrylonitrile (PAN) membranes were modified by Qin et al. (2013), who 209 

synthesized positively charged membranes by depositing polyelectrolytes. Researchers used PAN 210 

membranes modified by the layer-by-layer assembly of polyethyleneimine (PEI) and poly(sodium 211 

4-styrenesulfonate) (PSS), to successfully separate Ni2+, Cu2+, Zn2+ and Cd2+ aqueous solutions, 212 

achieving removal efficiencies in the range of 95–98%. Particularly, the NF tests showed that the 213 

removal efficiency of Ni2+ and Cd2+ ions increased with the number of bilayers, but a decrease in 214 

permeate fluxes was observed. The usage of additional polymeric layers could also be applicable 215 

in the case of hollow fiber membranes. The great benefit of multi-layer materials lies in the fact 216 

that a relatively cheap material could be used as a support while a high-performance material 217 

(commonly a more expensive material) can be used as the selective layer. For instance, Zhu et al. 218 

(2014) tailored a high-performance dual-layer NF hollow fiber membrane and tested for the 219 
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removal of Cd2+, Cr2O7
2- and Pb2+ salts from model wastewater, attaining removal efficiencies 220 

above 95%. Herein, researchers applied polybenzimidazole (PBI) as the outer selective layer while 221 

the blend of PES and polyvinylpyrrolidone (PVP) was implemented as the support layer. Thanks 222 

to the unique charge characteristics and high chemical resistance of PBI, the novel developed dual-223 

layer NF membrane demonstrated a great salt rejection value due to the Donnan exclusion effect 224 

enhancement and low adsorption of heavy metal ions on the PBI surface.  225 

Polyvinylidene fluoride (PVDF) is definitely another hydrophobic polymer that remains popular 226 

in a wide number of water treatment applications (Gontarek et al., 2019; Xia & Ni, 2015). PVDF 227 

membranes are well recognized for their multiple advantages including high chemical tolerance, 228 

good mechanical and thermal properties. Tzanetakis et al. (2003) have proved that the performance 229 

of chemically sulfonated PVDF membrane in the electrodialysis process can be comparable with 230 

the one given by a perfluorosulfonic Nafion 117 commercial membrane. The sulfonated PVDF 231 

membrane has displayed removal efficiencies towards Co and Ni ions of about 90% and 69%, 232 

respectively. In addition to this, a meaningful enhancement of the amounts of transported metal 233 

ions was seen while using corrugated membranes, which resulted in an increase in membrane area 234 

of 60% compared with those using flat membranes. Wang et al. (2017) have developed the 235 

modification of PVDF membrane for post UF testing. In general, the results revealed that the 236 

interaction by blending of PVDF with 2-aminobenzothiazole conducted to the efficient removal of 237 

chromium (Cr) from the wastewater. As a disadvantage of such membrane preparation, the 238 

membranes showed a low permeate flux when compared with the typical UF membranes. Since a 239 

long time ago, it is documented that one of the simplest approaches to improve the water flux in 240 

hydrophobic polymeric membranes, like PVDF, is to mitigate the membrane fouling, which can 241 

be reached through hydrophilicity enhancement. For instance, Pereira et al. (2014) combined 242 

PVDF polymer matrix with polyaniline nanofibers, which was, in this case, proposed as a 243 
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hydrophilic agent to fabricate enhanced hydrophilic membranes. The authors described that the 244 

resulting membranes exhibited better hydrophilicity and better membrane properties, as well as a 245 

relatively high rejection toward heavy metal ions, such as Pb2+ and Cd2+, e.g. around 98.5% and 246 

97.3%, respectively. 247 

Cellulose acetate (CA), originated from natural sources and feedstocks, is a polymer material 248 

widely used in UF membrane manufacture. Such a polymer combines the advantages to have low 249 

cost and high biocompatibility with other materials. Unfortunately, this polymer does not reveal 250 

high enough fluxes, and it can allow preparing low porous sub-layers, as well as easy fouling issues 251 

(Combe et al., 1999). However, the blending of CA with hydrophilic agents may result in 252 

membranes with a superior antifouling property. This has been indeed demonstrated by Lavanya 253 

et al. (2019), who carried out the blending of CA with poly(methyl vinyl ether-alt-maleic acid) 254 

(PMVEMA). The generated membranes displayed enhanced antifouling capacity in the blend 255 

membranes in comparison with the pristine CA membrane. When dealing with their separation 256 

performance, the flux recovery ratio was reached up to 95%. Importantly,  the pure water fluxes 257 

of such blend membranes were raised with the content of PMVEMA, since PMVEMA conducted 258 

to  higher porosity and hydrophilicity. Concurrently, the blend membranes were also more efficient 259 

for the removal of heavy metal ions compared to pure CA membrane. 260 

Taking into account the advantages and disadvantages of polymeric membranes, the popularity of 261 

their use and implementation for removing heavy metal ions is also attributed to their low 262 

manufacture costs and ease of modification. However, such polymeric membranes still lack  263 

different desired properties for membrane separation processes, including the ones that required 264 

high selectivity towards low solutes and species. To date, many works have been done at aiming 265 

the enhancement of the separation performance of the polymeric membranes (as listed in Table 266 

1). Nevertheless, the membrane fouling and low mechanical strength in polymeric membranes are 267 
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recognized as the most relevant issue in limiting their application. The development and 268 

manufacture of membranes with high selectivity, permeability, rejection, and superior antifouling 269 

properties are the biggest challenges among scientists who work on membrane development and 270 

separation processes. Despite these drawbacks, the membranes have shown interesting results 271 

during the removal of heavy metal ions. For example, Uddin et al. (2007) analyzed the removal 272 

capacity of two commercial NF polyamide membranes (NF90 and NF200) towards As (III) and 273 

As (V). The effect of the operating conditions on the rejection performance was investigated in the 274 

study. As set by authors, the feed stream contained mainly in tap water together with arsenate and 275 

arsenite. In all tests, As (V) was generally rejected better than As (III), and the membranes offered 276 

the high removals over 98% and 65% for As (V) and As (III), respectively. 277 

Amy et al. (1998) previously designed a bench-scale RO process implementing a commercial 278 

membrane (DK2540F manufactured by DESAL) for As removal. The experiments comprised the 279 

single element testing in flat sheet membrane for lake water and deionized water filtration. The 280 

findings demonstrated high removal efficiency towards arsenate (up to 96%), and acceptable 281 

removal efficiency for arsenite (60–85%). 282 

More recently, using a different membrane process, i.e. membrane distillation (MD), it has been 283 

demonstrated its ability to effectively separate specific heavy metal ions. For example, direct 284 

contact MD (DCMD) technology can be feasible in removing up to 99.95% arsenic molecules, 285 

like As (III) and As (V), from a contaminated water model solution. Interestingly, this process was 286 

operated for 250 h containing 500 µg L-1, the process did not evidence any change in the permeate 287 

fluxes and As content (Pal and Manna, 2010). Similarly, Manna and Pal (2016) used a similar 288 

DCMD unit, but in this case possessing a hydrophobic flat sheet membrane (nominal pore size 289 

0.13 µm, thickness 150 µm, porosity 70–75%). As a result, the systems proved an As removal of 290 
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about 100% from contaminated groundwater, and no flux decline was recorded during 4 days of 291 

operation. 292 

Today, the most important approach in obtaining membranes with exceptional separation 293 

performance and properties relies on the synthesis and preparation of nanocomposites. This 294 

concept of membranes is well defined together with their features in the following section, and 295 

finally, the progress and latest development works in manufacturing such membranes for heavy 296 

metals removal. 297 

 298 

3. Beginnings of nanocomposite membranes for the removal of heavy metal ions 299 

Polyethersulfone (PES), polysulfone (PSF), PAN, polytetrafluoroethylene, polypropylene, and 300 

PVDF are among the main polymer materials used in the manufacture and production of 301 

membranes for pressure-driven membrane processes. It is known that most of these materials have 302 

excellent permeability, selectivity, and acceptable chemical, mechanical and thermal stability 303 

when used in water treatment applications. Particularly, PSF and PES membranes are the most 304 

used materials for manufacturing UF membranes. Such standard chemically synthesized polymers 305 

are also involved within the fabrication of NF and RO membranes, while polypropylene and PVDF 306 

are more exploited in MF membranes production (Pendergast, & Hoek, 2011). However, it is still 307 

challenging the optimization and enhancement of the separation performance of these pristine 308 

polymeric membranes (Alzahrani& Wahab, 2014), as well as the improvement of some other 309 

physicochemical properties, such as stability, hydrophilicity/hydrophobicity, fouling resistance, 310 

among others (Hana et al., 2016). 311 

The enhancement of such properties has been recently breakthrough by using nanotechnology, 312 

which has been extended in a wide range of applications into membrane-based technologies, e.g. 313 

to enhance the membranes’ efficiency for the removal of heavy metals, which is a relevant matter 314 
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within water treatment (Ursino et al., 2018). Nanocomposite membranes are recognized as “the 315 

next generation of membranes”. In theory, a typical nanocomposite membrane includes the 316 

dispersion or deposition of nanosized filling materials into polymer matrices (Castro-Muñoz et al., 317 

2018d; Castro-Muñoz et al., 2018e; Song et al., 2012). This concept of membranes can be 318 

implemented in different membrane-based separations, including gas–gas, liquid–liquid, and 319 

liquid–solid separation. In the early 1990s, nanocomposite membranes were initially developed 320 

for membrane gas separation processes (Ahmadizadegan et al., 2018; Robeson, 1991), where 321 

selective zeolites were embedded into polymers to improve both permeability and selectivity (Li 322 

et al., 2017). Due to such success on gas separation approaches, nanocomposite membranes were 323 

then initiated to be explored in other fields of applications and processes, such as sensor 324 

applications (Jiang et al., 2004; Pandey et al., 2018), direct methanol fuel cells (Chen et al., 2006), 325 

lithium-ion battery (Li et al., 2008), proton exchange membrane fuel cells (Boaretti et al., 2017; 326 

Jalani et al., 2005), pervaporation (PV) (Castro-Muñoz et al., 2018e; Yang et al., 2009), organic 327 

solvent nanofiltration (Sorribas et al., 2013), water treatment, to mention just a few. 328 

Nanocomposite membranes, also known as mixed matrix membranes (MMM), are not only 329 

tailored by embedding nanosized materials into a continuous matrix phase, nanoparticles or fillers 330 

can also be coated onto the membrane surface, which is actually well denoted as a nanocomposite 331 

membrane. Currently, the preparation and implementation of these membranes are a current trend 332 

in the nanotechnological field for water treatment, especially in the separation of metal ions 333 

(Marino et al., 2017). Importantly, such nanosized filling materials not only possess exceptional 334 

features that may be provided to the primary element (e.g. polymer) but also good compatibility 335 

when embedded. Nanocomposite membranes have concurrently revealed low-fouling issues when 336 

embedding the inorganic materials (Kim and Bruggen, 2010), together with improved permeability 337 

and selectivity, compared with polymeric membranes (Madaeni et al., 2015). To date, plenty of 338 
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nanosized fillers have been utilized in the preparation of nanocomposite membranes, such as 339 

titanium dioxide (TiO2) (Zhang et al., 2013), silver (Ag) (Prince et al., 2014), carbon nanotubes 340 

(CNTs) (Celik et al., 2011), zinc oxide (ZnO) (Balta et al., 2012), copper oxide (CuO) (García et 341 

al., 2017), graphene-based materials (e.g. graphene, grahene oxide or reduced graphene oxide) 342 

(Gontarek et al., 2019; Kashyap, Pratihar and Behera, 2016; Xia and Ni, 2015), alumina (Al2O3) 343 

(Arsuaga et al., 2013), silica (SiO2) (Yu et al., 2009), magnetite (Fe3O4) (Alam et al., 2016), cobalt 344 

(Co) (Gzara et al., 2016), zirconium dioxide (ZrO2) (Maximous et al., 2010), clay (Mierzwa et al., 345 

2013) and zeolites (e.g. NaX) (Fathizadeh et al., 2011), among others. For instance, Table 2 346 

summarizes recent studies in which such inorganic fillers have been filled among several polymers 347 

and then applied in different applications of water treatment, wastewater treatment, toxic and metal 348 

ions removal from water. 349 

 350 

Table 2. Different filling materials embedded into nanocomposite membranes for different water 351 

treatment applications.  352 

 353 

Specially, these nanocomposite membranes have shown valid insights during the removal of 354 

metal ions. For example, Bahadar et al. (2015) developed and tested ZnO-filled CA nanocomposite 355 

membranes for the separation of Zn 2+, Cd 2+, Pb2+, Mn2+, Ni 2+, Fe2+, Al3+, Sb3+, and Sr3+, 356 

concluding that these membranes were highly selective towards Fe2+. Furthermore, the developed 357 

membranes displayed acceptable permeability ranged from 0.9 up to 6.6 L m-2 h-1 bar-1. Some 358 

authors have tailored nanocomposite membranes based on functionalized multi-walled carbon 359 

nanotube (MWCNT)/polysulfone (Shah and Murthy, 2013), which also has demonstrated ability 360 

for heavy metal removal (up to 98%). In this study, the percent of rejection towards heavy metal 361 

was noted to increase by increasing the MWCNTs amount due to MWCNTs reduced the 362 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


16 

 

membranes’ pore size, the best nanocomposite performances were about 94.2% and 78.2% 363 

removal for Cr(VI) and Cd(II), respectively. It is important to mention that pristine polymer offered 364 

only 10.2% and 9.9% removal, respectively. Here, the use of inorganic materials is showing 365 

remarkable enhancement of polymeric membranes towards heavy metal ions retention. Therefore, 366 

the research community is today putting big efforts into the development of novel nanocomposite 367 

membranes that may efficiently separate heavy metal ions from several aqueous streams. Herein, 368 

the following section provides the progress, latest developments and breakthroughs in the field. 369 

 370 

 371 

4. Progress in nanocomposite membranes for heavy metal ions separation  372 

To date, different categories of fillers and additives have been involved in the manufacture of 373 

nanocomposite membranes. Graphene oxide (GO) is likely one of the main materials that has been 374 

fully explored. GO has attracted the attention of the research community, especially for the 375 

separation of toxic ions and organic molecules in polluted water (An et al., 2016). GO has proven 376 

its excellent separation ability towards different molecules (e.g. water molecules) and ions. GO 377 

possesses interlayer nano-capillary networks that are formed thanks to their connected interlayer 378 

spaces, together with the gaps between edges of non-interlocked neighbouring GO sheets (An et 379 

al., 2016; He et al., 2015), facilitating the transport of molecules or ions through the GO membrane. 380 

At this point, multiple factors, including molecules’ size or ions, the charge of ions, and numerous 381 

interactions (such as electrostatic interaction, metal coordination, and cation−π interaction between 382 

ions and GO sheets) strictly influence the separation performance of the GO. These properties 383 

make to consider GO as a promising candidate material within the removal of pharmaceutical 384 

traces from water and wastewater (Sophia et al., 2016). More interestingly, the embedding of GO 385 

can also bring some benefits to the properties of the polymeric membranes, e.g. thanks to the high 386 
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hydrophilicity of GO, the change of the hydrophobic to hydrophilic nature of polymeric 387 

membranes has been done, resulting in enhanced permeation fluxes (Xia et al., 2015). As an 388 

example, Chang et al. (2014) analyzed the synergistic effect of GO and PVP on the performance 389 

of PVDF UF membranes. The study found out that the membrane’s hydrophilicity and anti-fouling 390 

properties were enhanced by the addition of both GO and PVP. The authors concluded that this 391 

enhancement could be associated with the possible formation of hydrogen bonds between PVP 392 

and GO. Recognizing the multiple benefits that GO has given to polymeric membranes, 393 

researchers have initiated the improvement of the structural features of GO, e.g. the chemical 394 

modification has been an alternative in the field. According to researchers’ insights, the chemical 395 

modification (to a positive charge) of GO is suggested for better metal ions removal efficiency (Yu 396 

Zhang et al., 2015). In this sense, Xu et al. (2014) performed the chemical functionalization of 397 

graphene oxide (f-GO) through a simple covalent functionalization with 3-398 

aminopropyltriethoxysilane (APTS). The resulting organosilane-GO was then filled in PVDF UF 399 

membranes (Xu et al., 2014), the PVDF/ f-GO membranes had higher hydrophilicity, water flux, 400 

and protein rejection than pristine PVDF membranes and conventional PVDF/GO membranes. For 401 

instance, the membranes, containing 1wt.%  f-GO, released a high permeate flux of about 401.3 L 402 

m−2 h−1, a higher value compared to the one provided by the pristine PVDF (ca. 240 L m−2 h−1) 403 

and PVDF/GO membranes, pointing out that these composite membranes also had better anti-404 

fouling properties due to their higher hydrophilicity (Xu et al., 2014).  405 

More recently, Zhang et al. (2017) carried out the cross-linking procedure in GO composite with 406 

isophorone diisocyanate (IPDI), later coated on PVDF membrane. Basically, the cross-linking 407 

methodology helped to improve the removal of dyes (over 96%) and heavy metal ions (Pb2+, Cu2+, 408 

Cd2+, Cr3+) (between 40-70 %) in the MF membrane compared to the pattern GO-PVDF 409 

membrane. It is worth mentioning that these composite membranes also showed high permeation 410 
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rates between 80-100 L m-2 h-1 bar -1 under low external pressure (i.e. 1.0 bar). By embedding 411 

modified magnetic GO (MMGO), it was also eventuated a significant increase in the pure water 412 

flux due to changes in surface roughness and hydrophilicity of PES NF membranes. Regarding the 413 

copper and dye removal ability of the membranes remarkably increased thanks to the presence of 414 

hydrophilic functional groups on the surface of MMGO hybrid. The prepared NF membrane, 415 

containing 0.5 wt.% MMGO hybrid, demonstrated the highest copper ions removal (ca. 92%) 416 

(Abdi et al., 2018). The authors also stated that these GO-filled NF membranes can also be good 417 

candidates in other types of water treatment applications, such as water softening, decolorization, 418 

natural organic matter removal (Wei et al., 2018). 419 

A more recent approach to improving GO-based nanocomposite PVDF membranes was done by 420 

Ren et al. (2019), who fabricated PVDF-GO membrane via electrospinning with immobilization 421 

of nano-zero valent iron (nZVI) particles. Such particles were deposited on the surface by in-situ 422 

synthesis. This membrane was designed and tested to remove Cd (II) and trichloroethylene (TCE) 423 

contaminants from groundwater, following a mechanism of gravity-driven membrane filtration. In 424 

principle, the hydrophilicity and improved membrane flux was obtained by the functionalization 425 

of GO into PVDF. Results showed that the hydrophilicity of the membranes increased by raising 426 

the GO concentration, leading to an improved permeability property. This resulted in the 427 

achievement of high and stable fluxes of 255 L m−2 h−1 for Cd and 265 L m−2 h−1 for TCE. 428 

Moreover, using 1 wt.% GO loaded PVDF-GO-nZVI membrane, removal performances of 100% 429 

and 82% were successfully achieved towards Cd (II) and TCE, respectively. The authors attributed 430 

such relevant Cd removal to a chemisorption phenomenon, while the TCE removal mechanism 431 

consisted of a multi-step dechlorination process involving several reactions. To sum up, the study 432 

has demonstrated that the functionalized PVDF-GO membrane can be a promising barrier for 433 

water remediation due to its high reactivity towards the evaluated pollutants. 434 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


19 

 

An interesting future approach on GO-based nanofillers for nanocomposite filtration membranes 435 

has been the one synthesized by Ma et al. (2020). They embedded GO-polyethylene glycol (P-GO) 436 

into a PVDF ultrafiltration membrane and thus proposed such a composite membrane for removing 437 

heavy metals within a wastewater treatment strategy. The membranes prepared via phase inversion 438 

method revealed outstanding results in terms of improved hydrophilicity, permeability and 439 

antifouling properties, while crosslinking between polyethylene glycol and GO contributed to an 440 

increase in thermal stability, pore size as well as surface porosity. The membrane containing 0.5 441 

wt.% P-GO obtained the highest water flux of 94 L m-2 h-1. This was due to the hydrophilicity 442 

provided by the embedded hydrophilic functional groups into the membrane matrix. The same 443 

membrane formulation showed a 94% bovine serum albumin rejection rate, indicating good 444 

separation properties. Furthermore, excellent antifouling properties were acquired by the obtention 445 

of the lowest surface roughness, the lowest total and irreversible resistance values, as well as by a 446 

78% flux recovery obtained after 3 performance cycles. Antifouling property of the membrane 447 

was assigned to hydrophilic groups forming a hydration layer that repulses pollutant contact and 448 

contaminant deposition. The authors highlighted that further studies must be conducted on the 449 

application of this nanocomposite membrane towards the removal of heavy metals due to its 450 

excellent anti-fouling, permeability and hydrophilicity properties. 451 

Table 3 enlists some of the latest studies in nanocomposite membrane synthesis for heavy metal 452 

removal reported by the research community. It is obvious that the separation performance of a 453 

membrane depends on multiple factors, but the membrane preparation procedure is crucial. 454 

Regardless of these important factors, most of the nanocomposite membranes generally display 455 

removal rates ranged from 27 to 100%. 456 

 457 

Table 3. Latest development works on tailoring novel nanocomposite membranes for heavy 458 
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metal ions removal. 459 

 460 

For instance, Ali et al. (2019) reported a 98% zinc ions (Zn2+) removal from synthetic water 461 

through filling functionalized MWCNTs into PVC, in which the retention rate was stable over 60 462 

min process time. Interestingly, these membranes also allowed to remove more than 70% zinc ions 463 

(Zn2+), when treating real wastewater effluent. The core of success in these membranes was the 464 

chemical functionalization of the MWCNTs. The authors stated that the resulting removal 465 

efficiency of CNT membrane could be associated with the high absolute zeta potential together 466 

with the hydrophilicity of the fillers embedded on the inside surface of the hollow fiber membrane, 467 

and of course the plenty number of oxygen functional groups on CNT surfaces. Theoretically, the 468 

removal capacity can be a function of electrostatic interactions among the positive charge of Zn2+ 469 

ions and the negative charge surface of CNTs at specific conditions (e.g. higher pH values) (Lu 470 

and Chiu, 2006), which foster the strong surface complexation reaction. This enabled the 471 

membranes to demonstrate high adsorption ability, as represented in Figure 1. The use of 472 

sulfonated MWCNTs also represents a promising pathway in membranes with efficient removal 473 

of heavy metals, these membranes had shown an adsorption removal over 59% for Cu (II) ions 474 

(Ge et al., 2014). Such MWCNTs membranes were also enabled to remove about 99.2% of other 475 

types of toxic components, e.g. rhodamine B (Peydayesh et al., 2018). 476 

 477 

Figure 1. Adsorption and desorption mechanisms of zinc ions in functionalized MWCNTs(Ali et 478 

al., 2019). 479 

Another example of surface functionalization of materials in nanocomposite membranes showing 480 

promising results on ion removal regards the polyether imide (PEI) nanofiltration membrane using 481 

a nanofiller additive, which consisted of L-cysteine modified glycidyl-polyhedral oligomeric 482 
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silsesquioxane (POSS) (Bandehali et al., 2020). The PEI membrane filled with 1 wt.% of L-483 

cysteine modified-POSS provided an outstanding separation efficiency towards Cr
+2 and Na

+ ions 484 

with a rejection percentage of 79% and 80%, respectively, which was attributed to the porous 485 

membrane morphology and the presence of negatively charged hydrophilic functional groups on 486 

the membrane surface, both features promoted the absorption of positively charged ions, as well 487 

as an increase of ion adsorption active spots (Bandehali et al., 2019). Moreover, L-cysteine 488 

functionalized POSS NPs incorporated into the PEI nanofiltration membrane led to a cross-linking 489 

reaction between the amino groups (NH2) in L-cysteine modified-POSS filler and imide rings in 490 

PEI. This increased the membrane surface hydrophilicity due to the hydroxyl (–OH), carboxyl (–491 

COOH) and amine (–NH2) functional groups present in these materials, resulting in high water 492 

permeation fluxes of 95 L m-2 h-1 (in 1 wt.% of L-cysteine modified-POSS-PEI composite), from 493 

17.63 L m-2 h-1 in neat PEI membrane. In addition to the exceptional performance, the modified 494 

filler also offered other benefits to the nanocomposite membranes, such as improved the 495 

antifouling properties to the resulting nanocomposite membranes by decreasing the roughness, a 496 

flux recovery ratio of 95%, increased degree of wetting, as well as an increment in the membrane 497 

surface smoothness, which all added up to the obtention of a better membrane structure for 498 

avoiding salt accumulation. 499 

To date, the blending of inorganic phases into polymers has been also a smart alternative for the 500 

simultaneous removal of different types of heavy metal ions. At this point, the filling of multiple 501 

fillers is likely a feasible option for such a task. For instance, Suresh et al. (2018) tailored a hybrid 502 

nanocomposite membrane embedding carbon nanofibers and TiO2 into PAN polymer, the 503 

generated hybrid membranes have proved rejection percentages of 87%, 73%, 66% towards Pb2+, 504 

Cu2+, Cd2+ metal ions, respectively. Towards the efficient separation of Pb2+, Suresh et al. (2018) 505 

explored and demonstrated that amino-functionalized metal-organic frameworks (MOFs) 506 
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combined with a ceramic ultrafiltration membrane represent to be an effective material for the Pb2+ 507 

removal, which revealed at least 61.4% removal, whereas the best efficiency depended on the 508 

operating conditions, but it reached up to 100% (Yin et al., 2016). It is worth mentioning that the 509 

UF process also exhibited high flux ca. 1, 300 L m-2 h-1 (at 0.23 Mpa), which was stable during 510 

120 min operating time. 511 

 512 

Very recently, another kind of MOF-based nanocomposite has proven an unprecedented removal, 513 

ca. 100%, of multiple heavy metal ions from wastewaters. Yuan et al. (2019) developed a 514 

composite asymmetric membrane by coating Al2O3 with ZIF-300, as illustrated in Figure 2. 515 

 516 

Figure 2. Graphical drawing of ZIF-300 deposited on alumina for metal ion removal and organic 517 

dye from water (Yuan et al., 2019). 518 

 519 

The success of Yuan’s membranes was based on the impressive size-exclusion mechanism of ZIF-520 

300. As reported by the authors, this water-stable MOF may possess an aperture size of pores 521 

around 7.9 Å, which represents a larger kinetic diameter than the one of water (H2O, ∼2.8 Å), but 522 

still smaller than the hydrated diameter of heavy metal ions (e.g. Cu2+, Co2+, Cd2+, Al2+). The 523 

membranes remarkably reached to remove completely such compounds (Yuan et al., 2019). 524 

Furthermore, the ZIF-300 membrane demonstrated a high permeation (water permeance of 39.2 L 525 

m-2 h-1 bar-1) and rejection rate of 99.2% towards CuSO4, together with stable performance. 526 

Towards the coating of different materials on organic or inorganic supports, Ibrahim et al. (2018) 527 

combined PSF and poly[styrene-alt-(N-4-benzoylglycine-maleamic acid)] cumene terminated 528 

(PAH) to remove over 91% for Pb2+ and 72% for Cd2+ ions. In fact, the authors concluded an 529 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


23 

 

impressive adsorption ability of such composite, which led to the UF process to be enough for the 530 

efficient removal of these heavy metal ions. 531 

Among novel materials for UF, MF and NF filtration processes, ceramic materials are also 532 

promising tools for wastewater treatment due to their large specific surface area and convenient 533 

interior pore structure for filtration, catalysis and adsorption (Wu et al., 2019). Fe-based ceramic 534 

nanomaterials were used by Wu et al. (2019) for the fabrication of vacuum filtered membranes 535 

(VFMs) and polymer mixed e-spinning membranes (ESPMs), which were later assayed for Cd2+ 536 

ions removal from aqueous solutions. During the ceramic synthesis, a hydrothermal method was 537 

implemented for tailoring the Fe-based nanomaterials using FeOOH and µ-Fe2O3 nanowires as 538 

well as Fe3O4 NPs. Experimentally, VFMs showed a higher removal capacity than ESPMs; in 539 

contrast, ESPMs demonstrated to have better mechanical strength and stability. Particularly, VFM 540 

exhibited the highest Cd2+ adsorption capacity, ca. 29.3 mg g-1, owed to a larger surface area 541 

provided by NPs in the membrane and a plenty internal pore structure, however, this resulted in 542 

drawbacks in terms of structural reliability shown by looseness and micro-cracks after the third 543 

filtration process, therefore, further studies aimed to improve mechanical strength properties 544 

should be conducted. On the other hand, nanoparticles doped ESPM after the fourth filtration 545 

maintained the original structure without fractures thanks to the better ductility properties and 546 

magnetic cores inside the nanofiber. According to the authors, chemical sorption, consisting of 547 

electron exchange between membranes and ions, was suggested to be the rate-controlling 548 

mechanism for Cd2+ adsorption, but the Cd adsorption mechanism was also indicated to be a multi-549 

step process involving an external membrane surface adsorption and intraparticle diffusion. As 550 

concluding remarks from this study, it was observed that the ESPMs adsorption capacity was 551 

definitely enhanced with the Fe3O4 NPs as membrane precursors, but Cd2+ removal capacity should 552 

be improved in further studies by possibly modifying the polymers on the membrane surface.  553 
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Within the last years of research on novel materials for improving nanocomposite fillers, particular 554 

attention has been given to mostly synthetic-based fillers, leaving aside green material-based ones, 555 

which are categorized in such a way due to their plant, animal, or natural origin. In this framework, 556 

Kamari and Shahbazi (2020) initiated and innovated the preparation of green nanofillers made 557 

from Fe3O4 magnetic NPs coated with rice husk extracted silica (SiO2) functionalized with 3–558 

Aminopropyl trimethoxy silane. The obtained Fe3O4@SiO2-NH2 nanofiller was then embedded 559 

into the matrix of a PES NF membrane, and subsequently tested the removal of Cd (II) and methyl 560 

red dye coming from industrial effluents. Results showed that the membrane presented an 561 

asymmetrical morphology and highly dense layer, assigned to the fact Fe3O4@SiO2-NH2 nanofiller 562 

acted as a pore causing agent, promoting porosity. It was also seen that greater concentration 563 

amounts (ca. 0.5 wt.%) of the nanofiller into the membrane demonstrated to increase the water 564 

diffusion due to its hydrophilic functional groups (such as amine) present on the surface. The 565 

membrane filled with 0.5wt.% Fe3O4@SiO2-NH2 yielded the best salt rejection performance, as 566 

well as the highest removal efficiencies of 93% and 97% for Cd (II) and methyl red dye, 567 

respectively. Cd (II) adsorption was also found to be enhanced by the presence of polar primary 568 

amine NH2 functional groups on the surface, acting as active binding sites. While methyl red dye 569 

adsorption was associated with the electrostatic interactions and non–covalent bonds given by the 570 

hydrophilicity nature of the green nanofiller. In addition to this, an excellent antifouling capacity 571 

was revealed by the novel membrane together with good reusability property for Cd removal, e.g. 572 

it demonstrated a 7% decrease in removal efficiency after the fifth Cd (II) filtration cycle. Long-573 

term stability and anti-contamination properties for methyl red dye removal were also confirmed 574 

by the maintenance of a constant 97% filtration efficiency and a slight decrease in solution flux 575 

after a 40h filtration process. Hence, this pioneering study should be considered as a starting point 576 
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within the implementation of green material-based nanofillers for filtration membranes since it has 577 

proven to be an innovative promising alternative for the removal of pollutants.  578 

Up to now, it is evident that nanocomposite membranes implemented in UF, MF and NF processes 579 

for the removal of heavy metals is a research field with a promising future ahead, coring the 580 

development of sustainable wastewater treatment strategies. At this point, research efforts must 581 

continue to be done on discovering innovative mixtures of nanocomposite materials and their 582 

interactions, that may result in membrane enhancements in terms of mechanical strength, 583 

adsorption mechanisms, metal removal efficiency rates, antifouling, reusability, permeability, and 584 

selectivity properties. All these properties will foster the implementation of efficient and reliable 585 

processes. Based on current findings, the research community is extensively working on the 586 

development of novel types of composites. For instance, Table 4 presents a variety of novel 587 

nanocomposites that have not been implemented yet in the fabrication of filtration membranes, 588 

however, they represent a promising future since they count with effective adsorption mechanisms, 589 

innovative material combinations and also synthesized following novel methodologies for the 590 

removal of heavy metals, offering new clues on what is next on improving nanocomposite 591 

membrane technology. It is quite possible that such new composites will be assayed in membrane-592 

based separations expecting acceptable performance based on their relevant findings in separating 593 

metal ions from water systems. 594 

 595 

Table 4. Novel nanocomposite materials with outstanding heavy metal removal efficiency that 596 

have not been implemented in membranes. 597 

 598 

Recently, Dinh et al. (2020) tailored a chitosan-MnO2 nanocomposite which was tested as an 599 

adsorbent to remove Cr(VI) from an aqueous solution. Thanks to its high Langmuir monolayer 600 
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adsorption capacity of about 61.5 mg g-1, this new material displayed high Cr removal (of about 601 

94%) in the effluent from industrial zones. The authors claimed that electrostatic attraction was 602 

fundamental to the uptake of Cr onto the composite. Importantly, such composite was also 603 

evaluated during 5 cycles, showing a  removal efficiency decrease up to 80%. Unlike Dinh’s study, 604 

a core-shell structured nanocomposite of zero-valent iron with carbon (ZVI@C) exhibited a 605 

tremendous adsorption capacity (over 800 mg g-1 for Cr) and thus revealing an acceptable Cr (VI) 606 

removal efficiency of 80% (Zhou et al., 2020).  607 

The adsorption capacity depends on the characteristics of elements forming the nanocomposite, 608 

their synergistic effect and their resulting properties, for example, Mahmoud et al. (2019) notified 609 

a higher adsorption capacity in SiO2@VB9 nanocomposite for Pb (over 900 mg g-1) than Cd (ca. 610 

562 mg g-1) and Cu (ca. 152 mg g-1), such metal uptake capacities allowed to the resulting 611 

composite to show high removal efficiency ranged from 81 to 100% for all tested heavy metal 612 

ions. Dai et al. (2020) have very recently proved that the strategic selection of the elements 613 

proposed for the nanocomposite fabrication may result in a high-performance material, for 614 

instance, Dai et al. introduced Fe3O4/GO composite into graphitic carbon nitride g-C3N4, which 615 

provided an impressive U (VI) extraction capacity (up to 2880 mg g-1) together with high removal 616 

efficiency (ca. 96 %). Due to its chemisorption properties, an EDTA modified magnetic iron oxide 617 

loaded with sawdust carbon (EDTA@Fe3O4/SC) composite has demonstrated a 98% Cd (II) 618 

removal capacity; according to the study, the Cd (II) removal efficiency increased as pH value and 619 

adsorbent dose increase. Moreover, this nanocomposite also presented good multi-metal ion 620 

uptake (over 80%) for Zn (II), Cd (II), Cu (II), Pb (II), Ni (II), Co (II), As (III), U (VI), and high 621 

adsorption efficiency (ca. 83%) after three cycles, proving an input of its reusability. At this point, 622 

most of the newly nanocomposite materials (presented in Table 4) release a satisfactorily good 623 

metal ion uptake ability being potential candidates for the fabrication of membranes towards water 624 
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purification and disinfection (Castro-Muñoz, 2020b). However, the synthesis and preparation 625 

methodologies, as well as the resulting cost, implied in the fabrication protocols may represent a 626 

drawback during the further implementation of such materials in membranes. Even if the ongoing 627 

progress and innovation of new composite materials have been pointed out over this review, the 628 

economic feasibility related to the fabrication cost is a critical driver for their establishment and 629 

implementation. Unfortunately, economic feasibility, which may represent a profitable and 630 

competitive business, is a fundamental factor for the investment of companies and suppliers 631 

(Urbancová, 2013; Skapa, 2012). Herein, scientists must also be focused on developing new 632 

materials and fabrication protocols considering fewer sources and less costly aimed at producing 633 

economically sustainable materials. In this context, there is today a new trend in utilizing green 634 

and bio-based materials for the development of economically viable feedstocks and products. 635 

Since different carbonaceous materials, such as GO, activated carbon and CNTs, have shown their 636 

potentiality as adsorbents for copper decontamination (Ren et al. 2013), it is likely that other 637 

potential materials, like biochar, may also be a promising candidate in the preparation of 638 

composites. It is worth mentioning that biochar is commonly manufactured by pyrolysis of 639 

biomass and plant-based derivatives. Therefore, the synthesis and usage of biochar represent an 640 

environmentally friendly way to produce low-cost adsorbents (Marousek et al., 2020ab), which 641 

have been recently involved in the fabrication of membranes for the selective separation of 642 

phosphate from phosphate-rich wastewaters (Mohammadi et al., 2020). 643 

Most of the nanocomposite materials and membranes tend to display impressive metal ion uptake, 644 

and more importantly, some composites can concurrently remove more than one type of ion. 645 

However, to core the complete resource recovery (i.e. water), it is important to consider the 646 

synthesis of nanocomposite membranes which may offer the simultaneous removal of heavy metal 647 

ions and organic contaminants, e.g. Zhang et al. (2020) developed composite membranes filling 648 
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polydopamine-coated ferric oxide (Fe3O4@PDA) in PES. In addition to the higher permeabilities 649 

of the composite membranes (e.g. over 2600 L/m2 h bar corresponding to 20wt.% Fe3O4@PDA 650 

PES membrane) compared to the pristine PES, the composites achieved competitive adsorptive 651 

removal of Pb2+ and catalytic degradation of methylene blue, e.g. acceptable Pb2+ removal 652 

efficiency (above 80%) together with high methylene blue degradation (above 90%). In this case 653 

of study, the authors strategically designed the composite to display a synergistic effect. For 654 

example, the phenolic hydroxy and amino groups on the surface of PDA were able to chelate the 655 

cations to promote the adsorption of heavy metal ions, while the electron transfer in the Fenton-656 

like reaction was promoted due to the phenoquinone structure of the surface of the PDA, boosting 657 

the catalytic reaction. With a similar scope, Fan et al. (2019) documented the simultaneous and 658 

rapid removal of organic micropollutants (bisphenol) and metal ions (Pb2+) using an electrospun 659 

β-cyclodextrin/chitosan/polyvinyl alcohol nanofibers. These novel nanocomposites exhibited a 660 

large number of adsorption sites, e.g. the cyclodextrin owed a featured molecule structure with a 661 

hydrophilic outer surface and hydrophobic inner cavity for binding organic contaminants while 662 

chitosan has plenty of hydroxyl and amino groups to form complex with metal ions and thus 663 

remove them. Both authors concluded that their nanocomposites represent a new pathway to deal 664 

with hard-to-be-treated wastewaters (e.g. paper making, leather, textile, etc.) 665 

 666 

5. Concluding remarks, future perspectives, and strategies for new researchers in the field 667 

Throughout this review paper, it has been recognized the potential ability of polymeric membranes 668 

in separating various heavy metal ions, including Cd2+, Pb2+, Ni2+, Cu2+, Al2+, Co2+, Zn2+, Mn2+, 669 

Cr4+, among others. These membranes can exhibit a removal efficiency between 77-99%.  670 

However, by smartly introducing inorganic nanomaterials into polymer membranes,  671 

nanocomposite membranes have overcome the main drawbacks of polymeric membranes together 672 

with improved removal efficiencies up to 100%. This review has released a clear outlook on the 673 
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benefits of implementing composite membranes for the separation and removal of a wide range of 674 

toxic and heavy metal ions, in which their elimination from water has been proposed attending the 675 

current worldwide necessity for clean water scarcity.  676 

To date, a huge number of studies have provided promising proofs and insights that the MF 677 

composite membranes have been able to remove macropollutants, but the separation of 678 

micropollutants may need the usage of UF and NF membranes. Interestingly, nanocomposite 679 

membranes have shown their impressive adsorption ability for the removal of heavy metal ions, 680 

being strongly dependent on the smart selection of the inorganic materials according to their 681 

physicochemical features. This means that the adsorption efficiency of nanoparticles and their 682 

sieving mechanism must be considered during the tailored manufacturing of nanocomposite 683 

membranes towards the removal of specific heavy metal ions. In the light of process feasibility, 684 

nanocomposite membranes have also shown enough features to be implemented in efficient 685 

separation processes with good permeation rates, which is also a relevant parameter in terms of 686 

productivity. Based on the current findings of this review, and the current developments works and 687 

efforts in developing new composite materials, it is likely that the research community will 688 

continue looking for new inorganic and hybrid materials that could not only overcome the 689 

drawbacks (such as permeation and retention rates) of polymeric membranes but also 690 

physicochemical properties (e.g. chemical, mechanical and thermal stability) as well. To finalize, 691 

it is presented below some recommendations for planning the research of new researchers aiming 692 

to improve the efficiency of nanocomposite membranes: 693 

 Initially, researchers must identify the potential polymers that display high enough removal 694 

efficiency. Based on this, further investigation can be planned and directed based on the 695 

main bottleneck and weakness of the pristine polymers. 696 
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 When dealing with filling nanomaterials into polymers, it is essential to mention that such 697 

inorganic phases must be smartly embedded considering two important factors: 1) the 698 

physicochemical features of the nanomaterials (porosity, stability, morphology, among 699 

others), and ii) their metal uptake mechanisms related to the removal of heavy metals 700 

(sieving, adsorption, size-exclusion, etc.). Such basic analysis will bring big benefits in a 701 

shorter time and fewer sources, i.e. low filler loading may synergistically improve the 702 

properties of polymer membranes. For example, 1wt.% GO loaded PVDF-GO-nZVI 703 

membrane cannot only reach high 100% Cd (II) removal but also impressive permeation 704 

fluxes (ca. 255 L m−2 h−1) (Ren et al., 2019), which is also an important factor during the 705 

feasibility of large scale processes. Finally, the usage of a low quantity of fillers will result 706 

in a reduced membrane cost.  707 

 The membrane preparation protocols also play an important role in the resulting separation 708 

efficiency in membranes. Even if most of the advances in the field have been assigned to 709 

the properties of the nanomaterials, it is also important to point out that the exploration of 710 

new membrane fabrication procedures, together with the improvement of the existing ones, 711 

will allow tailoring of substantially enhanced membranes. This also applies when 712 

embedding simultaneously more than one inorganic phase. 713 

 Most of the research has satisfactorily demonstrated excellent performance towards metal 714 

ion separations, however, there are few reports demonstrating the feasibility of the 715 

membranes in a long-term operation, which is a current lack in research. By extending the 716 

testing of membranes, the chemical engineers will have a better outlook about the 717 

potentiality of membranes for possible implementation in industrial processes. 718 

 To finalize, based on the relevant insights and ability of the novel nanocomposite materials 719 

enlisted in Table 4, it is recommended to the new scientists to explore the ability of such 720 
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new materials into membrane processes for the removal of metal ions. Importantly, the 721 

separation efficiency of membrane processes not only depends on membrane features but 722 

also on the operating conditions. 723 
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Table 1. Polymeric membranes used for the removal of metal ions. 1440 

 1441 

Separation 

process: 

Material/membrane Heavy metals Removal efficiency (%) Reference 

NF PBI/PES Mg2+,Cd2+ 98%, 95% (Zhu et al., 2014) 

NF PA Cu2+,Cd2+ 98%, 99% (Qdais and Moussa, 2004) 

RO PA Cu2+,Cd2+ >90% (Qdais and Moussa, 2004) 

ED sulfonated PVDF Co2+,  Ni2+ 90 % , 69 %, (Tzanetakis et al., 2003) 

NF CA/ PMVEMA Pb2+, Cd2+, Cr+6 85%, 72% (Lavanya et al., 2019) 

NF PES-PE Cu2+,Zn2+, Ni2+ >90% (Mokhter et al., 2017) 

NF PAN-PEI/PSS  Cu2+, Zn2+,Ni2+, 

Cd2+ 

98%, 96%, 96%, 95% (Qin et al., 2013) 

UF PVDF/2-

Aminobenzothiazole 

Cr6+ 92% (Wang et al., 2017) 

UF PVDF/PANI Pb2 +, Cd2 +  98.5%, 97.3%  (Pereira et al., 2014) 

 1442 

 1443 

 1444 

 1445 

 1446 

 1447 

 1448 

 1449 

 1450 

 1451 

 1452 

 1453 

 1454 

 1455 

 1456 
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Table 2. Different filling materials embedded into nanocomposite membranes for different water treatment applications. 1457 

 1458 

Filling  

material: 

Membrane-based 

process: 

Application: Polymer 

phase: 

 

Reference: 

 

 

 

 

 

 

ZnO 

 

 

MF 

Synthetic wastewater treatment  

PVDF 

 

(Liang et al.. 2012) 

Removal of copper ions (Xia Zhang et al., 2014) 

Wastewater treatment (Hong and He, 2012) 

Humic acid removal PES (Ahmad et al., 2016) 

 

 

 

 

 

UF 

Humic acid removal PSF (Chung et al., 2016) 

Water treatment  

 

PES 

 

(Dipheko et al., 2017) 

Pollutants removal (Li et al., 2015) 

Water treatment PES-PVA (Zhao et al., 2015) 

Wastewater treatment  

PSF 

(Pintilie et al., 2017) 

Bacterial removal from aqueous solutions (Ronen et al., 2013) 

Water treatment PVC (Rabiee et al., 2015) 

 

 

 

NF 

 

Humic acid removal PES (Balta et al., 2012) 

Water purification  PVP (Bai et al., 2012) 

Removal of metal ions (Zn
2+

, Cd
2+

, Pb
2+

, Mn
2+

, 

Ni
2+

, Fe
2+

, Al
3+

, Sb
3+

, Sr
3+ 

) 

CA (Bahadar et al., 2015) 

Humic acid removal PSF (Tao et al., 2017) 
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Humic acid removal  

PVDF 

(Ekambaram and Doraisamy, 

2017) 

Humic acid removal (Li et al., 2017) 

RO Removal of bivalent ions (Ca2+, SO4
2−and 

Mg2+), monovalent ions (Cl− and Na+), and 

bacterias. 

PA (Isawi et al., 2016) 

 

 

 

 

 

 

GO 

 

 

MF 

Dyes removal from effluents PSF (Badrinezhad and Ghasemi, 

2017) 

Wastewater treatment PVDF (Zhao et al., 2014) 

 

 

 

 

UF 

 

 

 

Water treatment PSF (Zhao et al., 2013) 

Water treatment PVP-PVDF (Chang et al., 2014) 

Water treatment  

 

 

PVDF 

(Wu et al., 2014) 

Natural organic matter removal (Xia and Ni, 2015) 

Water treatment (Zhao et al., 2013) 

Natural organic matter removal PA (Xia et al., 2015) 

Wastewater treatment PSF (Lee et al., 2013) 

Organic pollutants removal Cellulose 

ester 

(Morales-Torres et al., 2015) 

Distillery effluent treatment PES (Kiran et al., 2016) 

Water softening production PAI-PEI (Goh et al., 2015) 

Dyes removal from effluents PMIA (Yang et al., 2017) 

Dyes removal from effluents PAN (Zhang et al., 2017) 

Dyes removal from effluents PES (Zinadini et al., 2014) 

Water purification PPA (Jin Wang et al., 2016) 
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Graphene UF Wastewater treatment PSF (Crock et al., 2013) 

NF Water purification PVDF (Han et al., 2013) 

 Wastewater treatment  

 

 

PSF 

(Zhang et al. , 2012) 

 

 

 

 

Ag- 

nanoparticles 

 

MF /UF Wastewater treatment (Alpatova et al., 2013) 

 

 

 

 

 

UF 

 

Water purification PES (Rehan et al., 2016) 

Wastewater treatment PES, PSF, 

CA 

(Sile-Yuksel et al., 2014) 

Wastewater treatment  

  PSF 

 

(Koseoglu-Imer et al., 2013) 

Wastewater treatment (Hoek et al., 2011) 

Wastewater treatment  

CA 

(Escobar et al., 2015.) 

 

 

NF 

Wastewater treatment (Andrade et al., 2015) 

 

 

 

 

Ag-NO3 

Wastewater treatment PA-PVA (Yang Zhang et al., 2016) 

RO Wastewater treatment PA (Ben-Sasson et al., 2014) 

Wastewater treatment PA/PSF/ 

PET 

(Yang et al., 2016) 

Bacterial removal from water 

 

CA (Ahmad et al., 2016) 

 

RO 

Water treatment  

PES 

(Zhang et al., 2013) 
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Ag- 

nanoparticles 

RO Water treatment PAN (Liu et al., 2016) 

 

 

 

bio-Ag0 

UF Water treatment PES (Zhang et al., 2014) 

 NF Water treatment and removal of salt (Na2SO4) PA (Liu et al., 2015) 

Water treatment  

 

PSF 

(Liu et al., 2016) 

Cu-

nanoparticles 

 

 

 

 

UF 

 

Water treatment (Hoek et al., 2011) 

CuAc2 Humic acid removal PAN/PEI (Xu et al., 2012) 

Cu- 

nanoparticles 

Wastewater treatment PES (Akar et al., 2013) 

Ag- 

nanoparticles 

Cu- 

nanoparticles 

Wastewater treatment PSF (Kar et al., 2011) 

 

CuSO4 

NF Seawater softening: removal of salts (SO4
2+, 

Mg2+, Na+, Cl-).  

PAN/PEI (Xu et al., 2015) 

CuCl2  RO Wastewater treatment  

PA 

(Zhang et al., 2017) 

Cu 

nanoparticles 

Water treatment (Ben-Sasson et al., 2014) 

  

 

 

 

UF 

Humic acid removal  

 

PVDF 

(Teow et al, 2012) 

Water treatment (Rajaeian et al., 2015) 

Wastewater treatment (Shi et al., 2012) 

Water treatment (Méricq et al., 2015) 

Water treatment PP (Pi et al., 2016) 
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Water treatment PSF (Mollahosseini and 

Rahimpour, 2014) 

Water treatment CA (Abedini et al., 2011) 

Water treatment  

PA 

(Ngo et al., 2016) 

TiO2 

nanoparticles 

NF Wastewater treatment  PES  (Sotto et al., 2011) 

CNTs NF Drinking-water purification NC (Ahmeh et al., 2013) 

UF Water treatment and biofouling control 

application 

PES (Celik et al., 2011) 

NF Wastewater treatment  PES (Daraei et al., 2013) 

NF Water treatment PA (Kim et al., 2013) 

NF Metal removal (Cr (VI), Cd (II)) PSF (Shah and Murthy, 2013) 

NF Water treatment for salt removal (NaCl, 

Na2SO4). 

PMMA (Shen et al., 2013) 

NF Water treatment Polyimide 84 (Grosso et al., 2014) 

UF Water treatment  PSF (Sianipar et al., 2016) 

UF Wastewater treatment by membrane bioreactor PSF (Khalid et al., 2018) 

MF Bleach effluent treatment by membrane 

bioreactor 

PSF (Mulopo, 2017) 

 

 1459 

Acronyms: polyethersulfone (PES), polysulfone (PSF), polyacrylonitrile (PAN), polytetrafluoroethylene (PTFE), polypropylene (PP), polyvinylidine fluoride 1460 

(PVDF),poly(methyl methacrylate) (PMMA), nitrocellulose (NC), cellulose acetate (CA), polyamide (PA), polyphthalamide (PPA),  polyvinyl alcohol (PVA), 1461 

polyvinyl chloride (PVC), polyvinylpyrrolidone (PVP), polyamide-imides(PAI), polyethylenimine (PEI). 1462 

 1463 
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Table 3. Latest development works on tailoring novel nanocomposite membranes for heavy metal ions removal. 1464 

 1465 

Nanocomposite membrane type: Membrane process: Metal ion removal : Reference: 

MMGO filled PES NF Copper ions removal (92%) (Abdi et al., 2018) 

f-MWCNTs filled PVC NF Zinc (Zn2+) ions removal (98%) (Ali et al., 2019) 

s-MWCNTs - Copper (II) ions removal (59%) (Ge et al., 2014) 

CNFs/TiO2 filled PAN - Lead (Pb2+) ions removal (87%) (Suresh et al., 2018) 

Copper (Cu2+) ions removal (73%) 

Cadmium (Cd2+) ions removal (66%) 

(MEUF)PES UF Cadmium (Cd2+) ions removal (90%) (Huang et al., 2019) 

(MEUF) cellulose UF Arsenic (V) ions removal (89%) (Chen et al., 2018) 

PAH-PSF UF Lead (Pb2+) ions removal (91.5%) (Ibrahim et al., 2018) 

Cadmium (Cd2+) ions removal (72.3%) 

s-PES UF Ferric (Fe3+) ions removal (>90%) (López et al., 2019) 

MMT-GO-EDA UF Ag (I) ions removal (100%) ( Ma, 2019) 

Cu (III) ions removal (100%) 

Cr (IV) ions removal (27.0%) 

CF-TiO2-C3N4 MR Cr (VI) ions removal (88.0%) (Shen et al., 2018) 

Composite -CA RO Pb (Pb2+) ions removal (100%) (Thaçi and Gashi, 2019) 

Cd (Cd2+) ions removal (100%) 

Ni (Ni2+) ions removal (100%) 

Zn (Zn2+) ions removal (100%) 
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Mn (Mn2+) ions removal (100%) 

Co (Co2+) ions removal (100%) 

Composite GPC UF Pb (Pb2+) ions removal (>95%) (Jing Wang et al., 2018) 

PECN NF Zn (Zn2+) ions removal (100%) (Ye et al., 2019) 

f- MOFs-CUF UF Pb (Pb2+) ions removal (61.4%) (Yin et al., 2016) 

ZIF-300-Al2O3 NF Cu (Cu2+) ions removal (100 %) (Yuan et al., 2019) 

Co (Co2+) ions removal (100 %) 

Cd (Cd2+) ions removal (100 %) 

Al (Al2+) ions removal (100 %) 

Goethite filled PAN UF Cu (Cu2+) ions removal (49 %) (Soghra et al., 2019) 

Composite PEI- zein FO Pb (Pb2+) ions removal (>99.5%) (X. Zhao & Liu, 2019) 

Cd (Cd2+) ions removal (>99.5%) 

Ni (Ni2+) ions removal (>99.5%) 

GMA-PAN UF Cu (Cu2+) ions removal (98 %) (Yanhong Zhang et al., 2019) 

 1466 

Acronyms: functionalized multi-walled carbon nanotubes (f-MWCNTs), modified magnetic graphene oxide(MMGO), sulfonated multi-walled carbon nanotubes (s-1467 

MWCNTs), carbon nanofibers (CNFs), micellar enhanced ultrafiltration (MEUF), poly[styrene-alt-(N-4-benzoylglycine-maleamic acid)] cumene terminated (PAH), 1468 

sulfonated polyethersulfone(s-PES),GO-based membranes via the intercalation of montmorillonite and ethylenediamine ( (MMT-GO-EDA), C3N4-decorated carbon-1469 

fiber (CF-TiO2-C3N4),  membrane reactor (MR), graphene oxide-polydopamine-(β-cyclodextrin) (GPC), polyelectrolyte complex nanofiltration (PECN), functionalized 1470 

MOFs-CUF (f- MOFs-CUF), grafting glycidyl methacrylate (GMA). 1471 

 1472 

 1473 
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Table 4. Novel nanocomposite materials with outstanding heavy metal removal efficiency that have not been implemented in membranes. 1474 

 1475 

Nanocomposite 

materials 

Heavy metals 

removal efficiency 

Adsorption 

mechanism 

 

Parameters affecting 

adsorption mechanism 

Fabrication method Synthesis 

conditions 

Reusability  Reference 

MnO2 coated by 

chitosan 

nanocomposite  

 

Cr (VI) adsorption 

(61.56 mg g-1) 

Cr (VI) removal 

efficiency (94.21%) 

Physisorption and 

electrostatic 

attraction 

 

pH effect 

Adsorption efficiency 

decreases with 

ascending pH values 

(optimal pH=2) 

Ion strength 

Ionic strength, with an 

increase in the KCL 

concentration decreases 

Cr (VI) removal 

efficiency 

Adsorbent dosage 

The material 

concentration affects Cr 

(VI) adsorption capacity  

MnO2/CS was 

fabricated by mixing, 

filtering and drying a 

suspension made up 

by C2H5OH, deionized 

(DI) water, CS and 

saturated KMnO4 

solution  

 

Mixing 

8 h at room 

temperature 

 

Different shaking 

speeds were tested 

 

Oven drying 

60°C for 12 h 

 

5 cycles. 

Removal 

efficiency 

decreased (from 

94% to 80%) 

(Dinh et al., 

2020) 

Core-shell 

structured 

nanocomposite of 

zero-valent iron 

with carbon 

(ZVI@C) 

 

 

Cr (VI) adsorption 

capacity (814.9 mg 

g-1 ) 

Cr (VI) removal 

efficiency (80%) 

 

 

Chemical reduction 

reaction of Cr (VI) 

into Cr (III) 

Cr (VI) Initial 

concentration effect 

High initial Cr (VI) 

concentration values 

increased the reduction 

capacity 

pH effect 

Hydrothermal-

calcination method 

 

 

 

 

Drying 

Vacuum conditions 

at 80°C for 24h. 

Carbonization 

Pipe oven under N2 

atmosphere, at 800 

Co for 30 min 

No tests were 

performed 

(Zhou et al., 

2020) 
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pH affects the electron 

utilization process 

(Optimal pH below 3) 

C/Fe molar ratio 

20 C/Fe optimal ratio  

Nanocomposite of 

20% hickory 

biochar and 80% 

expanded 

vermiculite (20%-

BC/VE) 

As (V) adsorption 

capacity (20.1 mg 

g-1) 

Heterogeneous 

adsorption 

processes, both 

physisorption and 

chemisorption, ion 

exchange and 

electrostatic 

attraction 

Nanocomposite ratio 

effect 

Optimal ratio: 20%-

BC/VE  

pH effect 

pH affects the BC/VE 

surface charge, as well 

as the electrostatic 

interactions (optimal 

pH= 6) 

Coexisting anions 

effect 

𝑃𝑂4
3− reduced 

considerably adsorption 

rate of As (V) 

Ball milling method 

 

 

Ball milling 

At 300 rpm for 12 h 

 

No tests were 

performed 

(Li et al., 

2020) 

Fe3O4/GO (mGO) 

composite 

introduced into 

graphitic carbon 

nitride g-C3N4. 

U (VI) extraction 

capacity (2880.6 

mg g-1) 

U (VI) extraction 

efficiency (96.02%) 

Chemical reaction 

of photocatalytic 

reduction of U (VI) 

under LED light 

irradiation 

 

 

pH effect on 

photocatalytic activity 

Optimal pH=6 

U (VI) concentration 

effect on 

photoreduction in 

mGCN-1 

Ultrasonication was 

applied to the 

individual suspensions 

and then to the 

mixture of mGO and 

g-C3N4 

The solids of the mGO 

and g-C3N4 mixture 

were centrifuged and 

dried 

Ultrasonication 

Individually for 1 h 

and as mixture for 

2h. 

Drying 

In a vacuum at 

60°C 

5 cycles 

There were not 

significant 

changes in 

removal and 

stability rates 

 

(Dai et al., 

2020) 
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Optimal U(VI) 

concentration range: 1 – 

100 mg L-1 

 

Silicon dioxide 

composite with tea 

waste (SiO2@TW) 

Adsorption 

capacities:  

Pb
2+ (153 mg g-1) 

and Cd
2+

 (222 mg g-

1) 

Removal rates: 

Pb
2+ (89.22%) and 

Cd
2+

(94.28%) 

 

 

Electrostatic 

attraction and 

physical adsorption 

 

pH effect 

 

Optimal pH values: 

 

 Pb2+ (pH= 6) and Cd2+ 

(pH=7) 

 

SiO2@TW dosage 

effect 

High dose of SiO2@TW 

enhanced adsorption 

sites, increasing 

removal capacity 

 

Temperature effect 

Elevated temperature 

was a catalyst for 

adsorption, due to 

chemical bond rupture 

that enhanced contact 

between metal ions and 

surface-active sites 

Modified Stober 

method for SiO2 NPs 

fabrication 

  

SiO2@TW synthesis 

consisted of 

sonication, 

centrifugation and 

drying of SiO2 - tea 

waste powder 

suspension 

 

 

Stirring 

For 30 min at 25°C 
 

Sonication 

For 1h 
 

Drying 

For 3h at 80°C 

5 cycles 

From the second 

round there was 

a considerable 

decrease in 

removal 

efficiency 

(Joshi et al., 

2020) 

Hybrid bio-

nanocomposite of 

nano-hydroxy ferric 

phosphate (n-HFP) 

and hydroxy ferric 

sulfate (n-HFS) 

particles coated on 

fungal hyphae of 

Aspergillus Niger 

(An) ((n-HFP + n-

HFS) @An). 

Simultaneous 

adsorption rates:  

As (III) (76.84%), 

Cd (II) (73.62 %) 

and Pb (II) 

(94.31%) 

Adsorption 

capacities:  

As (III) (162 mg g-

1), Cd (II) (205.83 

Chemical 

adsorption for the 

three metals 

 

 

No tests were 

performed 

 

 Co-precipitation 

method was used to 

fabricate n-HFP and n-

HFS NPs 

 

Potato dextrose broth 

(PDB) medium 

containing dissolved 

n-HFP and n-HFS NPs 

as well as 

magnetically stirred 

An mycelium 

inoculate was cultured 

Magnetic stirring 

At 1000 rpm for 6 h 

 

 

 

Culturing 

In PDB medium at 

30°C, 170 rpm for 

1-2 days 

 

Reduced risk for 

contamination: 

10-day stability 

of loaded NPs in 

solution 

(Liao et al., 

2019) 
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mg g-1), and Pb (II) 

(730.79 mg g-1) 

Nanoscale 

zerovalent iron 

(nZVI) impregnated 

biochar (BC) 

entrapped in 

calcium-alginate 

matrix 

(nZVI/BC/CA) 

 

Cr (VI) adsorption 

capacity (86.4 mg 

g-1) 

Ion exchange, 

intraparticle 

diffusion, chemical 

adsorption and 

redox reaction 

 

 

 

pH effect 

Optimal pH= 4 

Modified liquid-phase 

method 

 

Pyrolysis 

At 500°C for 3 h in 

a muffle furnace 

(15°C / min) under 

N2 atmosphere 
 

Stirring 

500 rpm at 25°C for 

30 min. 

Removal 

capacity 

decreased at the 

1st cycle but 

remained stable 

in further 

regenerations  

(Wan et al., 

2019) 

 

Nanocomposite 

made from 

wastewater 

hyacinth derived 

biochar (BC) and 

ZnO NPs 

 

Cr (VI) 

removal efficiency 

(95%) 

 

Cr (VI) 

adsorption capacity 

(43.48 mg g-1) 

Chemisorption and 

photocatalytic 

reduction 

Carbonization 

temperature effect 

Optimal carbonization 

temperature: 700°C 

 

ZnO content effect 

30 wt.% optimal ZnO 

concentration 

BC powder was 

impregnated into 

Zn(NO3)2 aqueous 

solution, by drying 

and calcination steps 

 

 

Drying 

At 105°C for 12h. 

Calcination 

At 380°C for 3h 

under N2 

atmosphere 

 

Removal 

efficiency 

(87.1% at 1st 

run) and (67.1% 

at 5th run) 

 

(Yu et al., 

2018) 

EDTA modified 

magnetic iron oxide 

NPs (Fe3O4), loaded 

with SC (sawdust 

carbon) 

(EDTA@Fe3O4/SC) 

Cd (II) adsorption 

capacity (63.3 mg 

g-1) 

Cd (II) removal 

capacity (98%) 

Multi-metal ion 

removal (>80%), 

for the following 

ions: Zn (II), Cd 

(II), Cu (II), Pb (II), 

Ni (II), Co (II), As 

(III), U (VI) 

 

Chemisorption 

 

pH effect 

Cd (II) removal 

efficiency increases as 

pH value rises  

(Optimal pH= 6.5) 

Adsorbent dose effect 

Cd (II) removal 

increased as adsorbent 

dose increased 

Contact time effect 

Biogenic green 

synthesis approach for 

fabrication 

 

Stirring 

At 90°C for 1h 

 

Carbonization 
In muffle furnace at 

180°C for 12h 

 

 

 

 

 

Desorption 

Maximum Cd 

(II) desorption 

was achieved 

with HCl (99%), 

HNO3 (100%) 

and H
2
SO

4 

(100%)  

Reusability 

After three 

cycles, 

adsorption 

efficiency 

(83%) and at the 

(Kataria and 

Garg, 2018) 
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Optimum contact time 

for Cr (II) removal: 120 

min 

Coexisting ions effect 

Divalent ions (Ca2+ & 

Mg2+) caused a decrease 

in Cr (II) removal 

efficiency 

fifth cycle 

(57%) 

Silica (SiO2) 

functionalized folic 

acid (VB9) 

(SiO2@VB9) 

nanocomposite 

 

Adsorption 

capacities: 

 

Cd (II) (562.1 mg g-

1), Pb (ІІ) (973.8 

mg g-1) and Cu (II) 

(152.1 mg g-1) 

 

Extraction rates: 

 

Cu (II) (94-100%), 

Pb (II) (100%) and 

Cd (II) (57- 81%) 

 

 

 

Physio-chemical 

process and stable 

complex formation 

 

pH effect 

 

Optimal pH values: 

 

Cd (II) (pH = 7), Cu (II) 

(pH = 6) and Pb (II) (pH 

= 5) 

 

Nanocomposite dosage 

effect 

Removal efficiency 

increased with 

ascending dosage values 

(Optimum dosage: 10 

mg) 

 

Contact time effect 

Optimum contact time 

for metal removal: 25 

min 

Initial metal ion 

concentration effect 

Optimal metal ion 

concentration: 0.25 

mg/L 

 

Coexisting ions effect 

Methodology 

consisting of 

microwave assistance 

for covalent 

immobilization of 

VB9 with chlorinated 

silica 

 

 

 

Stirring 

1 hour 

Oven drying 

At 60 ̊С 

Microwaving 

For 2min 

 

No tests were 

performed 

(Mahmoud 

et al., 2019) 
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Ni (II) and Co (ІІ) 

decreased metal ion 

removal capacity 

 1476 

Acronyms: Aspergillus niger (An), biochar (BC), calcium - alginate (CA), ethylenediaminetetraacetic (EDTA), nanoparticles (NPs), nano hydroxy ferric phosphate (n-1477 

HFP), nano hydroxy ferric sulfate (n-HFS), nanoscale Zero Valent Iron (nZVI), Protein Dextrose Broth (PDB), sadwust carbon (SC), tea waste (TW), vitamin B9 folic 1478 

acid  (VB9), vermiculite (VE). 1479 

 1480 

 1481 

 1482 

 1483 

 1484 

 1485 

 1486 

 1487 

 1488 

 1489 

 1490 

 1491 

 1492 

 1493 

 1494 

 1495 

 1496 

 1497 
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Figure 1. Adsorption and desorption mechanisms of zinc ions in functionalized MWCNTs (Ali et al., 2019) . 1498 

 1499 

 1500 

 1501 
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Figure 2. Graphical drawing of ZIF-300 deposited on alumina for metal ion removal and organic dye from water (Yuan et al., 2019). 1502 

 1503 

 1504 

 1505 

 1506 
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2 

 

Abstract  26 

Membranes, as the primary separation element of membrane-based processes, have greatly 27 

attracted the attention of researchers in several water treatment applications, including wastewater 28 

treatment, water purification, water disinfection, toxic and non-toxic chemical molecules, heavy 29 

metals, among others. Today, the removal of heavy metals from water has become challenging, in 30 

which chemical engineers are approaching new materials in membrane technologies. Therefore, 31 

the current review elucidates the progress of using different concepts of membranes and potential 32 

novel materials for such separations, identifying that polymeric membranes can exhibit a removal 33 

efficiency from 77 up to 99%; while novel nanocomposite membranes are able to offer complete 34 

removal of heavy metals (up to 100%), together with unprecedented permeation rates (from 80 up 35 

to 1, 300 L m-2 h-1). Thereby, the review also addresses the highlighted literature survey of using 36 

polymeric and nanocomposite membranes for heavy metal removal, highlighting the relevant 37 

insights and denoted metal uptake mechanisms. Moreover, it gives up-to-date information related 38 

to those novel nanocomposite materials and their contribution to heavy metals separation. Finally, 39 

the concluding remarks, future perspectives, and strategies for new researchers in the field are 40 

given according to the recent findings of this comprehensive review. 41 

 42 

Keywords 43 

Heavy metals; water treatment; membrane-based technologies, water purification, novel composite 44 

materials. 45 

 46 

Abbreviations: 47 

Ag: silver 48 

As: Arsenic 49 

APTS: 3-Aminopropyltriethoxysilane  50 
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CA: Cellulose acetate 51 

Cd: Cadmium 52 

CNT: Carbon Nanotubes  53 

Co: Cobalt 54 

Cr: Chromium 55 

Cu: copper 56 

DCMD: Direct contact membrane distillation 57 

ESPM: Polymer Mixed e-spinning Membranes 58 

Fe: Iron 59 

f-GO: functionalized Graphene Oxide 60 

GO: Graphene Oxide 61 

IPDI: Isophorone diisocyanate  62 

MD: Membrane distillation 63 

MF: Microfiltration 64 

MMGO: Modified magnetic Graphene Oxide 65 

MMM: Mixed Matrix Membranes  66 

MOF: Metal-Organic Frameworks 67 

MWCNT: Multi-walled carbon nanotubes 68 

NF: Nanofiltration 69 

Ni: Nickel 70 

NPs: Nanoparticles 71 

nZVI: nano– Zero Valent Iron 72 

PAH: Poly[styrene-alt-(N-4-benzoylglycine-maleamic acid)] cumene terminated 73 

PAN: Polyacrylonitrile 74 
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PBI: Polybenzimidazole 75 

PES: Polyethersulfone 76 

PMVEMA: Poly(methyl vinyl ether-alt-maleic acid) 77 

POSS: Polyhedral Oligomeric Silsesquioxane 78 

PSF: Polysulfone 79 

PSS: Poly(sodium 4-styrenesulfonate) 80 

PV: Pervaporation 81 

PVA: Polyvinyl alcohol 82 

PVP: Polyvinylpyrrolidone 83 

PVDF: Polyvinylidine fluoride 84 

RO: Reverse Osmosis 85 

TCE: Trichloroethylene 86 

UF: Ultrafiltration 87 

VFM: Vacuum filtered nembranes 88 

ZIF: Zeolite imidazolate framework 89 

 90 

 91 

 92 

1. Introduction  93 

The removal of pollutants (including metal ions) from water has been approached using several 94 

traditional treatments and protocols, such as chemical precipitation (Chabot et al., 2014), microbial 95 

decomposition (Yang et al., 2016), and physical adsorption (Kumar et al., 2013). Inherently, these 96 

pollutants represent strong issues to the environment (i.e. plants, animals, ecology climate) and 97 

humans. However, the removal of heavy metals through conventional protocols (such as flotation, 98 

chemical precipitation, ion exchange, adsorption, and electrochemical deposition) is still 99 
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challenging, requiring further efforts to circumvent the production of a high amount of toxic sludge 100 

and liquid waste, long time consumption, and extreme use of supplies (e.g. solvents, resins, among 101 

others), together with poor separation efficiency.  102 

Currently, according to the scarcity of drinking water and the increasingly serious water pollution 103 

(Marousek et al., 2019), water treatment with membrane-based processes has potentially attracted 104 

the attention of the research community. Membranes are involved in various prominent large-scale 105 

advanced treatment approaches applied worldwide for artificial groundwater recharge, indirect 106 

potable reuse, and industrial process-water production. Particularly, ultrafiltration, nanofiltration 107 

and reverse osmosis are among the emerging membrane technologies used at a large-scale for 108 

resource recovery (i.e. water) from wastewater treatment plants (Kehrein et al., 2020). To date, 109 

polymeric membranes are likely the most used membranes for water treatment applications 110 

(Castro-Muñoz et al., 2018a), including treatment of agro-food wastes (Castro-Muñoz et al., 2016), 111 

textile (Chao et al., 2016), petroleum industry streams (Alzahrani and Wahab, 2014), acid mine 112 

waters (Lopez et al., 2019), and seawater desalination (Castro-Muñoz, 2020a). Membranes are 113 

capable to separate the compounds from aqueous streams and thus reduce the contaminants 114 

contained in wastewater (Castro-Muñoz et al., 2018b). Extensive sources and a large number of 115 

molecules, as well as ions contained in polluted water, challenge the effective purification and 116 

separation of water by membranes. The membranes, based on their intrinsic properties, can be 117 

implemented among different types of membrane-based technologies including pressure-driven 118 

membrane processes, such as Microfiltration (MF), Ultrafiltration (UF), Nanofiltration (NF) and 119 

Reverse osmosis (RO). These are potentially recognized as excellent candidates for the removal 120 

of large amounts of organic macropollutants; in which NF and RO membranes are among the 121 

barriers with the highest efficiency in withdrawing micropollutants (Castro-Muñoz et al., 2017). 122 

Other membrane technologies, e.g. membrane distillation (MD) (Criscuoli and Carnevale, 2015), 123 
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membrane bioreactors (Santos and Judd, 2010), membrane contactors (Bey et al., 2010), have also 124 

been proven to remove specific heavy metal ions, such as arsenic (As), fluoride (F) and uranium 125 

(U). In particular, As is a natural tasteless and odorless element that may be highly toxic to humans 126 

exposed to it from air, food and water. It is known that this element exists in the earth’s crust at 127 

average levels between 2000–5000 µg per kg (Figoli et al., 2010). 128 

In this way, membranes have shown to be efficient in removing different metal ions (e.g. Cd2+, 129 

Pb2+, Ni2+, Cu2+, Al2+, Co2+, Zn2+, Mn2+, Cr4+) from water streams. A large number of studies has 130 

been now devoted to the manufacture of synthetic membranes for these particular separations, 131 

demonstrating compelling benefits, such as permeability, selectivity, enhanced chemical and 132 

physical properties within the removal of metal ions. When dealing with the removal efficiency of 133 

such membranes, the material properties, including chemical, physical, mechanical, play an 134 

important role in their efficiency, but also the membrane preparation protocols are crucial. In this 135 

context, several techniques have been used in membrane manufacture, such as stretching, track-136 

etching, sintering, electrospinning, phase inversion (Lalia et al., 2013), and interfacial 137 

polymerization (Peydayesh et al., 2018), in which plenty of organic and inorganic materials have 138 

been proposed and used in tailoring membranes (Castro-Muñoz et al. 2020). Polymers have been 139 

the most used organic materials in membrane preparation, followed by the inorganic ones (e.g. 140 

ceramics, metals and glass) (Ulbricht, 2006). Polymer membranes tend to present great design 141 

flexibility, while the advantages of inorganic membranes, e.g. ceramic membranes, compared with 142 

polymeric ones comprise their higher thermal, mechanical and chemical stability (Castro-Muñoz 143 

et al. 2018c). Also, the hydrophilicity and the surface charge in ceramic membranes are higher. 144 

Ceramic membranes can also be operated under extreme conditions of pH, temperature and high 145 

oxidizing environment (Yong et al., 2013). As a current trend in the field of development of new 146 

membrane materials, the merging of both materials to produce nanocomposite membranes is also 147 
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a promising tool for the efficient removal of heavy metals. However, there is a lack of reviewing 148 

the progress and latest nanocomposite membrane concepts and their role in water treatment and 149 

separation of heavy metals. Very recently, novel breakthroughs in tailoring nanocomposite 150 

materials have been released, such as nanoscale zerovalent iron impregnated biochar entrapped in 151 

calcium-alginate matrix (Wan et al., 2019), MnO2/chitosan (Dinh et al., 2020), core-shell 152 

structured nanocomposite of zero-valent iron with carbon (Zhou et al. 2020), Fe3O4/GO composite 153 

introduced into graphitic carbon nitride g-C3N4 (Dai et al., 2020), to mention just a few of them.  154 

Thereby, this review paper aims at providing the ongoing progress of using different concepts of 155 

membranes (polymeric, composite and nanocomposite) and potential novel materials for removing 156 

heavy metals. Herein, a highlighted literature survey of using polymeric and nanocomposite 157 

membranes for heavy metal removal from water is provided. Ultimately, the current advances and 158 

future trends of nanocomposite membranes in the field are also given. 159 

 160 

2. Metal ions removal using pristine polymeric and chemically modified polymeric 161 

membranes  162 

Polymers are probably the most widely applied membrane material for wastewater treatment. Due 163 

to their advantages including facile pore-forming mechanism, low cost and high flexibility (Yong 164 

et al., 2013), polymers are leading as the main material for membrane manufacture for different 165 

membrane-based technologies, such as electrodialysis, UF, NF and RO. Experimentally, 166 

polymeric membranes can remove different types of contaminants, such as organic matter, organic 167 

and inorganic compounds (e.g. heavy metal ions), and suspended pollutants (Wieszczycka and 168 

Staszak, 2017). 169 

Polymeric membranes are typically manufactured from natural or chemically-synthesized 170 

polymers. The membranes are creating a selective interface barrier between two adjacent phases 171 
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(feed and permeate) which governates the transport behavior of species between them. In general, 172 

the separation performance of the membrane depends on the properties of transported species (e.g. 173 

molecule size, shape and chemical nature), as well as physicochemical properties 174 

(hydrophilicity/hydrophobicity, surface charge, roughness) of the polymer membrane, especially 175 

porous structure. For instance, Table 1 enlists some of the reported studies in which the removal 176 

of heavy metal ions has been performed by means of different polymeric membranes and 177 

processes. It can be seen that the removal efficiency towards metal ions using polymer membranes 178 

has been reported between 77 to 99%. 179 

 180 

Table 1. Polymeric membranes used for the removal of metal ions. 181 

 182 

For instance, Qdais and Moussa (2004) evaluated the separation performance of the RO and NF 183 

technologies using polyamide spiral wound membranes for the removal of copper (Cu) and 184 

cadmium (Cd) metals from industrial wastewater. While the RO process showed Cu and Cd 185 

removal efficiencies of about 98 and 99%, respectively, the NF process exhibited more than 90% 186 

of Cu ions. Interestingly, the membranes were able to concurrently treat wastewater containing 187 

more than one heavy metal ion. As an example, these membranes reduced the ion concentration 188 

from 500 ppm to 3 ppm, meaning a removal efficiency of over 99%. Another typical polymeric 189 

membrane material is polyethersulfone (PES), which has been successfully consolidated in 190 

membrane preparation owing to its high thermal and mechanical stability, physiological and 191 

chemical neutrality and wide range pH resistance. PES, however, tends to present a hydrophobic 192 

nature which results in high membrane fouling when applied for organic aqueous filtration. Thus, 193 

with the aim of improving its separation performance and properties, efforts have been proposed 194 

to shift the surface properties of this hydrophobic polymer. It is known that hydrophobic polymers 195 
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are more prone to membrane fouling due to the particles contained in the feed bulk tend to 196 

accumulate on hydrophobic and rough surfaces, minimizing the interfacial tension between water 197 

and membrane (Pichardo-Romero et al., 2020). Therefore, the on-going strategies are aimed at 198 

mitigating the interaction between the foulants and the barrier layer. For example, an easy approach 199 

is to chemically modify the surface properties of the membrane by immersing it in a polyelectrolyte 200 

solution. It has been found that the polyelectrolyte adsorbed onto the membranes may significantly 201 

improve the membrane performance in terms of metal ions removal due to the presence of 202 

chelating functions in their structure. In this way, Mokhter et al. (2017) performed the chemical 203 

modification of PES membranes by polyelectrolyte multilayers, made of poly(allylamine 204 

hydrochloride) with poly(styrene sulfonate). The resulting membranes were employed to treat 205 

aqueous solutions containing single or mixed heavy metals, Cu2+, zinc (Zn2+)  and nickel (Ni2+), at 206 

various concentrations (50–1200 ppm). The tested membrane was efficient in separating all the 207 

tested metals either alone or mixed with high long-term stability and removal efficiencies over 208 

90%. Similarly, polyacrylonitrile (PAN) membranes were modified by Qin et al. (2013), who 209 

synthesized positively charged membranes by depositing polyelectrolytes. Researchers used PAN 210 

membranes modified by the layer-by-layer assembly of polyethyleneimine (PEI) and poly(sodium 211 

4-styrenesulfonate) (PSS), to successfully separate Ni2+, Cu2+, Zn2+ and Cd2+ aqueous solutions, 212 

achieving removal efficiencies in the range of 95–98%. Particularly, the NF tests showed that the 213 

removal efficiency of Ni2+ and Cd2+ ions increased with the number of bilayers, but a decrease in 214 

permeate fluxes was observed. The usage of additional polymeric layers could also be applicable 215 

in the case of hollow fiber membranes. The great benefit of multi-layer materials lies in the fact 216 

that a relatively cheap material could be used as a support while a high-performance material 217 

(commonly a more expensive material) can be used as the selective layer. For instance, Zhu et al. 218 

(2014) tailored a high-performance dual-layer NF hollow fiber membrane and tested for the 219 
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removal of Cd2+, Cr2O7
2- and Pb2+ salts from model wastewater, attaining removal efficiencies 220 

above 95%. Herein, researchers applied polybenzimidazole (PBI) as the outer selective layer while 221 

the blend of PES and polyvinylpyrrolidone (PVP) was implemented as the support layer. Thanks 222 

to the unique charge characteristics and high chemical resistance of PBI, the novel developed dual-223 

layer NF membrane demonstrated a great salt rejection value due to the Donnan exclusion effect 224 

enhancement and low adsorption of heavy metal ions on the PBI surface.  225 

Polyvinylidene fluoride (PVDF) is definitely another hydrophobic polymer that remains popular 226 

in a wide number of water treatment applications (Gontarek et al., 2019; Xia & Ni, 2015). PVDF 227 

membranes are well recognized for their multiple advantages including high chemical tolerance, 228 

good mechanical and thermal properties. Tzanetakis et al. (2003) have proved that the performance 229 

of chemically sulfonated PVDF membrane in the electrodialysis process can be comparable with 230 

the one given by a perfluorosulfonic Nafion 117 commercial membrane. The sulfonated PVDF 231 

membrane has displayed removal efficiencies towards Co and Ni ions of about 90% and 69%, 232 

respectively. In addition to this, a meaningful enhancement of the amounts of transported metal 233 

ions was seen while using corrugated membranes, which resulted in an increase in membrane area 234 

of 60% compared with those using flat membranes. Wang et al. (2017) have developed the 235 

modification of PVDF membrane for post UF testing. In general, the results revealed that the 236 

interaction by blending of PVDF with 2-aminobenzothiazole conducted to the efficient removal of 237 

chromium (Cr) from the wastewater. As a disadvantage of such membrane preparation, the 238 

membranes showed a low permeate flux when compared with the typical UF membranes. Since a 239 

long time ago, it is documented that one of the simplest approaches to improve the water flux in 240 

hydrophobic polymeric membranes, like PVDF, is to mitigate the membrane fouling, which can 241 

be reached through hydrophilicity enhancement. For instance, Pereira et al. (2014) combined 242 

PVDF polymer matrix with polyaniline nanofibers, which was, in this case, proposed as a 243 
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hydrophilic agent to fabricate enhanced hydrophilic membranes. The authors described that the 244 

resulting membranes exhibited better hydrophilicity and better membrane properties, as well as a 245 

relatively high rejection toward heavy metal ions, such as Pb2+ and Cd2+, e.g. around 98.5% and 246 

97.3%, respectively. 247 

Cellulose acetate (CA), originated from natural sources and feedstocks, is a polymer material 248 

widely used in UF membrane manufacture. Such a polymer combines the advantages to have low 249 

cost and high biocompatibility with other materials. Unfortunately, this polymer does not reveal 250 

high enough fluxes, and it can allow preparing low porous sub-layers, as well as easy fouling issues 251 

(Combe et al., 1999). However, the blending of CA with hydrophilic agents may result in 252 

membranes with a superior antifouling property. This has been indeed demonstrated by Lavanya 253 

et al. (2019), who carried out the blending of CA with poly(methyl vinyl ether-alt-maleic acid) 254 

(PMVEMA). The generated membranes displayed enhanced antifouling capacity in the blend 255 

membranes in comparison with the pristine CA membrane. When dealing with their separation 256 

performance, the flux recovery ratio was reached up to 95%. Importantly,  the pure water fluxes 257 

of such blend membranes were raised with the content of PMVEMA, since PMVEMA conducted 258 

to  higher porosity and hydrophilicity. Concurrently, the blend membranes were also more efficient 259 

for the removal of heavy metal ions compared to pure CA membrane. 260 

Taking into account the advantages and disadvantages of polymeric membranes, the popularity of 261 

their use and implementation for removing heavy metal ions is also attributed to their low 262 

manufacture costs and ease of modification. However, such polymeric membranes still lack  263 

different desired properties for membrane separation processes, including the ones that required 264 

high selectivity towards low solutes and species. To date, many works have been done at aiming 265 

the enhancement of the separation performance of the polymeric membranes (as listed in Table 266 

1). Nevertheless, the membrane fouling and low mechanical strength in polymeric membranes are 267 
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recognized as the most relevant issue in limiting their application. The development and 268 

manufacture of membranes with high selectivity, permeability, rejection, and superior antifouling 269 

properties are the biggest challenges among scientists who work on membrane development and 270 

separation processes. Despite these drawbacks, the membranes have shown interesting results 271 

during the removal of heavy metal ions. For example, Uddin et al. (2007) analyzed the removal 272 

capacity of two commercial NF polyamide membranes (NF90 and NF200) towards As (III) and 273 

As (V). The effect of the operating conditions on the rejection performance was investigated in the 274 

study. As set by authors, the feed stream contained mainly in tap water together with arsenate and 275 

arsenite. In all tests, As (V) was generally rejected better than As (III), and the membranes offered 276 

the high removals over 98% and 65% for As (V) and As (III), respectively. 277 

Amy et al. (1998) previously designed a bench-scale RO process implementing a commercial 278 

membrane (DK2540F manufactured by DESAL) for As removal. The experiments comprised the 279 

single element testing in flat sheet membrane for lake water and deionized water filtration. The 280 

findings demonstrated high removal efficiency towards arsenate (up to 96%), and acceptable 281 

removal efficiency for arsenite (60–85%). 282 

More recently, using a different membrane process, i.e. membrane distillation (MD), it has been 283 

demonstrated its ability to effectively separate specific heavy metal ions. For example, direct 284 

contact MD (DCMD) technology can be feasible in removing up to 99.95% arsenic molecules, 285 

like As (III) and As (V), from a contaminated water model solution. Interestingly, this process was 286 

operated for 250 h containing 500 µg L-1, the process did not evidence any change in the permeate 287 

fluxes and As content (Pal and Manna, 2010). Similarly, Manna and Pal (2016) used a similar 288 

DCMD unit, but in this case possessing a hydrophobic flat sheet membrane (nominal pore size 289 

0.13 µm, thickness 150 µm, porosity 70–75%). As a result, the systems proved an As removal of 290 
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about 100% from contaminated groundwater, and no flux decline was recorded during 4 days of 291 

operation. 292 

Today, the most important approach in obtaining membranes with exceptional separation 293 

performance and properties relies on the synthesis and preparation of nanocomposites. This 294 

concept of membranes is well defined together with their features in the following section, and 295 

finally, the progress and latest development works in manufacturing such membranes for heavy 296 

metals removal. 297 

 298 

3. Beginnings of nanocomposite membranes for the removal of heavy metal ions 299 

Polyethersulfone (PES), polysulfone (PSF), PAN, polytetrafluoroethylene, polypropylene, and 300 

PVDF are among the main polymer materials used in the manufacture and production of 301 

membranes for pressure-driven membrane processes. It is known that most of these materials have 302 

excellent permeability, selectivity, and acceptable chemical, mechanical and thermal stability 303 

when used in water treatment applications. Particularly, PSF and PES membranes are the most 304 

used materials for manufacturing UF membranes. Such standard chemically synthesized polymers 305 

are also involved within the fabrication of NF and RO membranes, while polypropylene and PVDF 306 

are more exploited in MF membranes production (Pendergast, & Hoek, 2011). However, it is still 307 

challenging the optimization and enhancement of the separation performance of these pristine 308 

polymeric membranes (Alzahrani& Wahab, 2014), as well as the improvement of some other 309 

physicochemical properties, such as stability, hydrophilicity/hydrophobicity, fouling resistance, 310 

among others (Hana et al., 2016). 311 

The enhancement of such properties has been recently breakthrough by using nanotechnology, 312 

which has been extended in a wide range of applications into membrane-based technologies, e.g. 313 

to enhance the membranes’ efficiency for the removal of heavy metals, which is a relevant matter 314 
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within water treatment (Ursino et al., 2018). Nanocomposite membranes are recognized as “the 315 

next generation of membranes”. In theory, a typical nanocomposite membrane includes the 316 

dispersion or deposition of nanosized filling materials into polymer matrices (Castro-Muñoz et al., 317 

2018d; Castro-Muñoz et al., 2018e; Song et al., 2012). This concept of membranes can be 318 

implemented in different membrane-based separations, including gas–gas, liquid–liquid, and 319 

liquid–solid separation. In the early 1990s, nanocomposite membranes were initially developed 320 

for membrane gas separation processes (Ahmadizadegan et al., 2018; Robeson, 1991), where 321 

selective zeolites were embedded into polymers to improve both permeability and selectivity (Li 322 

et al., 2017). Due to such success on gas separation approaches, nanocomposite membranes were 323 

then initiated to be explored in other fields of applications and processes, such as sensor 324 

applications (Jiang et al., 2004; Pandey et al., 2018), direct methanol fuel cells (Chen et al., 2006), 325 

lithium-ion battery (Li et al., 2008), proton exchange membrane fuel cells (Boaretti et al., 2017; 326 

Jalani et al., 2005), pervaporation (PV) (Castro-Muñoz et al., 2018e; Yang et al., 2009), organic 327 

solvent nanofiltration (Sorribas et al., 2013), water treatment, to mention just a few. 328 

Nanocomposite membranes, also known as mixed matrix membranes (MMM), are not only 329 

tailored by embedding nanosized materials into a continuous matrix phase, nanoparticles or fillers 330 

can also be coated onto the membrane surface, which is actually well denoted as a nanocomposite 331 

membrane. Currently, the preparation and implementation of these membranes are a current trend 332 

in the nanotechnological field for water treatment, especially in the separation of metal ions 333 

(Marino et al., 2017). Importantly, such nanosized filling materials not only possess exceptional 334 

features that may be provided to the primary element (e.g. polymer) but also good compatibility 335 

when embedded. Nanocomposite membranes have concurrently revealed low-fouling issues when 336 

embedding the inorganic materials (Kim and Bruggen, 2010), together with improved permeability 337 

and selectivity, compared with polymeric membranes (Madaeni et al., 2015). To date, plenty of 338 
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nanosized fillers have been utilized in the preparation of nanocomposite membranes, such as 339 

titanium dioxide (TiO2) (Zhang et al., 2013), silver (Ag) (Prince et al., 2014), carbon nanotubes 340 

(CNTs) (Celik et al., 2011), zinc oxide (ZnO) (Balta et al., 2012), copper oxide (CuO) (García et 341 

al., 2017), graphene-based materials (e.g. graphene, grahene oxide or reduced graphene oxide) 342 

(Gontarek et al., 2019; Kashyap, Pratihar and Behera, 2016; Xia and Ni, 2015), alumina (Al2O3) 343 

(Arsuaga et al., 2013), silica (SiO2) (Yu et al., 2009), magnetite (Fe3O4) (Alam et al., 2016), cobalt 344 

(Co) (Gzara et al., 2016), zirconium dioxide (ZrO2) (Maximous et al., 2010), clay (Mierzwa et al., 345 

2013) and zeolites (e.g. NaX) (Fathizadeh et al., 2011), among others. For instance, Table 2 346 

summarizes recent studies in which such inorganic fillers have been filled among several polymers 347 

and then applied in different applications of water treatment, wastewater treatment, toxic and metal 348 

ions removal from water. 349 

 350 

Table 2. Different filling materials embedded into nanocomposite membranes for different water 351 

treatment applications.  352 

 353 

Specially, these nanocomposite membranes have shown valid insights during the removal of 354 

metal ions. For example, Bahadar et al. (2015) developed and tested ZnO-filled CA nanocomposite 355 

membranes for the separation of Zn 2+, Cd 2+, Pb2+, Mn2+, Ni 2+, Fe2+, Al3+, Sb3+, and Sr3+, 356 

concluding that these membranes were highly selective towards Fe2+. Furthermore, the developed 357 

membranes displayed acceptable permeability ranged from 0.9 up to 6.6 L m-2 h-1 bar-1. Some 358 

authors have tailored nanocomposite membranes based on functionalized multi-walled carbon 359 

nanotube (MWCNT)/polysulfone (Shah and Murthy, 2013), which also has demonstrated ability 360 

for heavy metal removal (up to 98%). In this study, the percent of rejection towards heavy metal 361 

was noted to increase by increasing the MWCNTs amount due to MWCNTs reduced the 362 
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membranes’ pore size, the best nanocomposite performances were about 94.2% and 78.2% 363 

removal for Cr(VI) and Cd(II), respectively. It is important to mention that pristine polymer offered 364 

only 10.2% and 9.9% removal, respectively. Here, the use of inorganic materials is showing 365 

remarkable enhancement of polymeric membranes towards heavy metal ions retention. Therefore, 366 

the research community is today putting big efforts into the development of novel nanocomposite 367 

membranes that may efficiently separate heavy metal ions from several aqueous streams. Herein, 368 

the following section provides the progress, latest developments and breakthroughs in the field. 369 

 370 

 371 

4. Progress in nanocomposite membranes for heavy metal ions separation  372 

To date, different categories of fillers and additives have been involved in the manufacture of 373 

nanocomposite membranes. Graphene oxide (GO) is likely one of the main materials that has been 374 

fully explored. GO has attracted the attention of the research community, especially for the 375 

separation of toxic ions and organic molecules in polluted water (An et al., 2016). GO has proven 376 

its excellent separation ability towards different molecules (e.g. water molecules) and ions. GO 377 

possesses interlayer nano-capillary networks that are formed thanks to their connected interlayer 378 

spaces, together with the gaps between edges of non-interlocked neighbouring GO sheets (An et 379 

al., 2016; He et al., 2015), facilitating the transport of molecules or ions through the GO membrane. 380 

At this point, multiple factors, including molecules’ size or ions, the charge of ions, and numerous 381 

interactions (such as electrostatic interaction, metal coordination, and cation−π interaction between 382 

ions and GO sheets) strictly influence the separation performance of the GO. These properties 383 

make to consider GO as a promising candidate material within the removal of pharmaceutical 384 

traces from water and wastewater (Sophia et al., 2016). More interestingly, the embedding of GO 385 

can also bring some benefits to the properties of the polymeric membranes, e.g. thanks to the high 386 
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hydrophilicity of GO, the change of the hydrophobic to hydrophilic nature of polymeric 387 

membranes has been done, resulting in enhanced permeation fluxes (Xia et al., 2015). As an 388 

example, Chang et al. (2014) analyzed the synergistic effect of GO and PVP on the performance 389 

of PVDF UF membranes. The study found out that the membrane’s hydrophilicity and anti-fouling 390 

properties were enhanced by the addition of both GO and PVP. The authors concluded that this 391 

enhancement could be associated with the possible formation of hydrogen bonds between PVP 392 

and GO. Recognizing the multiple benefits that GO has given to polymeric membranes, 393 

researchers have initiated the improvement of the structural features of GO, e.g. the chemical 394 

modification has been an alternative in the field. According to researchers’ insights, the chemical 395 

modification (to a positive charge) of GO is suggested for better metal ions removal efficiency (Yu 396 

Zhang et al., 2015). In this sense, Xu et al. (2014) performed the chemical functionalization of 397 

graphene oxide (f-GO) through a simple covalent functionalization with 3-398 

aminopropyltriethoxysilane (APTS). The resulting organosilane-GO was then filled in PVDF UF 399 

membranes (Xu et al., 2014), the PVDF/ f-GO membranes had higher hydrophilicity, water flux, 400 

and protein rejection than pristine PVDF membranes and conventional PVDF/GO membranes. For 401 

instance, the membranes, containing 1wt.%  f-GO, released a high permeate flux of about 401.3 L 402 

m−2 h−1, a higher value compared to the one provided by the pristine PVDF (ca. 240 L m−2 h−1) 403 

and PVDF/GO membranes, pointing out that these composite membranes also had better anti-404 

fouling properties due to their higher hydrophilicity (Xu et al., 2014).  405 

More recently, Zhang et al. (2017) carried out the cross-linking procedure in GO composite with 406 

isophorone diisocyanate (IPDI), later coated on PVDF membrane. Basically, the cross-linking 407 

methodology helped to improve the removal of dyes (over 96%) and heavy metal ions (Pb2+, Cu2+, 408 

Cd2+, Cr3+) (between 40-70 %) in the MF membrane compared to the pattern GO-PVDF 409 

membrane. It is worth mentioning that these composite membranes also showed high permeation 410 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


18 

 

rates between 80-100 L m-2 h-1 bar -1 under low external pressure (i.e. 1.0 bar). By embedding 411 

modified magnetic GO (MMGO), it was also eventuated a significant increase in the pure water 412 

flux due to changes in surface roughness and hydrophilicity of PES NF membranes. Regarding the 413 

copper and dye removal ability of the membranes remarkably increased thanks to the presence of 414 

hydrophilic functional groups on the surface of MMGO hybrid. The prepared NF membrane, 415 

containing 0.5 wt.% MMGO hybrid, demonstrated the highest copper ions removal (ca. 92%) 416 

(Abdi et al., 2018). The authors also stated that these GO-filled NF membranes can also be good 417 

candidates in other types of water treatment applications, such as water softening, decolorization, 418 

natural organic matter removal (Wei et al., 2018). 419 

A more recent approach to improving GO-based nanocomposite PVDF membranes was done by 420 

Ren et al. (2019), who fabricated PVDF-GO membrane via electrospinning with immobilization 421 

of nano-zero valent iron (nZVI) particles. Such particles were deposited on the surface by in-situ 422 

synthesis. This membrane was designed and tested to remove Cd (II) and trichloroethylene (TCE) 423 

contaminants from groundwater, following a mechanism of gravity-driven membrane filtration. In 424 

principle, the hydrophilicity and improved membrane flux was obtained by the functionalization 425 

of GO into PVDF. Results showed that the hydrophilicity of the membranes increased by raising 426 

the GO concentration, leading to an improved permeability property. This resulted in the 427 

achievement of high and stable fluxes of 255 L m−2 h−1 for Cd and 265 L m−2 h−1 for TCE. 428 

Moreover, using 1 wt.% GO loaded PVDF-GO-nZVI membrane, removal performances of 100% 429 

and 82% were successfully achieved towards Cd (II) and TCE, respectively. The authors attributed 430 

such relevant Cd removal to a chemisorption phenomenon, while the TCE removal mechanism 431 

consisted of a multi-step dechlorination process involving several reactions. To sum up, the study 432 

has demonstrated that the functionalized PVDF-GO membrane can be a promising barrier for 433 

water remediation due to its high reactivity towards the evaluated pollutants. 434 
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An interesting future approach on GO-based nanofillers for nanocomposite filtration membranes 435 

has been the one synthesized by Ma et al. (2020). They embedded GO-polyethylene glycol (P-GO) 436 

into a PVDF ultrafiltration membrane and thus proposed such a composite membrane for removing 437 

heavy metals within a wastewater treatment strategy. The membranes prepared via phase inversion 438 

method revealed outstanding results in terms of improved hydrophilicity, permeability and 439 

antifouling properties, while crosslinking between polyethylene glycol and GO contributed to an 440 

increase in thermal stability, pore size as well as surface porosity. The membrane containing 0.5 441 

wt.% P-GO obtained the highest water flux of 94 L m-2 h-1. This was due to the hydrophilicity 442 

provided by the embedded hydrophilic functional groups into the membrane matrix. The same 443 

membrane formulation showed a 94% bovine serum albumin rejection rate, indicating good 444 

separation properties. Furthermore, excellent antifouling properties were acquired by the obtention 445 

of the lowest surface roughness, the lowest total and irreversible resistance values, as well as by a 446 

78% flux recovery obtained after 3 performance cycles. Antifouling property of the membrane 447 

was assigned to hydrophilic groups forming a hydration layer that repulses pollutant contact and 448 

contaminant deposition. The authors highlighted that further studies must be conducted on the 449 

application of this nanocomposite membrane towards the removal of heavy metals due to its 450 

excellent anti-fouling, permeability and hydrophilicity properties. 451 

Table 3 enlists some of the latest studies in nanocomposite membrane synthesis for heavy metal 452 

removal reported by the research community. It is obvious that the separation performance of a 453 

membrane depends on multiple factors, but the membrane preparation procedure is crucial. 454 

Regardless of these important factors, most of the nanocomposite membranes generally display 455 

removal rates ranged from 27 to 100%. 456 

 457 

Table 3. Latest development works on tailoring novel nanocomposite membranes for heavy 458 
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metal ions removal. 459 

 460 

For instance, Ali et al. (2019) reported a 98% zinc ions (Zn2+) removal from synthetic water 461 

through filling functionalized MWCNTs into PVC, in which the retention rate was stable over 60 462 

min process time. Interestingly, these membranes also allowed to remove more than 70% zinc ions 463 

(Zn2+), when treating real wastewater effluent. The core of success in these membranes was the 464 

chemical functionalization of the MWCNTs. The authors stated that the resulting removal 465 

efficiency of CNT membrane could be associated with the high absolute zeta potential together 466 

with the hydrophilicity of the fillers embedded on the inside surface of the hollow fiber membrane, 467 

and of course the plenty number of oxygen functional groups on CNT surfaces. Theoretically, the 468 

removal capacity can be a function of electrostatic interactions among the positive charge of Zn2+ 469 

ions and the negative charge surface of CNTs at specific conditions (e.g. higher pH values) (Lu 470 

and Chiu, 2006), which foster the strong surface complexation reaction. This enabled the 471 

membranes to demonstrate high adsorption ability, as represented in Figure 1. The use of 472 

sulfonated MWCNTs also represents a promising pathway in membranes with efficient removal 473 

of heavy metals, these membranes had shown an adsorption removal over 59% for Cu (II) ions 474 

(Ge et al., 2014). Such MWCNTs membranes were also enabled to remove about 99.2% of other 475 

types of toxic components, e.g. rhodamine B (Peydayesh et al., 2018). 476 

 477 

Figure 1. Adsorption and desorption mechanisms of zinc ions in functionalized MWCNTs(Ali et 478 

al., 2019). 479 

Another example of surface functionalization of materials in nanocomposite membranes showing 480 

promising results on ion removal regards the polyether imide (PEI) nanofiltration membrane using 481 

a nanofiller additive, which consisted of L-cysteine modified glycidyl-polyhedral oligomeric 482 
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silsesquioxane (POSS) (Bandehali et al., 2020). The PEI membrane filled with 1 wt.% of L-483 

cysteine modified-POSS provided an outstanding separation efficiency towards Cr
+2 and Na

+ ions 484 

with a rejection percentage of 79% and 80%, respectively, which was attributed to the porous 485 

membrane morphology and the presence of negatively charged hydrophilic functional groups on 486 

the membrane surface, both features promoted the absorption of positively charged ions, as well 487 

as an increase of ion adsorption active spots (Bandehali et al., 2019). Moreover, L-cysteine 488 

functionalized POSS NPs incorporated into the PEI nanofiltration membrane led to a cross-linking 489 

reaction between the amino groups (NH2) in L-cysteine modified-POSS filler and imide rings in 490 

PEI. This increased the membrane surface hydrophilicity due to the hydroxyl (–OH), carboxyl (–491 

COOH) and amine (–NH2) functional groups present in these materials, resulting in high water 492 

permeation fluxes of 95 L m-2 h-1 (in 1 wt.% of L-cysteine modified-POSS-PEI composite), from 493 

17.63 L m-2 h-1 in neat PEI membrane. In addition to the exceptional performance, the modified 494 

filler also offered other benefits to the nanocomposite membranes, such as improved the 495 

antifouling properties to the resulting nanocomposite membranes by decreasing the roughness, a 496 

flux recovery ratio of 95%, increased degree of wetting, as well as an increment in the membrane 497 

surface smoothness, which all added up to the obtention of a better membrane structure for 498 

avoiding salt accumulation. 499 

To date, the blending of inorganic phases into polymers has been also a smart alternative for the 500 

simultaneous removal of different types of heavy metal ions. At this point, the filling of multiple 501 

fillers is likely a feasible option for such a task. For instance, Suresh et al. (2018) tailored a hybrid 502 

nanocomposite membrane embedding carbon nanofibers and TiO2 into PAN polymer, the 503 

generated hybrid membranes have proved rejection percentages of 87%, 73%, 66% towards Pb2+, 504 

Cu2+, Cd2+ metal ions, respectively. Towards the efficient separation of Pb2+, Suresh et al. (2018) 505 

explored and demonstrated that amino-functionalized metal-organic frameworks (MOFs) 506 
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combined with a ceramic ultrafiltration membrane represent to be an effective material for the Pb2+ 507 

removal, which revealed at least 61.4% removal, whereas the best efficiency depended on the 508 

operating conditions, but it reached up to 100% (Yin et al., 2016). It is worth mentioning that the 509 

UF process also exhibited high flux ca. 1, 300 L m-2 h-1 (at 0.23 Mpa), which was stable during 510 

120 min operating time. 511 

 512 

Very recently, another kind of MOF-based nanocomposite has proven an unprecedented removal, 513 

ca. 100%, of multiple heavy metal ions from wastewaters. Yuan et al. (2019) developed a 514 

composite asymmetric membrane by coating Al2O3 with ZIF-300, as illustrated in Figure 2. 515 

 516 

Figure 2. Graphical drawing of ZIF-300 deposited on alumina for metal ion removal and organic 517 

dye from water (Yuan et al., 2019). 518 

 519 

The success of Yuan’s membranes was based on the impressive size-exclusion mechanism of ZIF-520 

300. As reported by the authors, this water-stable MOF may possess an aperture size of pores 521 

around 7.9 Å, which represents a larger kinetic diameter than the one of water (H2O, ∼2.8 Å), but 522 

still smaller than the hydrated diameter of heavy metal ions (e.g. Cu2+, Co2+, Cd2+, Al2+). The 523 

membranes remarkably reached to remove completely such compounds (Yuan et al., 2019). 524 

Furthermore, the ZIF-300 membrane demonstrated a high permeation (water permeance of 39.2 L 525 

m-2 h-1 bar-1) and rejection rate of 99.2% towards CuSO4, together with stable performance. 526 

Towards the coating of different materials on organic or inorganic supports, Ibrahim et al. (2018) 527 

combined PSF and poly[styrene-alt-(N-4-benzoylglycine-maleamic acid)] cumene terminated 528 

(PAH) to remove over 91% for Pb2+ and 72% for Cd2+ ions. In fact, the authors concluded an 529 
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impressive adsorption ability of such composite, which led to the UF process to be enough for the 530 

efficient removal of these heavy metal ions. 531 

Among novel materials for UF, MF and NF filtration processes, ceramic materials are also 532 

promising tools for wastewater treatment due to their large specific surface area and convenient 533 

interior pore structure for filtration, catalysis and adsorption (Wu et al., 2019). Fe-based ceramic 534 

nanomaterials were used by Wu et al. (2019) for the fabrication of vacuum filtered membranes 535 

(VFMs) and polymer mixed e-spinning membranes (ESPMs), which were later assayed for Cd2+ 536 

ions removal from aqueous solutions. During the ceramic synthesis, a hydrothermal method was 537 

implemented for tailoring the Fe-based nanomaterials using FeOOH and µ-Fe2O3 nanowires as 538 

well as Fe3O4 NPs. Experimentally, VFMs showed a higher removal capacity than ESPMs; in 539 

contrast, ESPMs demonstrated to have better mechanical strength and stability. Particularly, VFM 540 

exhibited the highest Cd2+ adsorption capacity, ca. 29.3 mg g-1, owed to a larger surface area 541 

provided by NPs in the membrane and a plenty internal pore structure, however, this resulted in 542 

drawbacks in terms of structural reliability shown by looseness and micro-cracks after the third 543 

filtration process, therefore, further studies aimed to improve mechanical strength properties 544 

should be conducted. On the other hand, nanoparticles doped ESPM after the fourth filtration 545 

maintained the original structure without fractures thanks to the better ductility properties and 546 

magnetic cores inside the nanofiber. According to the authors, chemical sorption, consisting of 547 

electron exchange between membranes and ions, was suggested to be the rate-controlling 548 

mechanism for Cd2+ adsorption, but the Cd adsorption mechanism was also indicated to be a multi-549 

step process involving an external membrane surface adsorption and intraparticle diffusion. As 550 

concluding remarks from this study, it was observed that the ESPMs adsorption capacity was 551 

definitely enhanced with the Fe3O4 NPs as membrane precursors, but Cd2+ removal capacity should 552 

be improved in further studies by possibly modifying the polymers on the membrane surface.  553 
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Within the last years of research on novel materials for improving nanocomposite fillers, particular 554 

attention has been given to mostly synthetic-based fillers, leaving aside green material-based ones, 555 

which are categorized in such a way due to their plant, animal, or natural origin. In this framework, 556 

Kamari and Shahbazi (2020) initiated and innovated the preparation of green nanofillers made 557 

from Fe3O4 magnetic NPs coated with rice husk extracted silica (SiO2) functionalized with 3–558 

Aminopropyl trimethoxy silane. The obtained Fe3O4@SiO2-NH2 nanofiller was then embedded 559 

into the matrix of a PES NF membrane, and subsequently tested the removal of Cd (II) and methyl 560 

red dye coming from industrial effluents. Results showed that the membrane presented an 561 

asymmetrical morphology and highly dense layer, assigned to the fact Fe3O4@SiO2-NH2 nanofiller 562 

acted as a pore causing agent, promoting porosity. It was also seen that greater concentration 563 

amounts (ca. 0.5 wt.%) of the nanofiller into the membrane demonstrated to increase the water 564 

diffusion due to its hydrophilic functional groups (such as amine) present on the surface. The 565 

membrane filled with 0.5wt.% Fe3O4@SiO2-NH2 yielded the best salt rejection performance, as 566 

well as the highest removal efficiencies of 93% and 97% for Cd (II) and methyl red dye, 567 

respectively. Cd (II) adsorption was also found to be enhanced by the presence of polar primary 568 

amine NH2 functional groups on the surface, acting as active binding sites. While methyl red dye 569 

adsorption was associated with the electrostatic interactions and non–covalent bonds given by the 570 

hydrophilicity nature of the green nanofiller. In addition to this, an excellent antifouling capacity 571 

was revealed by the novel membrane together with good reusability property for Cd removal, e.g. 572 

it demonstrated a 7% decrease in removal efficiency after the fifth Cd (II) filtration cycle. Long-573 

term stability and anti-contamination properties for methyl red dye removal were also confirmed 574 

by the maintenance of a constant 97% filtration efficiency and a slight decrease in solution flux 575 

after a 40h filtration process. Hence, this pioneering study should be considered as a starting point 576 
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within the implementation of green material-based nanofillers for filtration membranes since it has 577 

proven to be an innovative promising alternative for the removal of pollutants.  578 

Up to now, it is evident that nanocomposite membranes implemented in UF, MF and NF processes 579 

for the removal of heavy metals is a research field with a promising future ahead, coring the 580 

development of sustainable wastewater treatment strategies. At this point, research efforts must 581 

continue to be done on discovering innovative mixtures of nanocomposite materials and their 582 

interactions, that may result in membrane enhancements in terms of mechanical strength, 583 

adsorption mechanisms, metal removal efficiency rates, antifouling, reusability, permeability, and 584 

selectivity properties. All these properties will foster the implementation of efficient and reliable 585 

processes. Based on current findings, the research community is extensively working on the 586 

development of novel types of composites. For instance, Table 4 presents a variety of novel 587 

nanocomposites that have not been implemented yet in the fabrication of filtration membranes, 588 

however, they represent a promising future since they count with effective adsorption mechanisms, 589 

innovative material combinations and also synthesized following novel methodologies for the 590 

removal of heavy metals, offering new clues on what is next on improving nanocomposite 591 

membrane technology. It is quite possible that such new composites will be assayed in membrane-592 

based separations expecting acceptable performance based on their relevant findings in separating 593 

metal ions from water systems. 594 

 595 

Table 4. Novel nanocomposite materials with outstanding heavy metal removal efficiency that 596 

have not been implemented in membranes. 597 

 598 

Recently, Dinh et al. (2020) tailored a chitosan-MnO2 nanocomposite which was tested as an 599 

adsorbent to remove Cr(VI) from an aqueous solution. Thanks to its high Langmuir monolayer 600 
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adsorption capacity of about 61.5 mg g-1, this new material displayed high Cr removal (of about 601 

94%) in the effluent from industrial zones. The authors claimed that electrostatic attraction was 602 

fundamental to the uptake of Cr onto the composite. Importantly, such composite was also 603 

evaluated during 5 cycles, showing a  removal efficiency decrease up to 80%. Unlike Dinh’s study, 604 

a core-shell structured nanocomposite of zero-valent iron with carbon (ZVI@C) exhibited a 605 

tremendous adsorption capacity (over 800 mg g-1 for Cr) and thus revealing an acceptable Cr (VI) 606 

removal efficiency of 80% (Zhou et al., 2020).  607 

The adsorption capacity depends on the characteristics of elements forming the nanocomposite, 608 

their synergistic effect and their resulting properties, for example, Mahmoud et al. (2019) notified 609 

a higher adsorption capacity in SiO2@VB9 nanocomposite for Pb (over 900 mg g-1) than Cd (ca. 610 

562 mg g-1) and Cu (ca. 152 mg g-1), such metal uptake capacities allowed to the resulting 611 

composite to show high removal efficiency ranged from 81 to 100% for all tested heavy metal 612 

ions. Dai et al. (2020) have very recently proved that the strategic selection of the elements 613 

proposed for the nanocomposite fabrication may result in a high-performance material, for 614 

instance, Dai et al. introduced Fe3O4/GO composite into graphitic carbon nitride g-C3N4, which 615 

provided an impressive U (VI) extraction capacity (up to 2880 mg g-1) together with high removal 616 

efficiency (ca. 96 %). Due to its chemisorption properties, an EDTA modified magnetic iron oxide 617 

loaded with sawdust carbon (EDTA@Fe3O4/SC) composite has demonstrated a 98% Cd (II) 618 

removal capacity; according to the study, the Cd (II) removal efficiency increased as pH value and 619 

adsorbent dose increase. Moreover, this nanocomposite also presented good multi-metal ion 620 

uptake (over 80%) for Zn (II), Cd (II), Cu (II), Pb (II), Ni (II), Co (II), As (III), U (VI), and high 621 

adsorption efficiency (ca. 83%) after three cycles, proving an input of its reusability. At this point, 622 

most of the newly nanocomposite materials (presented in Table 4) release a satisfactorily good 623 

metal ion uptake ability being potential candidates for the fabrication of membranes towards water 624 
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purification and disinfection (Castro-Muñoz, 2020b). However, the synthesis and preparation 625 

methodologies, as well as the resulting cost, implied in the fabrication protocols may represent a 626 

drawback during the further implementation of such materials in membranes. Even if the ongoing 627 

progress and innovation of new composite materials have been pointed out over this review, the 628 

economic feasibility related to the fabrication cost is a critical driver for their establishment and 629 

implementation. Unfortunately, economic feasibility, which may represent a profitable and 630 

competitive business, is a fundamental factor for the investment of companies and suppliers 631 

(Urbancová, 2013; Skapa, 2012). Herein, scientists must also be focused on developing new 632 

materials and fabrication protocols considering fewer sources and less costly aimed at producing 633 

economically sustainable materials. In this context, there is today a new trend in utilizing green 634 

and bio-based materials for the development of economically viable feedstocks and products. 635 

Since different carbonaceous materials, such as GO, activated carbon and CNTs, have shown their 636 

potentiality as adsorbents for copper decontamination (Ren et al. 2013), it is likely that other 637 

potential materials, like biochar, may also be a promising candidate in the preparation of 638 

composites. It is worth mentioning that biochar is commonly manufactured by pyrolysis of 639 

biomass and plant-based derivatives. Therefore, the synthesis and usage of biochar represent an 640 

environmentally friendly way to produce low-cost adsorbents (Marousek et al., 2020ab), which 641 

have been recently involved in the fabrication of membranes for the selective separation of 642 

phosphate from phosphate-rich wastewaters (Mohammadi et al., 2020). 643 

Most of the nanocomposite materials and membranes tend to display impressive metal ion uptake, 644 

and more importantly, some composites can concurrently remove more than one type of ion. 645 

However, to core the complete resource recovery (i.e. water), it is important to consider the 646 

synthesis of nanocomposite membranes which may offer the simultaneous removal of heavy metal 647 

ions and organic contaminants, e.g. Zhang et al. (2020) developed composite membranes filling 648 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


28 

 

polydopamine-coated ferric oxide (Fe3O4@PDA) in PES. In addition to the higher permeabilities 649 

of the composite membranes (e.g. over 2600 L/m2 h bar corresponding to 20wt.% Fe3O4@PDA 650 

PES membrane) compared to the pristine PES, the composites achieved competitive adsorptive 651 

removal of Pb2+ and catalytic degradation of methylene blue, e.g. acceptable Pb2+ removal 652 

efficiency (above 80%) together with high methylene blue degradation (above 90%). In this case 653 

of study, the authors strategically designed the composite to display a synergistic effect. For 654 

example, the phenolic hydroxy and amino groups on the surface of PDA were able to chelate the 655 

cations to promote the adsorption of heavy metal ions, while the electron transfer in the Fenton-656 

like reaction was promoted due to the phenoquinone structure of the surface of the PDA, boosting 657 

the catalytic reaction. With a similar scope, Fan et al. (2019) documented the simultaneous and 658 

rapid removal of organic micropollutants (bisphenol) and metal ions (Pb2+) using an electrospun 659 

β-cyclodextrin/chitosan/polyvinyl alcohol nanofibers. These novel nanocomposites exhibited a 660 

large number of adsorption sites, e.g. the cyclodextrin owed a featured molecule structure with a 661 

hydrophilic outer surface and hydrophobic inner cavity for binding organic contaminants while 662 

chitosan has plenty of hydroxyl and amino groups to form complex with metal ions and thus 663 

remove them. Both authors concluded that their nanocomposites represent a new pathway to deal 664 

with hard-to-be-treated wastewaters (e.g. paper making, leather, textile, etc.) 665 

 666 

5. Concluding remarks, future perspectives, and strategies for new researchers in the field 667 

Throughout this review paper, it has been recognized the potential ability of polymeric membranes 668 

in separating various heavy metal ions, including Cd2+, Pb2+, Ni2+, Cu2+, Al2+, Co2+, Zn2+, Mn2+, 669 

Cr4+, among others. These membranes can exhibit a removal efficiency between 77-99%.  670 

However, by smartly introducing inorganic nanomaterials into polymer membranes,  671 

nanocomposite membranes have overcome the main drawbacks of polymeric membranes together 672 

with improved removal efficiencies up to 100%. This review has released a clear outlook on the 673 
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benefits of implementing composite membranes for the separation and removal of a wide range of 674 

toxic and heavy metal ions, in which their elimination from water has been proposed attending the 675 

current worldwide necessity for clean water scarcity.  676 

To date, a huge number of studies have provided promising proofs and insights that the MF 677 

composite membranes have been able to remove macropollutants, but the separation of 678 

micropollutants may need the usage of UF and NF membranes. Interestingly, nanocomposite 679 

membranes have shown their impressive adsorption ability for the removal of heavy metal ions, 680 

being strongly dependent on the smart selection of the inorganic materials according to their 681 

physicochemical features. This means that the adsorption efficiency of nanoparticles and their 682 

sieving mechanism must be considered during the tailored manufacturing of nanocomposite 683 

membranes towards the removal of specific heavy metal ions. In the light of process feasibility, 684 

nanocomposite membranes have also shown enough features to be implemented in efficient 685 

separation processes with good permeation rates, which is also a relevant parameter in terms of 686 

productivity. Based on the current findings of this review, and the current developments works and 687 

efforts in developing new composite materials, it is likely that the research community will 688 

continue looking for new inorganic and hybrid materials that could not only overcome the 689 

drawbacks (such as permeation and retention rates) of polymeric membranes but also 690 

physicochemical properties (e.g. chemical, mechanical and thermal stability) as well. To finalize, 691 

it is presented below some recommendations for planning the research of new researchers aiming 692 

to improve the efficiency of nanocomposite membranes: 693 

 Initially, researchers must identify the potential polymers that display high enough removal 694 

efficiency. Based on this, further investigation can be planned and directed based on the 695 

main bottleneck and weakness of the pristine polymers. 696 
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 When dealing with filling nanomaterials into polymers, it is essential to mention that such 697 

inorganic phases must be smartly embedded considering two important factors: 1) the 698 

physicochemical features of the nanomaterials (porosity, stability, morphology, among 699 

others), and ii) their metal uptake mechanisms related to the removal of heavy metals 700 

(sieving, adsorption, size-exclusion, etc.). Such basic analysis will bring big benefits in a 701 

shorter time and fewer sources, i.e. low filler loading may synergistically improve the 702 

properties of polymer membranes. For example, 1wt.% GO loaded PVDF-GO-nZVI 703 

membrane cannot only reach high 100% Cd (II) removal but also impressive permeation 704 

fluxes (ca. 255 L m−2 h−1) (Ren et al., 2019), which is also an important factor during the 705 

feasibility of large scale processes. Finally, the usage of a low quantity of fillers will result 706 

in a reduced membrane cost.  707 

 The membrane preparation protocols also play an important role in the resulting separation 708 

efficiency in membranes. Even if most of the advances in the field have been assigned to 709 

the properties of the nanomaterials, it is also important to point out that the exploration of 710 

new membrane fabrication procedures, together with the improvement of the existing ones, 711 

will allow tailoring of substantially enhanced membranes. This also applies when 712 

embedding simultaneously more than one inorganic phase. 713 

 Most of the research has satisfactorily demonstrated excellent performance towards metal 714 

ion separations, however, there are few reports demonstrating the feasibility of the 715 

membranes in a long-term operation, which is a current lack in research. By extending the 716 

testing of membranes, the chemical engineers will have a better outlook about the 717 

potentiality of membranes for possible implementation in industrial processes. 718 

 To finalize, based on the relevant insights and ability of the novel nanocomposite materials 719 

enlisted in Table 4, it is recommended to the new scientists to explore the ability of such 720 
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new materials into membrane processes for the removal of metal ions. Importantly, the 721 

separation efficiency of membrane processes not only depends on membrane features but 722 

also on the operating conditions. 723 
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https://doi.org/10.1016/j.memsci.2014.01.001 1421 

Zinadini, S., Akbar, A., Rahimi, M., & Vatanpour, V. (2014). Preparation of a novel antifouling 1422 

mixed matrix PES membrane by embedding graphene oxide nanoplates. Journal of 1423 

Membrane Science, 453, 292–301. https://doi.org/10.1016/j.memsci.2013.10.070 1424 

 1425 

 1426 

 1427 

 1428 

 1429 

 1430 

 1431 

 1432 

 1433 

 1434 

 1435 

 1436 

 1437 

 1438 
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Table 1. Polymeric membranes used for the removal of metal ions. 1440 

 1441 

Separation 

process: 

Material/membrane Heavy metals Removal efficiency (%) Reference 

NF PBI/PES Mg2+,Cd2+ 98%, 95% (Zhu et al., 2014) 

NF PA Cu2+,Cd2+ 98%, 99% (Qdais and Moussa, 2004) 

RO PA Cu2+,Cd2+ >90% (Qdais and Moussa, 2004) 

ED sulfonated PVDF Co2+,  Ni2+ 90 % , 69 %, (Tzanetakis et al., 2003) 

NF CA/ PMVEMA Pb2+, Cd2+, Cr+6 85%, 72% (Lavanya et al., 2019) 

NF PES-PE Cu2+,Zn2+, Ni2+ >90% (Mokhter et al., 2017) 

NF PAN-PEI/PSS  Cu2+, Zn2+,Ni2+, 

Cd2+ 

98%, 96%, 96%, 95% (Qin et al., 2013) 

UF PVDF/2-

Aminobenzothiazole 

Cr6+ 92% (Wang et al., 2017) 

UF PVDF/PANI Pb2 +, Cd2 +  98.5%, 97.3%  (Pereira et al., 2014) 

 1442 

 1443 

 1444 

 1445 

 1446 

 1447 

 1448 

 1449 

 1450 

 1451 

 1452 

 1453 

 1454 

 1455 

 1456 
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Table 2. Different filling materials embedded into nanocomposite membranes for different water treatment applications. 1457 

 1458 

Filling  

material: 

Membrane-based 

process: 

Application: Polymer 

phase: 

 

Reference: 

 

 

 

 

 

 

ZnO 

 

 

MF 

Synthetic wastewater treatment  

PVDF 

 

(Liang et al.. 2012) 

Removal of copper ions (Xia Zhang et al., 2014) 

Wastewater treatment (Hong and He, 2012) 

Humic acid removal PES (Ahmad et al., 2016) 

 

 

 

 

 

UF 

Humic acid removal PSF (Chung et al., 2016) 

Water treatment  

 

PES 

 

(Dipheko et al., 2017) 

Pollutants removal (Li et al., 2015) 

Water treatment PES-PVA (Zhao et al., 2015) 

Wastewater treatment  

PSF 

(Pintilie et al., 2017) 

Bacterial removal from aqueous solutions (Ronen et al., 2013) 

Water treatment PVC (Rabiee et al., 2015) 

 

 

 

NF 

 

Humic acid removal PES (Balta et al., 2012) 

Water purification  PVP (Bai et al., 2012) 

Removal of metal ions (Zn
2+

, Cd
2+

, Pb
2+

, Mn
2+

, 

Ni
2+

, Fe
2+

, Al
3+

, Sb
3+

, Sr
3+ 

) 

CA (Bahadar et al., 2015) 

Humic acid removal PSF (Tao et al., 2017) 
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Humic acid removal  

PVDF 

(Ekambaram and Doraisamy, 

2017) 

Humic acid removal (Li et al., 2017) 

RO Removal of bivalent ions (Ca2+, SO4
2−and 

Mg2+), monovalent ions (Cl− and Na+), and 

bacterias. 

PA (Isawi et al., 2016) 

 

 

 

 

 

 

GO 

 

 

MF 

Dyes removal from effluents PSF (Badrinezhad and Ghasemi, 

2017) 

Wastewater treatment PVDF (Zhao et al., 2014) 

 

 

 

 

UF 

 

 

 

Water treatment PSF (Zhao et al., 2013) 

Water treatment PVP-PVDF (Chang et al., 2014) 

Water treatment  

 

 

PVDF 

(Wu et al., 2014) 

Natural organic matter removal (Xia and Ni, 2015) 

Water treatment (Zhao et al., 2013) 

Natural organic matter removal PA (Xia et al., 2015) 

Wastewater treatment PSF (Lee et al., 2013) 

Organic pollutants removal Cellulose 

ester 

(Morales-Torres et al., 2015) 

Distillery effluent treatment PES (Kiran et al., 2016) 

Water softening production PAI-PEI (Goh et al., 2015) 

Dyes removal from effluents PMIA (Yang et al., 2017) 

Dyes removal from effluents PAN (Zhang et al., 2017) 

Dyes removal from effluents PES (Zinadini et al., 2014) 

Water purification PPA (Jin Wang et al., 2016) 
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Graphene UF Wastewater treatment PSF (Crock et al., 2013) 

NF Water purification PVDF (Han et al., 2013) 

 Wastewater treatment  

 

 

PSF 

(Zhang et al. , 2012) 

 

 

 

 

Ag- 

nanoparticles 

 

MF /UF Wastewater treatment (Alpatova et al., 2013) 

 

 

 

 

 

UF 

 

Water purification PES (Rehan et al., 2016) 

Wastewater treatment PES, PSF, 

CA 

(Sile-Yuksel et al., 2014) 

Wastewater treatment  

  PSF 

 

(Koseoglu-Imer et al., 2013) 

Wastewater treatment (Hoek et al., 2011) 

Wastewater treatment  

CA 

(Escobar et al., 2015.) 

 

 

NF 

Wastewater treatment (Andrade et al., 2015) 

 

 

 

 

Ag-NO3 

Wastewater treatment PA-PVA (Yang Zhang et al., 2016) 

RO Wastewater treatment PA (Ben-Sasson et al., 2014) 

Wastewater treatment PA/PSF/ 

PET 

(Yang et al., 2016) 

Bacterial removal from water 

 

CA (Ahmad et al., 2016) 

 

RO 

Water treatment  

PES 

(Zhang et al., 2013) 
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Ag- 

nanoparticles 

RO Water treatment PAN (Liu et al., 2016) 

 

 

 

bio-Ag0 

UF Water treatment PES (Zhang et al., 2014) 

 NF Water treatment and removal of salt (Na2SO4) PA (Liu et al., 2015) 

Water treatment  

 

PSF 

(Liu et al., 2016) 

Cu-

nanoparticles 

 

 

 

 

UF 

 

Water treatment (Hoek et al., 2011) 

CuAc2 Humic acid removal PAN/PEI (Xu et al., 2012) 

Cu- 

nanoparticles 

Wastewater treatment PES (Akar et al., 2013) 

Ag- 

nanoparticles 

Cu- 

nanoparticles 

Wastewater treatment PSF (Kar et al., 2011) 

 

CuSO4 

NF Seawater softening: removal of salts (SO4
2+, 

Mg2+, Na+, Cl-).  

PAN/PEI (Xu et al., 2015) 

CuCl2  RO Wastewater treatment  

PA 

(Zhang et al., 2017) 

Cu 

nanoparticles 

Water treatment (Ben-Sasson et al., 2014) 

  

 

 

 

UF 

Humic acid removal  

 

PVDF 

(Teow et al, 2012) 

Water treatment (Rajaeian et al., 2015) 

Wastewater treatment (Shi et al., 2012) 

Water treatment (Méricq et al., 2015) 

Water treatment PP (Pi et al., 2016) 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


59 

 

 

 

 

Water treatment PSF (Mollahosseini and 

Rahimpour, 2014) 

Water treatment CA (Abedini et al., 2011) 

Water treatment  

PA 

(Ngo et al., 2016) 

TiO2 

nanoparticles 

NF Wastewater treatment  PES  (Sotto et al., 2011) 

CNTs NF Drinking-water purification NC (Ahmeh et al., 2013) 

UF Water treatment and biofouling control 

application 

PES (Celik et al., 2011) 

NF Wastewater treatment  PES (Daraei et al., 2013) 

NF Water treatment PA (Kim et al., 2013) 

NF Metal removal (Cr (VI), Cd (II)) PSF (Shah and Murthy, 2013) 

NF Water treatment for salt removal (NaCl, 

Na2SO4). 

PMMA (Shen et al., 2013) 

NF Water treatment Polyimide 84 (Grosso et al., 2014) 

UF Water treatment  PSF (Sianipar et al., 2016) 

UF Wastewater treatment by membrane bioreactor PSF (Khalid et al., 2018) 

MF Bleach effluent treatment by membrane 

bioreactor 

PSF (Mulopo, 2017) 

 

 1459 

Acronyms: polyethersulfone (PES), polysulfone (PSF), polyacrylonitrile (PAN), polytetrafluoroethylene (PTFE), polypropylene (PP), polyvinylidine fluoride 1460 

(PVDF),poly(methyl methacrylate) (PMMA), nitrocellulose (NC), cellulose acetate (CA), polyamide (PA), polyphthalamide (PPA),  polyvinyl alcohol (PVA), 1461 

polyvinyl chloride (PVC), polyvinylpyrrolidone (PVP), polyamide-imides(PAI), polyethylenimine (PEI). 1462 

 1463 
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Table 3. Latest development works on tailoring novel nanocomposite membranes for heavy metal ions removal. 1464 

 1465 

Nanocomposite membrane type: Membrane process: Metal ion removal : Reference: 

MMGO filled PES NF Copper ions removal (92%) (Abdi et al., 2018) 

f-MWCNTs filled PVC NF Zinc (Zn2+) ions removal (98%) (Ali et al., 2019) 

s-MWCNTs - Copper (II) ions removal (59%) (Ge et al., 2014) 

CNFs/TiO2 filled PAN - Lead (Pb2+) ions removal (87%) (Suresh et al., 2018) 

Copper (Cu2+) ions removal (73%) 

Cadmium (Cd2+) ions removal (66%) 

(MEUF)PES UF Cadmium (Cd2+) ions removal (90%) (Huang et al., 2019) 

(MEUF) cellulose UF Arsenic (V) ions removal (89%) (Chen et al., 2018) 

PAH-PSF UF Lead (Pb2+) ions removal (91.5%) (Ibrahim et al., 2018) 

Cadmium (Cd2+) ions removal (72.3%) 

s-PES UF Ferric (Fe3+) ions removal (>90%) (López et al., 2019) 

MMT-GO-EDA UF Ag (I) ions removal (100%) ( Ma, 2019) 

Cu (III) ions removal (100%) 

Cr (IV) ions removal (27.0%) 

CF-TiO2-C3N4 MR Cr (VI) ions removal (88.0%) (Shen et al., 2018) 

Composite -CA RO Pb (Pb2+) ions removal (100%) (Thaçi and Gashi, 2019) 

Cd (Cd2+) ions removal (100%) 

Ni (Ni2+) ions removal (100%) 

Zn (Zn2+) ions removal (100%) 
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Mn (Mn2+) ions removal (100%) 

Co (Co2+) ions removal (100%) 

Composite GPC UF Pb (Pb2+) ions removal (>95%) (Jing Wang et al., 2018) 

PECN NF Zn (Zn2+) ions removal (100%) (Ye et al., 2019) 

f- MOFs-CUF UF Pb (Pb2+) ions removal (61.4%) (Yin et al., 2016) 

ZIF-300-Al2O3 NF Cu (Cu2+) ions removal (100 %) (Yuan et al., 2019) 

Co (Co2+) ions removal (100 %) 

Cd (Cd2+) ions removal (100 %) 

Al (Al2+) ions removal (100 %) 

Goethite filled PAN UF Cu (Cu2+) ions removal (49 %) (Soghra et al., 2019) 

Composite PEI- zein FO Pb (Pb2+) ions removal (>99.5%) (X. Zhao & Liu, 2019) 

Cd (Cd2+) ions removal (>99.5%) 

Ni (Ni2+) ions removal (>99.5%) 

GMA-PAN UF Cu (Cu2+) ions removal (98 %) (Yanhong Zhang et al., 2019) 

 1466 

Acronyms: functionalized multi-walled carbon nanotubes (f-MWCNTs), modified magnetic graphene oxide(MMGO), sulfonated multi-walled carbon nanotubes (s-1467 

MWCNTs), carbon nanofibers (CNFs), micellar enhanced ultrafiltration (MEUF), poly[styrene-alt-(N-4-benzoylglycine-maleamic acid)] cumene terminated (PAH), 1468 

sulfonated polyethersulfone(s-PES),GO-based membranes via the intercalation of montmorillonite and ethylenediamine ( (MMT-GO-EDA), C3N4-decorated carbon-1469 

fiber (CF-TiO2-C3N4),  membrane reactor (MR), graphene oxide-polydopamine-(β-cyclodextrin) (GPC), polyelectrolyte complex nanofiltration (PECN), functionalized 1470 

MOFs-CUF (f- MOFs-CUF), grafting glycidyl methacrylate (GMA). 1471 

 1472 

 1473 
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Table 4. Novel nanocomposite materials with outstanding heavy metal removal efficiency that have not been implemented in membranes. 1474 

 1475 

Nanocomposite 

materials 

Heavy metals 

removal efficiency 

Adsorption 

mechanism 

 

Parameters affecting 

adsorption mechanism 

Fabrication method Synthesis 

conditions 

Reusability  Reference 

MnO2 coated by 

chitosan 

nanocomposite  

 

Cr (VI) adsorption 

(61.56 mg g-1) 

Cr (VI) removal 

efficiency (94.21%) 

Physisorption and 

electrostatic 

attraction 

 

pH effect 

Adsorption efficiency 

decreases with 

ascending pH values 

(optimal pH=2) 

Ion strength 

Ionic strength, with an 

increase in the KCL 

concentration decreases 

Cr (VI) removal 

efficiency 

Adsorbent dosage 

The material 

concentration affects Cr 

(VI) adsorption capacity  

MnO2/CS was 

fabricated by mixing, 

filtering and drying a 

suspension made up 

by C2H5OH, deionized 

(DI) water, CS and 

saturated KMnO4 

solution  

 

Mixing 

8 h at room 

temperature 

 

Different shaking 

speeds were tested 

 

Oven drying 

60°C for 12 h 

 

5 cycles. 

Removal 

efficiency 

decreased (from 

94% to 80%) 

(Dinh et al., 

2020) 

Core-shell 

structured 

nanocomposite of 

zero-valent iron 

with carbon 

(ZVI@C) 

 

 

Cr (VI) adsorption 

capacity (814.9 mg 

g-1 ) 

Cr (VI) removal 

efficiency (80%) 

 

 

Chemical reduction 

reaction of Cr (VI) 

into Cr (III) 

Cr (VI) Initial 

concentration effect 

High initial Cr (VI) 

concentration values 

increased the reduction 

capacity 

pH effect 

Hydrothermal-

calcination method 

 

 

 

 

Drying 

Vacuum conditions 

at 80°C for 24h. 

Carbonization 

Pipe oven under N2 

atmosphere, at 800 

Co for 30 min 

No tests were 

performed 

(Zhou et al., 

2020) 
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pH affects the electron 

utilization process 

(Optimal pH below 3) 

C/Fe molar ratio 

20 C/Fe optimal ratio  

Nanocomposite of 

20% hickory 

biochar and 80% 

expanded 

vermiculite (20%-

BC/VE) 

As (V) adsorption 

capacity (20.1 mg 

g-1) 

Heterogeneous 

adsorption 

processes, both 

physisorption and 

chemisorption, ion 

exchange and 

electrostatic 

attraction 

Nanocomposite ratio 

effect 

Optimal ratio: 20%-

BC/VE  

pH effect 

pH affects the BC/VE 

surface charge, as well 

as the electrostatic 

interactions (optimal 

pH= 6) 

Coexisting anions 

effect 

𝑃𝑂4
3− reduced 

considerably adsorption 

rate of As (V) 

Ball milling method 

 

 

Ball milling 

At 300 rpm for 12 h 

 

No tests were 

performed 

(Li et al., 

2020) 

Fe3O4/GO (mGO) 

composite 

introduced into 

graphitic carbon 

nitride g-C3N4. 

U (VI) extraction 

capacity (2880.6 

mg g-1) 

U (VI) extraction 

efficiency (96.02%) 

Chemical reaction 

of photocatalytic 

reduction of U (VI) 

under LED light 

irradiation 

 

 

pH effect on 

photocatalytic activity 

Optimal pH=6 

U (VI) concentration 

effect on 

photoreduction in 

mGCN-1 

Ultrasonication was 

applied to the 

individual suspensions 

and then to the 

mixture of mGO and 

g-C3N4 

The solids of the mGO 

and g-C3N4 mixture 

were centrifuged and 

dried 

Ultrasonication 

Individually for 1 h 

and as mixture for 

2h. 

Drying 

In a vacuum at 

60°C 

5 cycles 

There were not 

significant 

changes in 

removal and 

stability rates 

 

(Dai et al., 

2020) 
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Optimal U(VI) 

concentration range: 1 – 

100 mg L-1 

 

Silicon dioxide 

composite with tea 

waste (SiO2@TW) 

Adsorption 

capacities:  

Pb
2+ (153 mg g-1) 

and Cd
2+

 (222 mg g-

1) 

Removal rates: 

Pb
2+ (89.22%) and 

Cd
2+

(94.28%) 

 

 

Electrostatic 

attraction and 

physical adsorption 

 

pH effect 

 

Optimal pH values: 

 

 Pb2+ (pH= 6) and Cd2+ 

(pH=7) 

 

SiO2@TW dosage 

effect 

High dose of SiO2@TW 

enhanced adsorption 

sites, increasing 

removal capacity 

 

Temperature effect 

Elevated temperature 

was a catalyst for 

adsorption, due to 

chemical bond rupture 

that enhanced contact 

between metal ions and 

surface-active sites 

Modified Stober 

method for SiO2 NPs 

fabrication 

  

SiO2@TW synthesis 

consisted of 

sonication, 

centrifugation and 

drying of SiO2 - tea 

waste powder 

suspension 

 

 

Stirring 

For 30 min at 25°C 
 

Sonication 

For 1h 
 

Drying 

For 3h at 80°C 

5 cycles 

From the second 

round there was 

a considerable 

decrease in 

removal 

efficiency 

(Joshi et al., 

2020) 

Hybrid bio-

nanocomposite of 

nano-hydroxy ferric 

phosphate (n-HFP) 

and hydroxy ferric 

sulfate (n-HFS) 

particles coated on 

fungal hyphae of 

Aspergillus Niger 

(An) ((n-HFP + n-

HFS) @An). 

Simultaneous 

adsorption rates:  

As (III) (76.84%), 

Cd (II) (73.62 %) 

and Pb (II) 

(94.31%) 

Adsorption 

capacities:  

As (III) (162 mg g-

1), Cd (II) (205.83 

Chemical 

adsorption for the 

three metals 

 

 

No tests were 

performed 

 

 Co-precipitation 

method was used to 

fabricate n-HFP and n-

HFS NPs 

 

Potato dextrose broth 

(PDB) medium 

containing dissolved 

n-HFP and n-HFS NPs 

as well as 

magnetically stirred 

An mycelium 

inoculate was cultured 

Magnetic stirring 

At 1000 rpm for 6 h 

 

 

 

Culturing 

In PDB medium at 

30°C, 170 rpm for 

1-2 days 

 

Reduced risk for 

contamination: 

10-day stability 

of loaded NPs in 

solution 

(Liao et al., 

2019) 
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mg g-1), and Pb (II) 

(730.79 mg g-1) 

Nanoscale 

zerovalent iron 

(nZVI) impregnated 

biochar (BC) 

entrapped in 

calcium-alginate 

matrix 

(nZVI/BC/CA) 

 

Cr (VI) adsorption 

capacity (86.4 mg 

g-1) 

Ion exchange, 

intraparticle 

diffusion, chemical 

adsorption and 

redox reaction 

 

 

 

pH effect 

Optimal pH= 4 

Modified liquid-phase 

method 

 

Pyrolysis 

At 500°C for 3 h in 

a muffle furnace 

(15°C / min) under 

N2 atmosphere 
 

Stirring 

500 rpm at 25°C for 

30 min. 

Removal 

capacity 

decreased at the 

1st cycle but 

remained stable 

in further 

regenerations  

(Wan et al., 

2019) 

 

Nanocomposite 

made from 

wastewater 

hyacinth derived 

biochar (BC) and 

ZnO NPs 

 

Cr (VI) 

removal efficiency 

(95%) 

 

Cr (VI) 

adsorption capacity 

(43.48 mg g-1) 

Chemisorption and 

photocatalytic 

reduction 

Carbonization 

temperature effect 

Optimal carbonization 

temperature: 700°C 

 

ZnO content effect 

30 wt.% optimal ZnO 

concentration 

BC powder was 

impregnated into 

Zn(NO3)2 aqueous 

solution, by drying 

and calcination steps 

 

 

Drying 

At 105°C for 12h. 

Calcination 

At 380°C for 3h 

under N2 

atmosphere 

 

Removal 

efficiency 

(87.1% at 1st 

run) and (67.1% 

at 5th run) 

 

(Yu et al., 

2018) 

EDTA modified 

magnetic iron oxide 

NPs (Fe3O4), loaded 

with SC (sawdust 

carbon) 

(EDTA@Fe3O4/SC) 

Cd (II) adsorption 

capacity (63.3 mg 

g-1) 

Cd (II) removal 

capacity (98%) 

Multi-metal ion 

removal (>80%), 

for the following 

ions: Zn (II), Cd 

(II), Cu (II), Pb (II), 

Ni (II), Co (II), As 

(III), U (VI) 

 

Chemisorption 

 

pH effect 

Cd (II) removal 

efficiency increases as 

pH value rises  

(Optimal pH= 6.5) 

Adsorbent dose effect 

Cd (II) removal 

increased as adsorbent 

dose increased 

Contact time effect 

Biogenic green 

synthesis approach for 

fabrication 

 

Stirring 

At 90°C for 1h 

 

Carbonization 
In muffle furnace at 

180°C for 12h 

 

 

 

 

 

Desorption 

Maximum Cd 

(II) desorption 

was achieved 

with HCl (99%), 

HNO3 (100%) 

and H
2
SO

4 

(100%)  

Reusability 

After three 

cycles, 

adsorption 

efficiency 

(83%) and at the 

(Kataria and 

Garg, 2018) 
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Optimum contact time 

for Cr (II) removal: 120 

min 

Coexisting ions effect 

Divalent ions (Ca2+ & 

Mg2+) caused a decrease 

in Cr (II) removal 

efficiency 

fifth cycle 

(57%) 

Silica (SiO2) 

functionalized folic 

acid (VB9) 

(SiO2@VB9) 

nanocomposite 

 

Adsorption 

capacities: 

 

Cd (II) (562.1 mg g-

1), Pb (ІІ) (973.8 

mg g-1) and Cu (II) 

(152.1 mg g-1) 

 

Extraction rates: 

 

Cu (II) (94-100%), 

Pb (II) (100%) and 

Cd (II) (57- 81%) 

 

 

 

Physio-chemical 

process and stable 

complex formation 

 

pH effect 

 

Optimal pH values: 

 

Cd (II) (pH = 7), Cu (II) 

(pH = 6) and Pb (II) (pH 

= 5) 

 

Nanocomposite dosage 

effect 

Removal efficiency 

increased with 

ascending dosage values 

(Optimum dosage: 10 

mg) 

 

Contact time effect 

Optimum contact time 

for metal removal: 25 

min 

Initial metal ion 

concentration effect 

Optimal metal ion 

concentration: 0.25 

mg/L 

 

Coexisting ions effect 

Methodology 

consisting of 

microwave assistance 

for covalent 

immobilization of 

VB9 with chlorinated 

silica 

 

 

 

Stirring 

1 hour 

Oven drying 

At 60 ̊С 

Microwaving 

For 2min 

 

No tests were 

performed 

(Mahmoud 

et al., 2019) 
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Ni (II) and Co (ІІ) 

decreased metal ion 

removal capacity 

 1476 

Acronyms: Aspergillus niger (An), biochar (BC), calcium - alginate (CA), ethylenediaminetetraacetic (EDTA), nanoparticles (NPs), nano hydroxy ferric phosphate (n-1477 

HFP), nano hydroxy ferric sulfate (n-HFS), nanoscale Zero Valent Iron (nZVI), Protein Dextrose Broth (PDB), sadwust carbon (SC), tea waste (TW), vitamin B9 folic 1478 

acid  (VB9), vermiculite (VE). 1479 

 1480 

 1481 

 1482 

 1483 

 1484 

 1485 

 1486 

 1487 

 1488 

 1489 

 1490 

 1491 

 1492 

 1493 

 1494 

 1495 

 1496 

 1497 
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Figure 1. Adsorption and desorption mechanisms of zinc ions in functionalized MWCNTs (Ali et al., 2019) . 1498 
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Figure 2. Graphical drawing of ZIF-300 deposited on alumina for metal ion removal and organic dye from water (Yuan et al., 2019). 1502 
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