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Abstract—In this paper an investigation to determine the
optimal placement of IMU sensors for the purpose of chil-
dren characteristic activity detection is presented. The article
compares four different placement of two IMU sensors on
human body. Ten healthy volunteers participated within the
study. Data were collected firstly from two wireless 9-axial IMU
sensors placed at the left and right wrists, then sensors were
placed at lower back and hip (dominant hand side). Activities
included jumping, rotating, walking, walking on tiptoe, running,
clapping hands, standing still, sitting still and dancing. Several
parameters such as mean, standard deviation, skewness, kurtosis,
energy, correlations, Hjorth parameters (activity, mobility and
complexity) and spectra purity index, were calculated from
measured data. Data from all locations provided similar levels of
accuracy in differentiate analyzed activities.

Index Terms—activity recognition

I. INTRODUCTION

The measurement of parameters that allow to estimate chil-
dren physical activity plays an important role in the assessment
of various developmental disorders [1]. The level of physical
activity as well as the presence of certain repetitive behaviors
changes with the child’s psychophysical condition. Currently,
in most cases, the assessment of the child’s behavior is based
on the observation of caregivers, filling in questionnaires
or using one of smartphone applications available on the
market. Parents and teachers observations are usually taken
in specific conditions that may have a bearing on the way
the symptoms of the disorder are expressed [2]. Therefore,
searching for objective measures may improve the assessment
of the child’s behavior. Automatic detection of children charac-
teristic activities and automatic mobility assessment may help
in a more objective evaluation of the child’s condition [3].
Nowadays, devices with an embedded motion sensor, such as
smartphones, smartwatches, smartbands and other standalone
inertial measurement unit (IMU) devices are becoming very
popular in physical activity research [4] [5] [6] [7]. The
motion sensor can be a single accelerometer or combination
of multiple inertial sensors: an accelerometer, a gyroscope and
sometimes a magnetometer.[b8] The vast majority of motion
analysis research is based on data from 3-axial accelerometer
[9]. Data from 9-axial IMU (with accelerometer, gyroscope
and magnetometer) provide an additional information about
angular velocity and magnetic field that may be useful in
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some applications [10] [11] [12]. Motion analysis with IMU’s
has a very wide range of application e. g. physical activity
pattern evaluation [13], tracking rehabilitation process [14]
[15] , gait analysis [16] [17], supporting elderly in daily ac-
tivities [18], sport science [19] or behavior analysis [20] [21].
When trying to characterize human behaviour and recognize
different human activities the most common approach is to
use machine-learning techniques [9] such as Bayesian decision
making, the least-squares method, the k-nearest neighbour
algorithm, dynamic time warping, support vector machines and
artificial neural networks [11] [22]. To generate a predictive
model that connects the raw IMU data with activity type
using machine-learning algorithms the vector of features has
to be defined. It can consist of time domain and frequency
domain parameters [23] [24] [25].The most often recognized
activities are sitting, standing, walking, running, lying and
climbing stairs, that are global body motion activities. Several
studies include also local interaction activities recognition,
such as eating, hygiene activities, office activities and others
[9].The most common motion sensor placement position are
hip(waist), thigh, dominant wrist and dominant ancle. Non-
dominant wrist or lower back placement is less popular [9].
For some purposes it is really important to enable the observed
subjects to behave as naturally as possible, so the number and
placement of sensors should be optimized. When observing
children activities the sensors should be placed in a convenient
and safe location. Based on our children observations wrists
and lower back are the best choice, other sensors positions,
like thigh, were find inconvenient when long wearing by
examined child. In this research we try to find whether there
is a significant difference in children activities recognition
between non-dominant and dominant wrist sensor location
and between lower back (preferable) and hip (most common)
sensor location.

In this work, our contributions are as follows:

e We build a dataset of signals recorded from 9-axial
IMU placed on 4 different locations. Recordings contain
signals from 10 subjects performing 9 types of most often
children activities, some of them, like walking on tip-toe,
clapping hands or rotating are typical to children with
specific developmental disorders.
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o We propose a set of 35 parameters describing our data.

e As a result of experiments, we demonstrate that there
was no significant difference between non-dominant and
dominant arm and between lower back and hip placement
of IMU when trying to differentiate between chosen
activities.

The rest of the paper is structured as follows. In Section II,
the methodology used in the study is described. The results
are presented in Section III. In Section IV obtained results are
discussed. The study is concluded in Section IV.

II. METHODS

A. Experimental setup

The experimental setup consisted of two Mbient Lab Meta-
motions 9-axial inertial measurement unit (IMU) sensors with
accelerometer, gyroscope and magnetometer used in recording
mode. The range of gyroscope was +2000st/s, the range
of accelerometer was +16g and the range of magnetometer
was +1300 uT. Sampling frequency for accelerometer and
gyroscope was 100 Hz and for magnetometer 25 Hz. To
obtain the synchronization between two IMU’s all data were
timestamped. Measured data were logged in build-in memory,
then downloaded to mobile phone using MetaBase App and
exported to a notebook computer . Together 10 volunteers, 3
women and 7 men were examined. Subjects ranged in age from
4 to 40 years (mean 23.8, sd +14.4). Subjects wore two 9-axial
IMUs at different locations on the body as shown in Figure
1: the first configuration where sensors are placed on wrists
and the second where sensors were placed on lower back and
hip from dominant hand side. These locations are typical sites
where motion sensors are placed in activity recognition studies
[24].

a) b)

Fig. 1. Selected placement locations for the inertial measurement units.
Configuration a) where sensors are placed on wrists and b) sensors placed
on lower back and hip (dominant hand side)

B. Measurement procedure

Nine activities were studied. These consisted of typical chil-
dren activities: 1-jumping, 2-rotating, 3-running, 4-walking, 5-
walking on tiptoe, 6-clapping hands, 7-standing still, 8-sitting
still, 9-dancing. All activities were maintained for a duration
of 15 seconds then 5 seconds of standing still. There were two
series of analyzed activities: the first with sensors placed on
wrists and the second with sensors placed on lower back and
hip. Data were manually labeled offline by an observer. Then
10 seconds of every activity were taken to analysis.

C. Methods of analysis

The purpose of the study was to determine whether there
is a difference in physical activity assessment between a
wrist-worn sensor at the dominant and non-dominant arm and
between lower back and hip-worn sensor. Firstly, the raw
acceleration, gyroscope and magnetometer data were labeled
based on performed activity. Next,for each of nine activities,
the vector v of 35 attributes extracted from each sensor was
created, giving a total of 105 attributes for each IMU device.
All features are presented in Table 1.

Before the analysis data were normalized. For each param-
eter the vector containing parameter values for every subject
and every activity was centered and scaled to have mean = 0
and standard deviation = 1.

For one selected activity and one selected sensor from
analyzed configuration a group of feature vectors v;; (where i
- activity, j - subject) for 10 subjects was selected.

Mean activity vector m; consisted of 35 elements was
calculated for each activity:

o v tetie

= 10
Next, mean activity vector of selected activity was compared
with 90 feature vectors of selected sensor (9 activities x 10
subjects) using euclidean distance between that vectors:

dijx = [|mi — vkl

where: 1 - activity that is compared, j - activity that we
compare with, k - subject.

Distance d was used to conclude whether the constructed
feature vector allows to distinguish between the analyzed
activities.

Next the euclidean distance d was averaged over subjects.
Firstly, for each sensor separately, then for all sensors in
selected IMU and configuration:
dij 1+-+dij10

Di; = 10

III. RESULTS

Calculated distances d for IMU placed on non-dominant
wrist are presented on Figures 2 - 4. Maps of average distances
from activity vector separately for each sensor for IMU’s
placed on both arms are presented on Figure 6. Minimum
distances from activity vector, separately for each sensor when
IMU’s are placed on both arms are shown on Figure 7.
Minimum distances from activity vector, separately for each
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Fig. 2. Euclidean distance d (vertical axis) between mean activity vector
and selected activity vector, for 9 activities and 10 participants, grouped by
activities (horizontal axis), IMU placed on non-dominant arm, accelerometer
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Fig. 3. Euclidean distance d (vertical axis) between mean activity vector
and selected activity vector, for 9 activities and 10 participants, grouped by
activities (horizontal axis), IMU placed on non-dominant arm, gyroscope

TABLE I
FEATURES EXTRACTED FROM ACCELEROMETER, GYROSCOPE AND
MAGNETOMETER SIGNALS FOR EVERY ACTIVITY WITH MATLAB
FORMULAS

Feature and Matlab formula

Mean value for each axis (X, y, and z)
M = [mean(signal)];

Average Mean over 3 axes
AM = mean(M);

Standard Deviation value for each axis (x, y, and z)
SD = [std(signal)];

Average Standard Deviation over 3 axes
ASD = mean(SD);

Skewness value for each axis (x, y, and z)
S = [skewness(signal)];

Average Skewness over 3 axes
AS = mean(S);

Kurtosis value for each axis (x, y, and z)
K = [kurtosis(signal)];

Average Kurtosis over 3 axes
AK = mean(K);

Energy value for each axis (x, y, and z)
E = sum((abs(fft(signal))).2) /length(signal);

Average Energy over 3 axes
AE = mean(E);

Correlations
C = [corr(signal(:,1), signal(:,2)), corr(signal(:,2), ...
signal(:,3)),corr(signal(:,1), signal(:,3))];

Hjorth parameters
Activity
Act = var(signal);

Mobility
Mob = sqrt(var(diff(signal))./var(signal));

Complexity
Com = sqrt(var(diff(diff(signal)))./var(signal));

Spectral Purity Index
SPI = (var(diff(signal)).?)./ (var(signal). x var(dif f (dif f (signal)))

sensor,for IMU’s placed on lower back and hip are presented
on Figure 7. Maps of average distances from activity vector
are presented on Figure 8. Minimum distances from activity
vector (minimum of each row in map of average distances)
for maps presented on Figure 8 are presented on Figure 9.

IV. DISCUSSION

We evaluated our experiment to assess the optimal place-
ment of 9-axial inertial measurement unit during observation
of children physical activity and to check whether proposed
activities can be recognized based on 35 defined parameters.
For correctly recognized activities the minimum of average
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Fig. 4. Euclidean distance d (vertical axis) between mean activity vector
and selected activity vector, for 9 activities and 10 participants, grouped by
activities (horizontal axis), IMU placed on non-dominant arm, magnetometer

TABLE II
SENSORS WITH CORRECTLY RECOGNIZED ACTIVITIES
(A-ACCELEROMETER, G-GYROSCOPE, M-MAGNETOMETER)

Activities nd. arm | d. arm | lower back hip

1. jumping AGM AG AGM GM

2. rotating M - M M
3. running AGM AGM AGM AGM

4. walking AGM AGM A AG

5. walking on tiptoe A - AG AG
6. clapping hands AGM AGM AM AG
7. standing still AGM AGM AM AGM

8. sitting still AM AM AG -

9. dancing AM AG - AG

distance from activity vector should be located on the diagonal
of average distances map. As it is shown on Figure 6 and
Figure 7 the trace of matrices containing locations of minimum
distances from activity vector changes with sensor type and
placement of IMU. The best result was for accelerometer
and magnetometer on non-dominant arm (trace of minimum
distances matrix = 8) the worst was for gyroscope - lower
back and magnetometer - hip (trace = 4). The mean value
of minimum distances matrix trace was 7 for non-dominant
arm and 6 for dominant arm. For sensors placed on waist
the mean value of minimum distances matrix trace was 5.33
for lower back and 5.67 for hip. For minimum distances
maps of activity vectors containing data from three sensors
(accelerometer + gyroscope + magnetometer, Figure 9) traces

Gyroscope Accelerometer

Magnetometer

M i

non-dominant arm

& "

dominant arm

Fig. 5. Maps of average distances from activity vector separately for each
sensor, IMU’s placed on both arms (dark blue - minimum value, yellow -
maximum value)

vary from 5 for non-dominant arm and dominant arm to 6
for low back and hip. Table III presents the connection with
activities and sensors that gives an information which sensor
can be used in given activity recognition. The vast majority
of activities were correctly recognized from accelerometers
signals. Rotating was correctly recognized only from magne-
tometer signals. Running was correctly recognized from all the
sensors. Walking was better recognized from sensors placed
on arms than from that placed on the waist while walking on
tiptoe was better recognized from sensors placed on the waist.
Clapping hands was recognized both from sensors placed on
arms and from that placed on the waist, but the result for hands
was slightly better. Standing still was easier to recognize than
sitting still. Dancing were not recognized from sensors placed
on lower back.

The presented study has a number of limitations. First,
the number of subjects is only 10 and end every activity
recording lasts only 10 s, so to get more reliable results
measurements should be repeated on a bigger group, with
activity time prolonged. Second, the small size of our dataset
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Fig. 6. Minimum distances from activity vector (yellow), separately for each
sensor, IMU’s placed on both arms (location of minimum of each row in map
of average distances)

was the reason behind using only simple classification instead
of machine learning algorithms in our activity recognition.
Third, some activities, like walking and walking on tiptoe
are hardly distinguishable, so additional analysis including re-
examination of the selection of appropriate descriptors should
be performed.

V. CONCLUSION

There was no significant difference between results obtained
for dominant and non-dominant arm and between lower back
and hip-worn sensors, we concluded it from the number of
correctly matched activities. As it is showed on Figure 8 and
9 number of correctly matched activities is the same for both
sensors, it means that we can choose the configuration that is,
in our opinion, more comfortable for children.
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Fig. 7. Minimum distances from activity vector (yellow), separately for each
sensor, IMU’s placed on lower back and hip (location of minimum of each
row in map of average distances)

Our dataset was small, but performed analyzes are a good
starting point for further research. The next stage of our work
will be enlarging the existing database and the use of neural
network algorithms to correctly recognize defined activities.
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