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A B S T R A C T

This paper presents an efficient and robust optimization methodology for stress and shape control of actuated
geometrically nonlinear elastic structures, applied to 3D trusses. The actuation inputs, modeled as prescribed
strains, serve as the optimization variables. The objective is to minimize total actuation while satisfying several
constraints: (i) actuation bounds in each actuated element and (ii) target ranges for nodal displacements
and element stresses. Optimizing large nonlinear structures is computationally intensive. While gradient-
based methods typically converge faster than gradient-free ones, their main bottleneck lies in numerical
gradient evaluation, requiring multiple time-consuming nonlinear structural analyses (finite differences) with
inaccuracies that may slow down convergence. The novelty of the proposal is an implicit differentiation
approach to quickly compute the exact gradient of the nonlinear finite element solution with respect to the
actuation inputs. This is implemented within the structural solver and leverages the already factorized tangent
stiffness matrix to make the gradient cost negligible. As a result, the number of structural analyses and overall
optimization time are significantly reduced.
1. Introduction

Geometrically nonlinear structures are characterized by significant
deformations, and the deformed geometry considerably influences their
stiffness and strength. They are becoming increasingly common in
various engineering applications, including aerospace, civil, naval, and
mechanical engineering.

Structures, particularly those supporting sensitive equipment for
communication and scientific purposes, often undergo large deforma-
tions when subjected to unexpected loading or harsh environments.
In these cases, shape control becomes paramount [1,2]. Active shape
control is essential for flexible space structures, such as antenna re-
flectors and solar sails, to meet specific mission objectives, including
shape accuracy and adaptability to different operational conditions [3].
On the other hand, structures like cable bridges and tensegrities re-
quire heightened emphasis on regulating internal forces within their
components, rather than focusing solely on deformations. This is par-
ticularly evident in configurations featuring cable elements, which may
experience slackness under specific loads, necessitating adjustments
to maintain their structural integrity [4]. In real-world applications,
manipulating a single variable without concomitant effects on other
variables poses a considerable challenge. For instance, when restoring
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an antenna to a predetermined shape by adjusting the lengths of spe-
cific members, caution must be exercised to prevent the generation of
hazardous levels of strut forces or the slackening of cables due to dimin-
ished internal force. Achieving this delicate balance requires controlling
nodal displacements and bar forces, a task that is often inherently
intricate [5]. Shape and stress control are achieved by changing the
length of some active bars using a device called an actuator [6]. Various
types of actuators, such as mechanical [7], shape memory alloy [8], and
piezoelectric actuators [9–11], are employed.

The idea of structural control was presented on a flexible beam [12]
and a large space antenna [13], which then further developed analyt-
ically [14]. In a comprehensive review [15], the control of structural
shape and stress and the optimization of various actuators were exten-
sively discussed, covering key advancements and applications in the
field. The shape and stress control of geometrically nonlinear structures
pose a challenging problem due to the complex nonlinear relationships
between geometry, loading, and deformation. Traditional design and
analysis methods based on linear elasticity are often inadequate. In
recent years, there has been a growing interest in developing new
methods for the shape and stress control of flexible structures. Some
of these methods are based on linear methods but are not valid for
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large displacements. In an experimental study, the displacement of a
pecific nod was controlled [16]. Then the study was extended to simul-
aneously control nodal displacement and internal bar forces of linear
russ structures [17,18]. A study compared two equivalent methods, the
ntegrated force method (IFM) and the singular value decomposition
pproach (SVD-FM) [19]. On the other hand, techniques based on
onlinear methods [20,21] may require significant computational time

and may be affected by a lack of robustness. Another limitation of
previous studies on shape and stress control is the requirement for a
significant amount of actuation which this study also aims to address.

Optimization is defined as the process of finding the best possible
olution for a given problem [22], opening a new chapter in structural
ngineering [23]. In structural engineering, optimization is imple-
ented for one or more purposes, such as minimizing material usage

and overall cost [24], or improving structural resistance [25]. Addi-
tionally, structural optimization has been implemented for topology
optimization, considering thermal effects and initial imperfections [26]
nd maintaining the structural integrity and performance [27]. A
onstructability-based optimization method for steel trusses is pro-

posed. Using a penalty approach, complexity is minimized, and the
Howe truss is identified as the optimal solution for a real 3D roof
structure [28]. Optimization algorithms can minimize the number
of actuators and actuation in adaptive structures [29,30]. Adaptive
structures can achieve significant whole-life energy savings by using
controlled shape changes to redistribute stress, optimize material usage,
and reduce embodied energy, as demonstrated through experimental
testing of a small-scale planar truss prototype by actuating active
actuators [31].

Structural geometry and properties can be changed in real-time
s an actuation system to maintain the desired shape and stress dis-
ribution. For geometrically linear and nonlinear trusses, a weight
ptimization method based on the gradient and two sub-problems
s proposed in [32] by reformulating the optimization problem in
isplacement variables. Gradient-based optimizations of shells prone
o buckling are also developed in [33,34], exploiting a reduced or-

der model of the structure to reduce the computational time. The
computation of the gradients, generally possible only by numerical
differentiation, is the bottleneck in nonlinear design optimization, as
addressed in [35] exploiting parallel computing. Alternative meta-
euristic approaches based, for example, on the genetic algorithm and
he mine blast algorithm are also available [36,37]. The algorithm
as used to optimize the number, spatial arrangement, and sizing
f steel exoskeletons for seismic retrofitting by minimizing weight
nd ensuring structural elasticity. Performance was evaluated through
inite-element analysis and case studies, demonstrating significant re-
uctions in weight and cost [38]. A novel inverse method utilizes
etaheuristic algorithms to optimize strain data from distributed fiber

ptic sensors [39]. This method helps in determining real strain dis-
tributions and solving interfacial mechanics, which in turn improves
the understanding of strain transfer, debonding behavior, and struc-
tural health monitoring [40]. The greater flexibility of gradient-free
methods in global optimization compared to gradient-based ones is,
however, usually counterbalanced by the greater number of function
evaluations in the former, especially when a closed-form gradient is
available. Moreover, gradient-free methods scale very poorly with the
dimensionality of the design space.

This work considers prescribed strains as actuation systems [41].
These are often achieved mechanically. However, it is worth noting
hat more complex actuation systems, such as temperature change [42,

43], and illumination [44], can be also modeled as assigned strains.
Similar considerations apply to biological and bio-hybrid structures,
where electrophysiological stimuli are converted into mechanical ac-
tions based on the active strain approach [45]. Recent works also
demonstrate that small beneficial geometric deviations can nudge struc-
ures onto favorable equilibrium paths [46], and they can be modeled

as equivalent prescribed strains, as shown in [47,48].
 a

2 
This research presents a gradient-based optimization technique inte-
grated with the nonlinear finite element method to minimize actuation
for controlling both the deformed shape and stress in geometrically
nonlinear structures. The study specifically addresses the quasi-static
case. The objective function, representing the total actuation, is mini-
mized using a gradient-based Sequential Quadratic Programming algo-
rithm [49]. The constraints include target nodal positions and/or stress
in structural elements, as well as actuation bounds in each actuated
element. The weak point of standard optimization tools is that the gra-
dient of nonlinear constraints, i.e., deformed shape and stress, is usually
omputed approximately through numerical differentiation. The aim
f this article is to overcome this weak point, demonstrating how the
xact gradient of the nonlinear finite element solution can be evaluated
ithin the structural solver robustly and at a negligible computational

ost. The theory behind the developments relies on the chain implicit
differentiation and the exploitation of the tangent stiffness matrix
already factorized in the structural Newton iterations. As a result, the
optimal design of the actuation system is made robust and efficient,
especially for structures with many degrees of freedom. The procedure
is illustrated for 3D trusses, from small to large structures, due to
the simplicity of the models and implementation which are easy to
reproduce by interested readers. However, the approach is formulated
to apply to any geometrically nonlinear finite element model, using a
general formal of discrete equations to facilitate the integration within
commercial codes.

The paper is organized as follows: Section 2 describes the geometri-
cally nonlinear problem with reference to a finite element model for 3D
russes with actuation modeled as prescribed strains in some actuated

elements, introducing the necessary notation. Section 3 is the core
of this work, formulating and addressing the nonlinear optimization
problem for displacement and stress control using a gradient-based
method. Special attention is given to differentiating displacement and
stress coming from the nonlinear finite element solution with respect
to the actuation parameters. Section 4 demonstrates the gain in ro-
ustness and efficiency achieved in the optimization algorithm using
he exact closed-from differentiation strategy compared to the standard

numerical differentiation. The reduction of computational time is also
discussed for large structures. Conclusions are reported in the last
section.

2. The 3D truss model with actuators and initial stresses

The optimization process developed in this work can be applied
o generic large deformation structural models with elastic materials

discretized by the finite element method. The hypotheses of the work
re:

• quasi-static problem;
• finite kinematics with nonlinear strain–displacement relationship;

• equilibrium in the deformed configuration;
• hyperelastic materials.

To simplify the exposition as much as possible and make the procedure
asy for the reader to understand, 3D truss structures are considered
imple examples of applications where each finite element coincides
ith the physical bar. This also makes the numerical results very easy

o reproduce.
This section recalls the nonlinear discrete equations of a large

deformation truss model based on the quadratic Green–Lagrange strain
measure. The model is introduced, as usual, starting from the vari-
ational problem formulated in a displacement-based approach. Thus,
the nonlinear equilibrium equations are derived and the incremental-
iterative solution scheme is quickly discussed. This information will be
of help for the subsequent developments.

It is worth noting that introducing a general finite element context
ims to show that the developments are not influenced by the structural
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Fig. 1. Kinematics of the bar element.

topology, e.g., geometry, number of nodes, and elements. Conversely,
the exact gradient evaluation method developed in the subsequent
section can be easily and efficiently integrated within any commercial
structural software under the hypotheses listed above. Also, the discrete
equations of the finite element model have an identical format as those
coming from other structural models (beams/frames, plates/shells, 3D
continuum), making the methodology extensible to different structural
types.

2.1. The truss element: kinematics and strain measure

The position of the two end-nodes (𝑖 and 𝑗) of the generic bar (see
Fig. 1) in the reference (initial) and current configuration is denoted as
𝐗𝑘 and 𝐱𝑘 respectively, with 𝑘 = 𝑖, 𝑗. The kinematics of each node can
be then expressed as

𝐱𝑘 = 𝐗𝑘 + 𝐝𝑘

where 𝐝𝑘 denotes the displacement of the 𝑘th node. For each truss
element (bar), it is useful to introduce the following vectors

𝛥𝐗𝑒 ≡ 𝐗𝑗 − 𝐗𝑖 and 𝛥𝐱𝑒 ≡ 𝐱𝑗 − 𝐱𝑖 = 𝛥𝐗𝑒 + 𝐝𝑗 − 𝐝𝑖

The initial 𝐿𝑒 and final 𝓁𝑒 lengths of the bar are obtained as
𝐿2
𝑒 = 𝛥𝐗𝑇

𝑒 𝛥𝐗𝑒

𝓁2
𝑒 = 𝛥𝐱𝑇𝑒 𝛥𝐱𝑒 = 𝐿2

𝑒 + 2𝛥𝐗𝑇
𝑒 (𝐝𝑗 − 𝐝𝑖) + (𝐝𝑗 − 𝐝𝑖)𝑇 (𝐝𝑗 − 𝐝𝑖)

The Green–Lagrange strain measure expressing the strain–displacement
compatibility is

𝜀𝑑 (𝐝𝑒) = 1
2

(

𝓁2
𝑒

𝐿2
𝑒
− 1

)

= 1
𝐿𝑒

𝜶𝑇
𝑒 (𝐝𝑗 − 𝐝𝑖) + 1

2𝐿2
𝑒
(𝐝𝑗 − 𝐝𝑖)𝑇 (𝐝𝑗 − 𝐝𝑖) (1)

where 𝜶𝑒 =
𝛥𝐗𝑒
𝐿𝑒

is the vector containing the cosines directors of the
bar generically oriented in a 3D space. Using a standard FE notation,
we introduce the element vector 𝐝𝑒

𝐝 =
[

𝐝𝑖
]

𝑒 𝐝𝑗

3 
collecting the 6 discrete displacement DOFs of the bar corresponding to
the nodal displacements. The Green–Lagrange strain in Eq. (1) rewrites
as

𝜀𝑑 = 1
𝐿𝑒

(

𝐛𝑇𝑒 𝐝𝑒 +
1
2
𝐝𝑇𝑒 𝐆𝑒𝐝𝑒

)

(2)

where

𝐛𝑒 =
[

−𝜶𝑒
𝜶𝑒

]

and 𝐆𝑒 =
1
𝐿𝑒

[

𝐈 −𝐈
−𝐈 𝐈

]

and 𝐈 is the 3 × 3 identity matrix. The total strain 𝜀𝑑 coming from the
displacement can be decomposed, assuming large deformations with
small strains, as a sum of an elastic part 𝜀 and inelastic prescribed
strains 𝜀0 and 𝜀𝑎:

𝜀𝑑 (𝐝𝑒) = 𝜀 + 𝜀0 + 𝜀𝑎 (3)

where 𝜀0 is an initial pre-strain and 𝜀𝑎 is the strain induced by the
actuators, which will the object of the design i.e. the variable of the
optimization problem. Consequently, the axial force in the bar can be
written as

𝑁 = 𝐸 𝐴𝜀 = 𝐸 𝐴(𝜀𝑑 (𝐝𝑒) − 𝜀0 − 𝜀𝑎) (4)

or, alternatively, as

𝑁 = 𝐸 𝐴𝜀 = 𝐸 𝐴(𝜀𝑑 (𝐝𝑒) − 𝜀𝑎) +𝑁0 with 𝑁0 = −𝐸 𝐴𝜀0 (5)

where 𝑁0 represents a possible axial force imposed as pre-stress before
the actuation.

2.2. The equilibrium condition: internal force vector and stiffness matrix

The strain energy of the structures is obtained by summing the
contribution, denoted as 𝛷𝑒, of each bar finite element:

𝛷 =
∑

𝑒
𝛷𝑒 where 𝛷𝑒 =

1
2
𝐸 𝐴𝐿𝑒(𝜀 − 𝜀0 − 𝜀𝑎)2 (6)

The internal force vector of the element is evaluated as the gradient of
the element strain energy

𝐬𝑒 =
𝜕 𝛷𝑒
𝜕𝐝𝑒

= 𝑁𝐪𝑒 with 𝐪𝑒 = 𝐛𝑒 +𝐆𝑒𝐝𝑒 (7)

with 𝑁 = 𝐸 𝐴(𝜀 − 𝜀0 − 𝜀𝑎). The Hessian of 𝛷𝑒 furnishes the tangent
stiffness matrix of the element

𝑲𝑒 =
𝜕2𝛷𝑒

𝜕𝐝2𝑒
= 𝐸 𝐴

𝐿𝑒
𝐪𝑒𝐪𝑇𝑒 +𝑁𝑒𝐆𝑒 (8)

Letting 𝐩𝑘 represent the forces acting at the 𝑘th node of the entire
structure, the external work is the sum of the nodal contributions:

𝑒𝑥𝑡 ≡
𝑁𝑛
∑

𝑘=1
𝐩𝑇𝑘 𝐝𝑘 = 𝐩𝑇 𝐝

where 𝐝 is the global vector collecting all the nodal displacement DOFs
of the structure. The total potential energy is the sum of the strain
energy of all elements and the external work:

𝛱(𝐝) =
∑

𝑒
𝛷𝑒 − 𝐩𝑇 𝐝. (9)

The nonlinear equilibrium equations are obtained from the stationary
condition of 𝛱 :
𝜕 𝛱
𝜕𝐝

= 𝐬(𝐝) − 𝐩 = 𝟎 with 𝐬(𝐝) =
∑

𝑒
𝐓𝑇
𝑒 𝐬𝑒(𝐝𝑒) (10)

where 𝐓𝑒 is the incidence matrix used for the global assembly of the
element contributions, so that 𝐝𝑒 = 𝐓𝑒𝐝. In a similar fashion, we obtain
the global tangent matrix that will be used in the iterative solution
method

𝑲 =
∑

𝑒
𝐓𝑇
𝑒 𝑲𝑒𝐓𝑒.

http://mostwiedzy.pl
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2.3. Incremental-iterative solution

The equilibrium of slender elastic structures subject to conservative
loads amplified by a proportionality factor 𝜆 is expressed by Eq. (10)

𝐫(𝐝, 𝜆) ≡ 𝐬(𝐝) − 𝜆𝐩 = 𝟎 (11)

where 𝐫 ∶ R𝑛+1 → R𝑛 is a nonlinear vectorial function of the vector
𝐝, 𝜆), collecting the configuration 𝐝 ∈ R𝑛 and the load multiplier
∈ R, 𝐬(𝐝) is the global internal force vector and 𝐩 the reference load

ector. Eq. (11) represents a system of equations and unknowns and
ts solutions define the equilibrium path as a load factor-displacement
urve in R𝑛+1. An incremental-iterative solution scheme can be adopted

to trace this curve in a step-by-step manner from a known initial
configuration corresponding to 𝜆 = 0. The condition 𝜆 = 1 corresponds
to the actual reference load of interest. There are two main reasons
for introducing the load factor 𝜆: (i) the equilibrium curve can exhibit
a limit point in 𝜆, meaning that there may be no close equilibrated
olution above a certain load level; (ii) even if an equilibrium point

exists for all 𝜆 in the range of interest, it is not assured that we are
actually able to compute it directly for an assigned load. Regarding the
first issue, the Riks arc-length method [50] can be used for dealing with
limit points. Instead, for simplicity of exposition, we focus here on the
second case.

An incremental solution scheme can be applied by defining a se-
quence of points (steps) 𝐳(𝑘) ≡ (𝐝(𝑘), 𝜆(𝑘)) belonging to the equilibrium
path. Starting from a known equilibrium point 𝐳0 ≡ 𝐳(𝑘), the new one
𝐳(𝑘+1) is evaluated correcting a first prediction of the displacement DOFs
𝐝1 corresponding to 𝜆(𝑘+1) by a sequence of estimates 𝐝𝑗 by Newton
iterations

𝐝𝑗+1 = 𝐝𝑗 + 𝐝̇ with 𝐝̇ = −𝑲(𝐝𝑗 )−1𝐫(𝐝𝑗 , 𝜆(𝑘+1)) (12)

At each Newton iteration of each load step the global tangent
stiffness matrix, obtained by assembling the element ones in Eq. (8), is
computed and factorized for solving the linear systems. This operation
is usually the costliest one in the analysis of large structures. The

ewton iteration terminates when the norm of the residual vector 𝐫
alls below a small predefined threshold.

The convergence of the Newton scheme is local, i.e. it converges
hen a good initial prediction of the unknowns (the displacement
OFs) is available. Clearly, this is not guaranteed for large load steps.

Thus, the stepping procedure is useful for problems with a significant
nonlinearity. Reaching the maximum load level in multiple steps allows
one to take advantage of the previous equilibrium points in estimating
the new one. A typical choice is to extrapolate linearly the two previous
points for estimating the newly searched one. The number of load
teps can be selected by the user, but can be adjusted automatically
ollowing, for example, the adaptive stepping reported in [51]. Clearly,

in the present case of an elastic structure under a conservative load, the
solution for the final load is unaffected by the stepping scheme (loading
path). A mixed solution scheme involving also local stress variables
to improve the robustness of the Newton scheme and to reduce the
number of iterations [51,52].

3. Optimization: problem statement, solver and gradient evalua-
tion

This section is dedicated to formulating the optimization problem
for displacement and stress control in the context of geometrically non-
linear problems, along with its solution strategy. The emphasis is placed
on differentiating the nonlinear finite element solution with respect
to the actuation inputs to achieve an efficient and robust gradient-
based optimization. Sequential Quadratic Programming is selected as
the optimization algorithm.
 o

4 
3.1. Problem statement

To compare pure results with what is typically done in the litera-
ture, we consider as optimization variables the actuation in terms of
prescribed elongation 𝑎 instead of the axial strain 𝜀𝑎:

𝑎 = 𝜀𝑎𝐿 (13)

where 𝐿 is the length of the generic actuated element. The optimiza-
tion problem for displacement and stress control of a geometrically
nonlinear structure can be formulated as the minimization of the
otal actuation inputs (prescribed elongations) subject to the following

constraints:

• upper and lower bound for the actuation 𝑎 in each actuated bar;
• upper and lower bound for the stress in controlled elements com-

ing from the nonlinear finite element model with the prescribed
actuation;

• upper and lower bound for the displacement of controlled nodes
coming from the nonlinear finite element model with the pre-
scribed actuation.

This can be summarized as the following optimization problem:
minimize

∑

𝑖∈
|𝑎𝑖|

subject to 𝑑(min)
𝑘 ≤ 𝑑𝑘(𝐚) ≤ 𝑑(max)

𝑘 𝑘 ∈ 

𝑁 (min)
𝑒 ≤ 𝑁𝑒(𝐚) ≤ 𝑁 (max)

𝑒 𝑒 ∈ 

𝑎(min)
𝑖 ≤ 𝑎𝑖 ≤ 𝑎(max)

𝑖 𝑖 ∈ 

(14)

where 𝐚 collects all the actuation inputs. 𝐝(𝐚) and 𝑁𝑒(𝐚) are implicitly
defined as those which verify the nonlinear structural equilibrium
equations in Eq. (10) for given 𝐚, this means that each evaluation of
the constraints requires a nonlinear structural analysis according to
Section 2.3 for the given load and actuation. Subsets  ,  and 
denote, respectively, the actuated elements, the elements where we
want to control the axial force 𝑁𝑒 (stress resultant) and the controlled
nodal displacement components 𝑑𝑘 chosen among those the global
ector 𝐝 of displacement DOFs.

The number of optimization variables is the size of vector 𝐚 corre-
sponding to the cardinality of  . The same value is also the number of
linear constraints. Instead, the number of nonlinear constraints depends
n the number of elements and nodal displacement components to

control, i.e. the sum of the cardinality of  and .
It is worth remembering that, for generic statically indeterminate

structures, even changing one of the actuation inputs in an element
produces different displacements and axial forces in all the structural
lements.

3.2. Optimization algorithm

The solution of the optimization problem (Eq. (14)) is tackled by us-
ing the Sequential Quadratic Programming method [49] implemented
in MATLAB in the function named fmincon and activated by setting
QP as the solution algorithm. This is the state-of-art iterative method
or constrained nonlinear optimization which may be seen as a quasi-
ewton method. The main idea behind SQP is to approximate the
roblem (Eq. (14)) at each iterate with a local quadratic model of the

objective function subject to a linearization of the constraints, i.e. a
simpler Quadratic Programming. Importantly, the method requires an
accurate gradient of the Lagrangian function, namely the gradient
of objective function and constraints, while a positive definite quasi-
Newton approximation of the Hessian of the Lagrangian function is
typically employed.

In our optimization problem, the analytical gradient of the objective
unction is derived very easily. Instead, the gradient of the nonlinear
onstraints is more complicated since it involves the differentiation
f the nonlinear structural response (finite element solution) in terms
f stress and displacement with respect to the actuation inputs. The
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standard approach uses a numerical differentiation to approximate
these derivatives with either forward (default in fmincon) or central
difference formulas. This means that the gradient evaluation requires a
uge number of nonlinear structural analyses, at least one for each of
he optimization variables. For structures with a large number of DOFs,

this part is the bottleneck of the algorithm, mainly dominating the over-
all computational time with the repeated evaluation and factorization
of the tangent stiffness matrix in the Newton iterations for imposing
the structural equilibrium. In addition, it is necessary to consider
the well-known trade-off of finite differences: the increment must be
mall enough for approximating the derivatives, but not too small to
void round-off errors due to the limited machine precision. Since the
onlinear equilibrium equations are solved iteratively, the accuracy of
he numerical differentiation can also be affected by the threshold of
he structural iterative solver. As a consequence, the overall numerical
pproximation in the gradient evaluation can affect negatively the
onvergence of the optimization process, producing an increment of
terations of the optimization algorithm. Ultimately, both evaluation
ost and accuracy of the gradient are relevant factors affecting the

design procedure. The next subsection represents the main novelty
point of this work, where an alternative closed-form differentiation of
both displacement and stress of the nonlinear finite element model

ith respect to the actuation inputs is derived. The result provides a
ignificant speed-up of the optimization process.

3.3. Gradient of the nonlinear finite element solution with respect to the
ctuation inputs

The goal is to calculate the gradient of the global vector 𝐝(𝐚), which
ollects the displacement components of all nodes of the structures

at their final equilibrium configuration for assigned final loads and
actuation. This gradient is computed with respect to the optimization
variables, namely the actuation inputs represented by the elongation
values in the actuated elements collected in vector 𝐚. Subsequently,
these derivatives, denoted as ∇𝐚𝐝, can be utilized to derive ∇𝐚𝑁 ,
nabling the differentiation of the final axial force in each element 𝑒.

The difficulty of an analytical differentiation relies on the fact that
no explicit expression for 𝐝(𝐚) and 𝑁(𝐚) is available. All we know is
that 𝐝(𝐚) and 𝑁(𝐚) are the values of 𝐝 and 𝑁 satisfying the nonlinear
equilibrium condition Eq. (11) for the final load (𝜆 = 1) and the
assigned actuation 𝐚. Thus, 𝐝(𝐚) and 𝑁(𝐚) are only implicitly defined
by the nonlinear equilibrium condition.

Our novel methodology for a closed-form gradient evaluation is
ased on the so-called implicit differentiation, a strategy in calculus
hat makes use of the chain rule to differentiate implicitly defined
unctions. Accordingly, we can differentiate the residual equilibrium
quations as
𝜕𝐫(𝐝(𝐚), 𝐚)

𝜕𝐚
=

𝜕𝐬(𝐝, 𝐚)
𝜕𝐝

|

|

|

|𝐝(𝐚)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑲 (𝐝(𝐚))

∇𝐚𝐝 +
𝜕𝐬(𝐝, 𝐚)

𝜕𝐚
|

|

|

|𝐝(𝐚)
= 𝟎 (15)

where 𝜕𝐬(𝐝, 𝐚)
𝜕𝐝

|

|

|

|𝐝(𝐚)
coincides with the tangent stiffness matrix evaluated

t the final iteration of the structural equilibrium Newton solver, while
𝜕𝐬(𝐝, 𝐚)

𝜕𝐚
|

|

|

|𝐝(𝐚)
collects the partial derivatives of the internal forces at

he final equilibrium Newton iteration with respect to the actuation
nputs considering 𝐝 independent from 𝐚 in the differentiation. This
ast ingredient can be evaluated by assembling the contribution of
ach finite element, actuated or not, to the global 𝜕𝐬(𝐝, 𝐚)

𝜕𝐚
for assigned

isplacements. This element contribution can be computed as

𝜕𝐬𝑒(𝐝𝑒, 𝑎𝑒)
𝜕 𝑎𝑒 =

𝜕 𝑁𝑒(𝐝𝑒, 𝑎𝑒)
𝜕 𝑎𝑒 𝐪𝑒(𝐝𝑒) with

𝜕 𝑁𝑒(𝐝𝑒, 𝑎𝑒)
𝜕 𝑎𝑒 =

⎧

⎪

⎨

⎪

−𝐸 𝐴
𝐿𝑒

if 𝑎𝑒 ≠ 0
(16)
⎩

0 if 𝑎𝑒 = 0

5 
Eq. (15) provides a way to compute directly and in closed form ∇𝐚𝐝 by
olving the linear system:

𝑲 (𝐝(𝐚)) ∇𝐚𝐝 = − 𝜕𝐬(𝐝, 𝐚)
𝜕𝐚

|

|

|

|𝐝(𝐚)
(17)

This strategy is computationally very interesting since it requires:

• the computation of vector 𝜕𝐬(𝐝, 𝐚)
𝜕𝐚

that has the same cost of
evaluating the internal force vector, even lower because the equi-
librium operator 𝐪𝑒 is already available at the last iteration of the
structural Newton solver;

• the solution of a linear system in Eq. (17) with a tangent stiff-
ness matrix 𝑲 (𝐝(𝐚)) already available and factorized at the last
iteration of the structural Newton solver.

Compared to the numerical gradient evaluation requiring multiple
nonlinear structural analyses, this strategy gives an exact algorithmic
gradient at practically no cost.

It is interesting to note, as a mechanical interpretation, that 𝜕𝐬(𝐝, 𝐚)
𝜕𝐚

involves the derivative of the axial force of the generic element for
assigned displacement with respect to the actuation of the element
tself. The actuation inputs in the other elements do not contribute to
his term. The fact that varying the actuation in one element can affect
he displacements in all structural nodes comes from the coupling in

the tangent stiffness matrix.
Once the gradient of the displacements is computed, the gradient

f the axial force 𝑁𝑒 in the generic bar 𝑒 can be then evaluated by the
hain rule as

∇𝐚𝑁𝑒 =
𝜕 𝑁𝑒(𝐝𝑒, 𝑎𝑒)

𝜕𝐝𝑒

|

|

|

|𝐝𝑒(𝐚)
∇𝐚𝐝𝑒 +

𝜕 𝑁𝑒(𝐝𝑒, 𝑎𝑒)
𝜕 𝑎𝑒

|

|

|

|𝐝𝑒(𝐚)
(18)

where
𝜕 𝑁𝑒(𝐝𝑒, 𝑎𝑒)

𝜕𝐝𝑒
= 𝐸 𝐴

𝐿𝑒
𝐪𝑒(𝐝𝑒)𝑇 and ∇𝐚𝐝𝑒 is the element version of ∇𝐚𝐝

btained by extracting the values in the positions corresponding to the
odal DOFs of the generic element 𝑒. By substituting, we have explicitly

∇𝐚𝑁𝑒 =
𝐸 𝐴
𝐿𝑒

𝐪𝑒(𝐝𝑒(𝐚))𝑇 ∇𝐚𝐝𝑒 +
𝜕 𝑁𝑒(𝐝𝑒, 𝑎𝑒)

𝜕 𝑎𝑒
|

|

|

|𝐝𝑒(𝐚)
. (19)

Again, considering the right hand of Eq. (19), we can observe that
he second term takes into account the variation of the axial force of

each element with respect to its actuation, while the fact that varying
the actuation in one element can affect the stress in all the others is
ecovered by the first term due to the displacement gradient.

3.4. Remarks

It is worth highlighting that all discrete operators needed in the pro-
osed gradient evaluation strategy are already implemented in struc-
ural finite element codes. This means that the exact gradient can be
omputed with minimal implementation changes directly at the final
tep of the incremental nonlinear analysis. Indeed, the same routines
lready available for computing the internal force vector and the ele-
ent stress can be directly reused for evaluating the partial derivatives

f the internal force vector and element stress in Eq. (16) by simply
giving different input data. Furthermore, It is interesting to note that
multiple load cases can be directly managed in the proposed framework
by simply duplicating displacement and stress constraints for each.

4. Results and discussion

In this section, we have implemented the methodology developed in
the previous section on various examples, considering displacement and
axial force control both independently and in conjunction. The validity
f the presented technique has been verified by comparing the obtained

results with those described in the literature.
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Fig. 2. Geometry of a saddle-shaped cable net structure [55].
Table 1
Displacement control of a saddle-shaped cable net structure: pre (p) and post(a) adjustment.

Joint Dir. 𝑑𝑝 (mm) 𝑑𝑎 (mm) Cable 𝑎 (mm) 𝑁𝑝 (N) 𝑁𝑎 (N)

x −0.62 −0.03 1 4.73 143.9 85.6
4 y 0.59 1.27 2 0.00 139.6 83.3

z −8.84 −20.00 3 4.73 143.9 85.6
x −0.62 −0.03 4 4.73 143.9 85.6

5 y −0.59 −1.27 5 0.00 139.6 83.3
z −8.84 −20.00 6 4.73 143.9 85.6
x 0.62 0.03 7 0.00 24.4 −41.5

8 y 0.59 1.27 8 0.00 24.0 −40.6
z −8.84 −20.00 9 0.00 24.4 −41.5
x 0.62 0.03 10 0.00 24.4 −41.5

9 y −0.59 −1.27 11 0.00 24.0 −40.6
z −8.84 −20.00 12 0.00 24.4 −41.5

∑

𝑎𝑖 = 18.92
4.1. Saddle-shaped cable net structure

Fig. 2 illustrates a 3-D cable net featuring twelve nodes and cables
made of piano wire (42 mm diameter, 210 MPa modulus of elastic-
ity, and 2000 MPa tensile strength). The cable net is restrained at
the circumference joints, while the mid joints remain unrestrained.
This structure, subjected to testing by [53] and analyzed numerically
by [54], is both statically and kinematically indeterminate. Initial
prestressing, following Pellegrino’s recommendation [53], is applied
by actuating cables 1, 3, 4, 6, 7, 9, 10, and 12 with a displacement of
−1.85 mm, and cables 2, 5, 8, and 11 with a displacement of −1.68 mm.
Additionally, the free nodes are loaded with 30 N in the downward
direction.

Table 1 presents the nodal displacements resulting from external
loading, with the objective of positioning the free nodes at a displace-
ment of −20 mm. The table indicates the successful achievement of
this goal through the actuation of only four cables. Since the primary
focus in this phase is on nodal positions, axial forces were intentionally
disregarded, resulting in slack in certain cables.

In the second step, the saddle cable shown in Fig. 2 and the same
initial prestress and external loading were examined to control the axial
forces in the cables within 10 N ≤ 𝑁𝑒 ≤ 125 N to keep them from
slacking and high stress. The target axial forces 𝑁𝑎 and the actuation
values are reported in Table 2. Since the nodal position of the joints
was not considered, the vertical displacement of the free joints after
cable actuation became −17.12 mm each.
6 
Table 2
Stress control of a saddle-shaped cable net structure: pre (p) and post(a) adjustment.

Cable 𝑎 (mm) 𝑁𝑝 (N) 𝑁𝑎 (N)

1 2.687 143.9 125.0
2 0.000 139.6 121.4
3 2.687 143.9 125.0
4 2.687 143.9 125.0
5 0.000 139.6 121.4
6 2.687 143.9 125.0
7 −0.881 24.4 10.0
8 −0.575 24.0 10.0
9 −0.881 24.4 10.0
10 −0.881 24.4 10.0
11 −0.575 24.0 10.0
12 −0.881 24.4 10.0
∑

|𝑎𝑖| = 15.422

For the current example, when considering only the nodal positions,
some cables experience slackness, rendering the structure unstable as
cables can only carry tension [56]. Conversely, when focusing solely
on axial forces, the nodes assume arbitrary positions, as demonstrated
earlier. Now, the structures (Fig. 2) is examined to control nodal
positions and axial forces in cables simultaneously. Sometimes, it is
essential to maintain both shape and stress simultaneously.

In this case, both shape and stress are taken into account: the
objective is to set the free nodes to a −20 mm vertical displacement
while keeping the axial force on the elements 𝑁 within the range of
𝑒
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Table 3
Displacement and axial force control of a saddle-shaped cable net structure: pre (p) and post (a) adjustment.

Joint Direction 𝑑𝑝 (mm) 𝑑𝑎 (mm) Cable 𝑎 (mm) 𝑁𝑝 (N) 𝑁𝑎 (N)

4 X −0.62 −0.03 1 3.50 143.9 122.8
Y 0.59 1.27 2 0.00 139.6 119.3
Z −8.84 −20.00 3 3.50 143.9 122.8

5 X −0.62 −0.03 4 3.50 143.9 122.8
Y −0.59 −1.27 5 0.00 139.6 119.3
Z −8.84 −20.00 6 3.50 143.9 122.8

8 X 0.62 0.03 7 −0.93 24.4 10.0
Y 0.59 1.27 8 −1.59 24.0 10.1
Z −8.84 −20.00 9 −0.93 24.4 10.0

9 X 0.62 0.03 10 −0.93 24.4 10.0
Y −0.59 −1.27 11 −1.59 24.0 10.1
Z −8.84 −20.00 12 −0.93 24.4 10.0

∑

|𝑎| = 20.91
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Table 4
Reduction of the computational cost by analytical gradient for displacement control.

Gradient Iterations Structural analyses

Numerical Analytical Numerical Analytical

Displacement control 4 4 29 9
Stress control 15 15 440 265
Displacement and stress control 16 13 522 251

10 N ≤ 𝑁𝑒 ≤ 125 N. Table 3 displays the displacements and axial
orces in cables before and after applying the set of actuations obtained

from the current technique. It is evident that the targets were precisely
achieved by actuating ten cables with 20.91 mm.

4.1.1. Reduction of the computational cost
To achieve a reduction in computational cost by leveraging analyti-

cal gradients for nonlinear constraint functions, Table 4 provides a com-
arative analysis of the number of iterations and function/constraint
valuations (structural analyses) for the saddle-shaped cable net struc-
ure, considering displacement, stress, and coupled control. Signifi-
antly, utilizing the present analytical gradients of the nonlinear finite
lement solution results in substantially fewer iterations and structural
nalyses compared to numerical gradients.

Specifically, for displacement control alone, the numerical data
reveals that the number of structural analyses using analytical gradients
are lower by 68.9%, compared to those using numerical gradients.
This indicates that the proposal not only avoids the need for multiple
nonlinear structural analyses to compute the gradient but also enhances
the accuracy of the gradient itself, leading to improved convergence of
the optimization algorithm.

4.2. Space cable structure

Fig. 3 presents the numerical example which was previously investi-
gated by Yuan et al. [21] and which is used in this study to validate the
effectiveness of the present method in handling geometrically nonlinear
structures. The structure comprises of four restrained and two free
joints, a vertical strut with a hollow circular section (∅50 × 4 mm,
elastic modulus of 206 GPa) connecting the top and bottom free joints.
Additionally, eight cables with a diameter of 8 mm and elastic modules
of 185 GPa are incorporated. The initial axial force in the strut is of
−28, 140 N, while for the upper and lower cables, it is set as equal to
19,01 N. Application of a 20,00 N downward force at the top free joint
results in a −9.00 mm displacement in the Z direction and changing the
axial force in the strut, upper and lower cables to −38 249, 19 140, and
8 775 N respectively.

This case aims to nullify the top free joint’s X, Y, and Z displace-
ents. Yuan, Liang [21] addressed this by extending the upper cables

y 4.56 mm to control the nodal displacement of the top free joint. A
omparable result was achieved to validate the accuracy of the current
7 
Table 5
Axial force (N) control of a space cable structure.

Members Initial After After actuation

stage loading Case 1 Case 2
[21] Present [21] Present

Strut −28 140 −38 250 −47 260 −47 225 −48 150 −48 152
Upper cable 29 010 19 140 29 010 29 010 29 010 29 010
Lower cable 29 010 38 780 47 240 47 134 49 660 49 642

approach, the target was achieved by actuating the upper cables by
5.57 mm, which demonstrating a mere 0.2% dissimilarity with the
revious study.

The same structural configuration (Fig. 3) undergoes testing to
validate the developed technique emphasizing axial force control re-
gardless of displacement. Table 5 overviews the induced axial forces
n members after the initial stage and applied loads. The objective is
o maintain the internal force in the upper cables at their initial stage
29 010 N), employing two distinct scenarios of cable actuation. In Case
, only the top cables are actuated, while in Case 2, solely the bottom
ables are actuated to sustain the axial force in the top cables. A com-
arative analysis between the study’s results by Yuan et al. [21] and the
urrent investigation reveals that the targets were successfully achieved
n both cases, with a slight dissimilarity in the amount of actuation. It
hould be noted that, for Case 1, the previous study requires shortening

the upper cables by 4.03 mm, while the current research asks to shorten
he cables by 3.96 mm. This indicates that the current approach achieves
he target with 1.7% less actuation effort compared to the previous
ork, highlighting improved efficiency. Moreover, this reduction in
ctuation was achieved without compromising the cost-effectiveness of
dentifying the optimal solution.

4.2.1. Reduction of the computational cost
The efficiency of the advanced optimization, based on analytical

gradients for nonlinear constraint functions (displacement and stress),
is assessed in Table 6. This table presents the number of iterations
and function/constraint evaluations (structural analyses) for the space
cable structure, considering both displacement and stress control. The
utilization of the present analytical gradients for the nonlinear finite
lement solution results in significantly fewer iterations and structural

analyses compared to numerical gradients. Specifically, for displace-
ent control, the algorithm requires a reduction of 82.9% in the
umber of function/constraint evaluations using the new analytical
radients compared to those using numerical gradients.

4.3. A 2D cable net

This example validates the present approach for controlling axial
force and large displacement in a 2D cable net structure (depicted
in Fig. 4). The cable structure underwent experimental testing by
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Fig. 3. Space cable structure (a) Front view (b) 3D view [21].
5

s
o

c
a

Table 6
Reduction of the computational cost by analytical gradient for controlling the space
cable structure.

Gradient Iterations Structural analyses

Numerical Analytical Numerical Analytical

Displacement control 4 3 41 7
Stress control 4 3 47 21

You [16] for displacement control in prestressed systems. Subsequent
nvestigations by Xu and Luo [57] as well as Saeed [58] delved into
ontrolling shape and stress in nonlinear cable configurations.

The structure consists of three free and four restrained joints, with
ine cables featuring 𝐸 𝐴 = 43160 N. The initial axial force in cables 𝑁0
s specified in Table 7.

The primary objective is to impart [−20, 20] mm displacement to
the X and Y coordinates, respectively, of Joint 6 while maintaining
the stress in the cables as close as possible to their initial levels. In
particular, we impose that the axial forces of the cables are exactly the
target ones 𝑁0. The problem so formulated could be not feasible. In
this case, the optimization algorithm stops when the feasibility error
stop decreasing. This solution is then accepted as the closest one to the
target problem. Xu and Luo [57] successfully achieved the displace-
ment requirement; however, the axial force in some members deviated
slightly from the initial values, as outlined in Table 7. Noteworthy
differences between the target and induced axial forces after actuation
in the study by Xu and Luo [57] are observed in cables iii, iv, and vii,
with discrepancies of 21.8%, 19.4%, and 19.1%, respectively.

In the current study, despite precisely achieving the target displace-
ent, the maximum discrepancy between the target axial force and the
ost-actuation induced force occurred in Cable v, amounting to 11.5%.
he current approach uses fewer actuations by 28.7% compared to the
revious method.

The same model was investigated with varying control require-
ents. The cable net was prestressed by applying elongation of [−5.02,
.49, −5.02] mm to Cables vii, viii, and ix, respectively. This resulted
n nodal displacements and axial forces, as detailed in Table 8. The
bjective was to eliminate the X and Y displacements of Joint 6,
8 
maintain stress levels above the initial threshold, and utilize only four
actuators. All previous studies as well as the present one successfully
achieved the specified targets. Shen et al. [59], Saeed et al. [17] and
Saeed [58] required 18.6, 18.3, and 18.1 mm of actuation, respectively,
to attain the targeted displacements and maintain stress above the
initial level. The present approach accomplished the goal using 17.9 mm
of actuation as detailed in Table 8.

Table 9 displays the iteration counts and the number of structural
analyses for two cases of displacement and stress control employing
numerical and analytical gradients of the nonlinear constraints. An
outstanding reduction in iterations and function evaluations is evident
when utilizing the new closed-form gradients compared to numerical
ones. This shows the accuracy of the gradient affects significantly also
the iterations of the optimization algorithm. The results of this study
demonstrate that the proposed method offers significant advantages
over previous approaches. Specifically, it minimizes the objective func-
tion while strictly adhering to the imposed constraints. Moreover, the
method is computationally efficient, making it a more cost-effective
solution than existing alternatives which use numerical gradients.

4.4. Deployable space truss

Fig. 5 illustrates a fully opened deployable truss comprising 25
nodes and 60 bars. Nodes 1, 5, 9, 16, 20, 24, and 25 are restrained
in all directions. Cables 1–33 have 𝐸 𝐴 = 98 kN, while struts 34–60
have 𝐸 𝐴 = 350 kN, with horizontal and vertical elements measuring
00 mm long. Additionally, Fig. 6 displays the self-stress state of a unit.

The objective is to achieve a prestressing level of 2 N for Cables 3,
5, 7, 8, 11, and 1 N for the remaining cables, along with −1 N for the
truts, as outlined in Table 10. This is to be accomplished by actuating
nly Cables 1, 3, 4, 7, 8, and 9.

In a study by Kwan and Pellegrino [53], the goal was achieved
with a total actuation of 0.4861 mm, while Abdulkarim and Saeed [20]
accomplished it with a total actuation of 0.4755 mm. However, with the
urrent approach, the target can be met with 0.4754 mm, representing
 3.23% and 1.07% reduction compared to the studies by Kwan and

Pellegrino [53] and by Abdulkarim and Saeed [20], respectively.
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Fig. 4. A 2D cable net.
Table 7
Imparting [−20 20] mm displacement to the X and Y coordinates, respectively, of Joint 6 of the 2D cable net while maintaining
the stress in the cables as close as possible to their initial levels 𝑁0.

Cable 𝑁0 (N) [57] Current study

𝑁𝑎 (N) Error (%) 𝑎 (mm) 𝑁𝑎 (N) Error (%) 𝑎 (mm)

i 61.4 63.9 4.1 −14.360 61.6 0.4 0.02
ii 61.4 59.7 2.7 11.130 61.6 0.3 −0.02
iii 23.6 18.4 21.8 9.520 23.5 0.0 −9.80
iv 17.0 13.7 19.4 11.800 17.0 0.1 0.16
v 17.0 18.3 7.7 −13.300 19.0 11.5 −27.28
vi 23.6 28.0 19.1 4.940 24.7 5.0 5.14
vii 50.0 51.0 2.1 −10.620 50.0 0.0 −2.34
viii 50.0 50.4 0.8 −16.910 50.0 0.0 −12.61
ix 50.0 46.9 6.1 27.560 45.2 9.7 28.26

Total actuation (mm) 120.1 85.6
Fig. 5. Deployable space truss.
9 
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Table 8
Eliminating nodal displacements of Joint 6 and keeping the stress above the initial
evel of the 2D cable net with four actuators.
Cable 𝑁𝑝 (N) [58] Current study

𝑁𝑎 (N) 𝑎 (mm) 𝑁𝑎 (N) 𝑎 (mm)

i 61 120 0 125 0
ii 61 119 0 117 0
iii 23 23.6 0 23.6 0
iv 17 33.8 0 31.7 0
v 17 34.9 −9.2 43.2 −9.24
vi 23 26.6 −0.4 23.6 −0.42
vii 50 73.1 −4.3 73.6 −4.21
viii 50 57.9 0 58.0 0
ix 50 74.1 4.2 81.5 4.03

Total actuation (mm) 18.1 17.9

Table 9
Reduction of the computational cost by analytical gradient for simultaneous displace-

ent and stress control of the 2D cable net.
Gradient Iterations Structural analyses

Numerical Analytical Numerical Analytical

Control case 1 156 10 3017 60
Control case 2 23 5 221 11

Fig. 6. Self stress state of a unit of the deployable space truss.

Table 10
Prestressing the deployable space truss.

Members 𝑁𝑡𝑎𝑟𝑔 𝑒𝑡 (N) [53] [20] Current

1 1 −0.1550 −0.1513 −0.1547
3 2 −0.0931 −0.0867 −0.0930
4 1 0.1238 0.1270 0.1236
7 2 −0.0415 −0.0336 −0.0414
8 2 0.0312 0.0391 0.0312
9 1 −0.0415 −0.0378 −0.0265
5,10,11 2 – – –
2,6,12–36 1 – – –
37–60 −1 – – –

Total actuation (mm) 0.4861 0.4755 0.4704

In this test, the closed-form differentiation of the structural response
with respect to the actuation inputs notably reduces the number of
tructural analyses required to evaluate the nonlinear constraints, such

as axial forces, as presented in Table 11. The table illustrates that
mploying the analytical gradient for both the objective and constraint
unctions reduces up to 85% in computational effort compared to
sing a numerical gradient. These findings indicate that the proposed
 o
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Table 11
Reduction of the computational cost by analytical gradient for stress control of the
deployable space truss.

Gradient Iterations Structural analyses

Numerical Analytical Numerical Analytical

Stress control 3 3 40 6

approach achieves a lower objective function value than previous
methods and meets the target goals more computationally efficient and
cost-effective manner.

4.5. Large plate-like truss

This final test involves a large plate-like statically indeterminate
russ, depicted in Fig. 7. The plate is divided into 10 a modules along

each edge, each having a rectangular cuboid shape delimited by hor-
izontal and vertical bars along the 12 edges, with additional diagonal
bars in the faces. The members are made of steel with a modulus of
elasticity of 210 MPa and an area of 500 mm2. The structure comprises
1401 bars and 242 nodes, resulting in a total of 726 nodal displacement
degrees of freedom (DOFs). All displacement components are restrained
along the top external perimeter of the plate. Additionally, all nodes
on the bottom surface are loaded with a vertical downward force of
3 kN. In its initial, unactuated configuration, the structure exhibits
a maximum axial force of 112.75 kN. The optimization goal is to
minimize the total actuation in the 28 bars highlighted in red in Fig. 7,
subject to the following constraints: (i) the absolute value of actuation
in each bar is limited to 1.5 mm; (ii) the axial force in each bar is
imited to 80 kN in absolute value. These nonlinear constraints involve
he axial forces of all 1401 structural elements. The optimal actua-
ion, found by the algorithm, is symmetric (up to machine precision)

with respect to the center of the plate and is depicted in Fig. 8. As
expected, this actuation reduces the maximum axial force to 80 kN.
Conducting the analysis with the same actuation but neglecting the
geometric nonlinearity results in a maximum axial force of 102.98 kN,
confirming the actual nonlinear behavior of this structure. For this test,
he closed-form differentiation strategy allows us to obtain the optimum
n just 21 s, compared to the 298 s required by default numerical
ifferentiation. The ratio of the computational time is similar to the
atio of structural analyses (see Table 12), demonstrating how the cost

of analytical differentiation is negligible for large structures compared
to the structural analysis itself, thanks to the exploitation of the already
factorized tangent stiffness matrix.

5. Final discussion, conclusions and outlook

This paper introduced a gradient-based optimization approach for
esigning actuation systems capable of achieving desired shape and
tress control in geometrically nonlinear structures. The actuation is
odeled as prescribed deformations in the actuated structural ele-
ents, with 3D trusses serving as examples in the application. In

ypical gradient-based nonlinear optimization, numerical gradient ap-
roximation is needed, which can significantly contribute to the overall
omputational cost. In contrast, this work presents an innovative ap-
roach by developing analytical differentiation of the nonlinear finite
lement solution, considering both displacement and stress with respect

to the actuation input parameters. This approach allows for the com-
utation of an exact and cost-effective gradient within the structural
nalysis. The proposal was presented in a general finite element setting,
howing how straightforward its integration into commercial structural
oftware is. Indeed, all ingredients needed by the present exact gradient
valuation strategy are already available in all finite element codes, so
nly minimal changes are required. The cost-effectiveness is achieved
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Fig. 7. Large plate-like statically indeterminate truss (lengths in m). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
Table 12
Reduction of the computational cost by analytical gradient for stress control of the large plate-like
structure.

Gradient Iterations Structural analyses Computational time

Numerical Analytical Numerical Analytical Numerical Analytical

Stress control 4 4 149 9 298 s 21 s
Fig. 8. Optimized actuation in the bars in mm. The solution is symmetric with the
plate center located at the bottom left point of this picture.
11 
through a gradient evaluation strategy that leverages the already fac-
torized tangent stiffness matrix during Newton equilibrium iterations.
This strategy alone significantly reduces the computational time. Fur-
thermore, the accuracy of the gradient enhances the robustness of the
optimization process, reducing, in some cases, the number of iterations
required. It is interesting to note the final large structure case, for which
the proposed methodology reduced the computational time by about 14
times. The current limitations of this work regard the structural type
and the assumption of elastic material. A future development concerns
validating the proposal for different structural types, such as beams and
shells, for which the present gradient computation is already suitable
thanks to the general finite element formalism. Moreover, it would be
interesting to extend the exact algorithmic gradient evaluation to non-
linear material, such as plasticity. This seems possible by considering
the additional state variables and the loading history through a more
involved implicit chain differentiation.
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