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Abstract:  A problem of optimised placement of the hard quality sensors in Drinking Water Distribution 

Systems for robust quality monitoring is formulated. Two numerical algorithms to solve the problem are 

derived. The optimality is meant as achieving a desired trade off between the sensor capital and 

maintenance costs and resulting robust estimation accuracy of the monitoring algorithm. The robust 

estimation algorithm recently developed by the authors is applied as a soft quality in design of the sensor 

placement algorithms. The methods and algorithms are validated by application to Chojnice DWDS case 

study. Copyright © 2010 IFAC 
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1. INTRODUCTION

An operation of a drinking water distribution system 

(DWDS) aims at delivering to the users required amount of 

water satisfying the quality requirements (Brdys and 

Ulanicki, 1994). The goal is complex and suitable monitoring 

and control algorithms operating on line need to be applied in 

order to achieve it. Due to an uncertainty in the water demand 

and also in a mathematical model of water quality 

information about the quality delivered on line by the 

monitoring system is essential for decision making and 

control purposes. Placing hard quality sensors at all nodes of 

DWDS of interest is not possible due to the technical access 

difficulties and the sensor maintenance cost. Hence, the 

mathematical models are used to support the measurement 

information provided by the hard sensors. Integrating the 

models with the hard sensor readings into one estimation 

algorithms leads to so called soft sensor. The paper considers 

an optimised placement of the hard sensors within the 

DWDS. Such placement achieves a desired compromise 

between the capital cost and maintenance costs of the hard 

sensors and the resulting accuracy of the water quality 

estimates produced by the soft sensor. A robust quality soft 

sensor was proposed for the first time in (Łangowski and 

Brdys, 2007). It is fast enough for on line operation and at the 

same time not conservative with regard to handling an 

uncertainty in the hydraulic inputs, quality model parameters 

and measurement noise. The robustness is achieved by 

employing a set bounded model of the uncertainty (Milanese 

and Vicino, 1991; Brdys, 1999). The preliminary results 

regarding the placement produced by (Łangowski and Brdys, 

2007) clearly show that under the same number of the hard 

sensors, accuracy of the resulting water quality estimates can 

vastly differ depending on at which nodes of DWDS the 

sensors are located. 

The DWDS are classified as members of a general class of 

Critical Infrastructure Systems (Memorandum of 

Understanding, 2008), reliable, high performance and secure 

operation of which is very essential for the society. The 

problem considered in the paper is one of the key problems to 

be tackled by Working Group 4: Health Monitoring and 

Control of Water Systems within new EU Cost Action 

IC0806 – IntelliCIS (Memorandum of Understanding, 2008). 

The paper is organised as follows. The information structure 

relevant for designing the soft quality sensor is discussed in 

Section 2. The one objective and two objective formulations 

of the optimised sensor allocation problem are presented in 

Section 3. Genetic solvers of the allocation task are presented 

in Section 4 and results of application to Chojnice case study 

are described in Section 5. The paper completes by 

conclusions in Section 6.  

2. QUALITY MONITORING IN DRINKING WATER

DISTRIBUTION SYSTEMS 

There two aspects in operation of DWDS: quantity 

(hydraulics) and quality. They interact but the interaction is 

only one way from hydraulics to quality (Brdys, et. al., 

1995). This was efficiently utilised in (Brdys, et. al., 1995; 

Brdys, et. al., 2000; Duzinkiewicz, et. al., 2005) where the 

structures and algorithms for an integrated quality and 

quantity control were proposed and investigated. From the 

monitoring point of view we have two cascaded monitoring 

systems. The robust quantity monitoring system (Brdys and 

Chen, 1995; Brdys, 1999) produces robust estimates of the 

flows and hadraulics model parameters. The flow estimates 

Postprint of: Langowski R., Brdys M.A., Optimised allocation of hard quality sensors for robust monitoring of quality in drinking water 
distribution systems, IFAC Proceedings Volumes, Vol. 43, Iss. 8 (2010), pp. 286-291, DOI: 10.3182/20100712-3-FR-2020.00048

© 2011. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.3182/20100712-3-FR-2020.00048
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

     

 

are the input data into the quality models (Łangowski and 

Brdys, 2007), hence to quality monitoring system. Water 

quality at DWDS can be determined by a number of quality 

parameters. The most popular parameter is the disinfectant 

concentration. Chlorine is commonly used at present as a 

disinfectant and its concentration will be considered in this 

paper as the quality parameter. Hence, the hard quality 

sensors will be the chlorine concentration measurement 

devices located at the water network nodes. The quality 

measurements in DWDS are taken from water samples in a 

laboratory or on line. The laboratory based measurements 

although useful are not suitable for on line monitoring 

performed in a natural quality time scale and therefore, they 

will not be utilised by the on line quality monitoring system 

considered in the paper.  

The quality state at DWDS is composed of chlorine 

concentrations along pipes, in tanks and reservoirs and in the 

pipe junction nodes. The hard sensors can be located only in 

the tanks and junction nodes. Due to limited number of 

sensors that can be placed in DWDS the quality mathematical 

models are needed in order to estimate the quality state. A 

fundamental partial differential equation derived in 

(Rossman, et. al., 1993) was taken as a base to derive a 

lumped model of chlorine distribution along a pipe 

(Łangowski and Brdys, 2007). The overall quality model and 

the resulting soft sensor used in the paper are taken from 

(Łangowski and Brdys, 2007; Brdys and Łangowski, 2008). 
 

 

3. OPTIMISED PLACEMENT OF HARD QUALITY 

SENSORS - PROBLEM FORMULATION 
 

The optimised placement of hard quality sensors achieves a 

desired compromise between the capital cost and 

maintenance costs of the hard sensors and the resulting 

accuracy of robust quality estimates produced by the soft 

sensor. The robust quality estimates are produced by the soft 

sensor in a form of intervals lower and upper bounding the 

unknown chlorine concentrations. Hence, tighter the 

bounding intervals more accurate the estimates are. The 

estimate accuracy needs to be traded off against the hard 

sensor costs. Hence, a natural approach is to formulate the 

sensor allocation problem as multiobjective constrained 

optimisation task with Pareto definition of the optimality. 

However, the formulation with one performance function 

expressing the hard sensor costs by specifying how many of 

them are used and with properly designed bounds on 

satisfying accuracy of the estimates can be also useful if the 

accuracy bounds are suitably chosen. In the sequel two 

formulations in a form of the one objective optimisation and 

multiobjective optimisation are proposed and further 

discussed. A general structure of an algorithm solving the 

problem is illustrated in Fig. 1. The input data are generated 

as follows. Given water demand scenario at DWDS the 

integrated quantity and quality control algorithm produces 

trajectories of the quantity and quality control variables over 

certain prediction horizon (Kurek and Brdys, 2007). These 

control variable trajectories are applied to DWDS and the 

simulation results by Epanet (Łangowski and Brdys, 2007) 

include flows and chlorine concentrations over DWDS. The 

quantity monitoring system generates the robust flow 

estimates, which are the inputs to the quality soft sensor (see 

Fig. 1). Gathering the input data into the optimised placement 

algorithm has now been completed. The algorithm starts from 

an initially chosen hard sensor placement pattern and the 

chlorine concentrations at the measurement nodes are red 

from the obtained above chlorine concentration trajectories. 

Next the readings are disturbed randomly by the random 

bounded noise generator with the distribution parameters and 

bounds reflecting a priori available knowledge about the 

measurement noise. These simulated measurements are fed 

into the soft sensor where the corresponding robust quality 

estimates over a whole DWDS are produced. The optimiser 

can then evaluate fitness of the sensor placement and produce 

a better one or to stop the algorithm. 

 

 

Optimisation 

solver 

Quality soft 

sensor 

Sensor placement 

Robust quality estimates 

 
Fig. 1. General structure of an algorithm solving problem of 

optimised sensor placement over DWDS. 
 

 

3.1 One objective based sensor allocation problem 

formulation 
 

Let us define the following: 
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The sensor allocation problem is formulated as a one 

objective constrained optimisation problem to minimise a 

number of sensors allocated at the feasible nodes of DWDS 

from the set of available sensors so that the required 

estimation accuracy is robustly achieved. The mathematical 

formulation is as follows: 

 

min  (1) 
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The guaranteed upper limits 
nmax,,1

  and 
pmax,,2

  on the 

estimation accuracy in (4) and (5) are in the above 

formulation the same. Clearly, they can be made different 

depending on how important the water user at a particular 

demand node is. This would not complicate the above 

formulation. Determining the limits is not always an obvious 

task. Too small ones may not be achievable and an attempt to 

do so by slightly relaxing the limits may lead to a long and 

computationally demanding trial and error exercise resulting 

in a very expensive, in terms of a number of allocated 

sensors, solution not much improving the estimation 

accuracy. Operator experience regarding propagation of 

chlorine throughout the DWDS network can be very useful in 

determining a prior the sensor feasible nodes. Limiting the set 

SFN  to truly effective nodes strongly linked, regarding the 

propagated chlorine impact, to other network nodes can 

significantly ease the optimisation problem solver task and 

reduce the computational efficiency. 
 

 

3.2 Two objectives based sensor allocation problem 

formulation 
 

In this multiobjective formulation the estimation accuracy 

objective is traded off against the sensor costs maintaining 

the same priority of importance. Once the Pareto front has 

been determined the final solution can be selected by the 

system user.  The formulation is as follows: 
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A great advantage of the two objective formulation is that the 

guaranteed upper limits 
nmax,,1

  and 
pmax,,2

  are not needed a 

prior. In fact they can be very reasonably determined after 

solving the problem as a full range of options is available in a 

form of a Pareto front. The different options can be screened 

and evaluated and a final choice can be made interacting with 

the decision makers meeting their preferences not included in 

the problem formulation. 
 

 

4. SOLVERS OF THE SENSOR ALLOCATION TASKS 
 

The optimisation tasks corresponding to the one objective 

and two objective formulations of the sensor allocation 

problem and defined by (1) - (5) and (6) - (10), respectively 

are with binary decision variables and under the real valued 

and integer valued constraints. Moreover, the optimisation 

task defined by (6) - (10) has two objective functions. Hence, 

a genetic algorithm NSGA – II is chosen as solver of the 

optimisation tasks. Applied to multiobjective optimisation 

tasks the algorithm determines a solution set optimal in a 

Pareto sense (Deb, et. al., 2000; Deb, 2001). The algorithm 

has been already successfully applied to as a solver of a 

problem of an optimised placement of the quality control 

system actuators, the post-chlorination booster station, over 

the DWDS (Kurek and Brdys, 2006; Ewald, et. al., 2008; 

Drewa and Brdys, 2008). 

 

A formulation of the optimisation task (1) - (5) in order to 

apply the NSGA-II solver is as follows: 
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where: 

F - objective function to be minimised 

pf1 - penalty function handling the upper constraint (3) on a 

number of available sensors defined as: 
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pf2 - penalty function handling the upper constraints (4) on 

the guaranteed estimation accuracy in junction nodes defined 

as: 
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where: 
2,n

  are positive real numbers; 

 

pf3 - penalty function handling the upper constraints (5) on 

the guaranteed estimation accuracy in tanks defined as: 
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where: 
3,p

  are positive real numbers; 

 

pf4 - penalty function forcing placement of at least one sensor 

defined as: 
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Formulation of the two objective optimisation task (6) - (10) 

in order to apply the NSGA-II solver is as follows:  
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where F1, F2 are the objective functions to be minimised in a 

Pareto sense. 

 

As it has been stated earlier selection of the final placement 

from the Pareto front is to be done by a decision maker. 

However, this process can be supported by a decision model. 

In the paper a model, which achieves a minimum distance 

from the coordinate system origin to the Pareto set is chosen. 
 
 

5. APPLICATION TO CHOJNICE DWDS CASE STUDY 
 
 

5.1 Preliminaries 
 

In this section the algorithms for an optimised placement of 

quality sensors are applied to DWDS at Chojnice. This 

DWDS performs daily delivery of drinking water to 40 

thousands of users. A skeleton model of the DWDS 

containing all essential futures of the real system is composed 

of 2 raw water sources, 177 nodes including 7 demand nodes, 

1 tank, 271 pipes and 3 pumps. Details can be found in 

(Duzinkiewicz and Cimiński, 2006). The model structure is 

illustrated in Fig. 2. 

 

 
 

Fig. 2. Model of Chojnice DWDS. 

 

The DWDS model was implemented in a simulation package 

EPANET (US EPA, 2001) to produce the input data to the 

sensor allocation algorithms as described in Section 3. 

Moreover, the DWDS simulator was also used to validate the 

allocation results. The EPANET was coupled to MATLAB in 

order to create a computational environment for the quality 

soft sensor and NSGA - II based optimisation solver. 
 

 

5.2 Simulation results 
 

Results obtained by the two objectives based algorithm are 

presented in this section. The basic parameters are: a 

population composed of 80 chromosomes, SFN composed of 

33 nodes, ASN = 20. The resulting Pareto front is shown in 

Fig. 3 where the best chromosome is marked. The optimal 

placement is illustrated in Fig. 4. 

 

 
 

Fig. 3. Two objective algorithm of monitoring stations - 

Pareto front. 
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Fig. 4. Two objective algorithm of monitoring stations - 

sensors placement. 

 

With the optimally placed hard sensors the resulting 

monitoring results are presented in Figs. 5 to 8 There are 

three trajectories illustrated in these Figures, which represent: 

the real chlorine concentration obtained from the EPANET 

simulator and upper and lower envelopes robustly bounding 

the estimated concentration. 

 

 
 

Fig. 5. Two objective algorithm of monitoring stations - 

estimated chlorine concentration bounds at node 27. 

 

 
 

Fig. 6. Two objective algorithm of monitoring stations - 

estimated chlorine concentration bounds at node 71. 

 
 

Fig. 7. Two objective algorithm of monitoring stations - 

estimated chlorine concentration bounds at node 136. 

 

 
 

Fig. 8. Two-objective algorithm of monitoring stations - 

estimated chlorine concentration bounds at node 151. 
 

 

6. CONCLUSIONS 
 

The paper has formulated a problem of optimised placement 

of the hard quality sensors in Drinking Water Distribution 

Systems for robust quality monitoring. It has derived two 

numerical algorithms to solve the problem. The optimality 

has been understood as achieving a desired trade off between 

the sensor capital and maintenance costs and resulting robust 

estimation accuracy of the monitoring algorithm. The robust 

estimation algorithm recently developed by the authors has 

been applied as a soft sensor for the monitoring purposes. 

The results have been successfully validated by application to 

Chojnice DWDS case study. The sensor placement produced 

by the derived algorithm is valid for one water demand 

scenario, hopefully adequately representing the DWDS 

disturbance inputs. Deriving the optimised placement 

methods and algorithms achieving at the same time the 

optimised trade off between the hard sensor costs and 

resulting monitoring accuracy for several disturbance 

scenarios is under current research. 
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