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In the paper we investigate a practical approach to application of integer linear programming
for optimization of data assignment to compute units in a multi-level heterogeneous environment
with various compute devices, including CPUs, GPUs and Intel Xeon Phis. The model considers an
application that processes a large number of data chunks in parallel on various compute units and
takes into account computations, communication including bandwidths and latencies, partitioning,
merging, initialization, overhead for computational kernel launch and cleanup. We show that
theoretical results from our model are close to real results as differences do not exceed 5% for
larger data sizes, with up to 16.7% for smaller data sizes. For an exemplary workload based on
solving systems of equations of various sizes with various compute-to-communication ratios we
demonstrate that using an integer linear programming solver (lp_solve) with timeouts allows to
obtain significantly better total (solver+application) run times than runs without timeouts, also
significantly better than arbitrary chosen ones. We show that OpenCL 1.2’s device fission allows
to obtain better performance in heterogeneous CPU+GPU environments compared to the GPU-
only and the default CPU+GPU configuration, where a whole device is assigned for computations

leaving no resources for GPU management.
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1. INTRODUCTION

In today’s high-performance computing systems, heterogeneity
and hybridity have become present and widespread at various
levels, including both hardware and software levels. Practically,
most of the modern workstations, servers as well as cluster
nodes feature multi- or many-core CPUs as well as accelerators
such as GPUs. Making the most of the available computational
power requires knowledge of and ability to combine various
APIs such as OpenMP, OpenCL for parallelization among
CPU cores within a node, CUDA, OpenCL or OpenACC for
GPUs, MPI for inter-node parallelization [8]. This brings along
classical challenges [12] such as scheduling that is associated
with initial data partitioning as well as subsequent selection
of compute devices and data mapping for computations taking

into account a given optimization goal such as minimization
of execution time [8], minimization of execution time with a
bound on power consumption [14], energy-aware goals [13],
etc. In this paper, we consider the aspect of data partitioning,
scheduling and its optimization in such an environment using a
mixed -integer linear programming method and analyzing its
practical complexity for a heterogeneous environments with
compute devices of various generations (that naturally arise
out of system upgrades) and drawing practical conclusions for
programmers, especially in the context of efficient usage of
OpenCL in a heterogeneous CPU+GPU environment.

Evolution of heterogeneous computing systems, the
approaches and challenges in high-performance computing
emphasize constant need to investigate data partitioning and
scheduling in such systems [12, 34]. This is further justified

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxaa187/6127452 by M

ain Library of the Technical U
niversity of G

dansk user on 30 M
arch 2021

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
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by emergence of many applications running on CPU+GPU
systems, from various domains, such as parallelization of large
vector similarity computations [9], data stream processing and
its optimizations including numbers of computational CPU
threads, number of CUDA streams, overlapping computations
and communication, energy aspects of CPU+GPU processing
[10], a microscopy image analysis application [37] including
tests using CPU cores, MIC and GPU, a hybrid pattern
matching algorithm for deep packet inspection [22], etc.

2. RELATED WORK AND MOTIVATIONS

2.1. Selected frameworks allowing parallelization in
heterogeneous high-performance computing systems

As today’s high-performance computing systems offer the pos-
sibility of parallelization at various levels, proper APIs are
available for implementation of communication and synchro-
nization. At the inter-node level within a cluster or generally
between nodes the main representative is Message Passing
Interface (MPI); for multi- and many-core CPUs: OpenMP,
OpenCL and Pthreads; and for GPUs: CUDA, OpenCL and
OpenACC. Combinations of those approaches for hybrid appli-
cations are also widely used [12]. As from the implementation
point of view, this paper relies on a framework implemented
with MPI and OpenCL, works including similar solutions are
of interest, technology-wise.

The book by Czarnul [8] includes several generic imple-
mentations for key programming paradigms, such as master-
slave, geometric Single Program Multiple Data (SPMD) as well
as divide-and-conquer. Ready-to-use templates are provided,
also for hybrid implementations including: MPI+OpenMP,
OpenMP+CUDA and MPI+ CUDA codes. Optimizations
including data prefetching, minimization of synchronization
overheads, load balancing and impact of data granularity on
performance are discussed. In [25], a survey of techniques,
especially for CPU+GPU heterogeneous computing systems,
was presented. Workload partitioning for such systems
is discussed along with APIs and languages supporting
development of codes. Support at levels such as compiler and
framework is described. Techniques for energy saving (such as
workload partitioning and DVFS) as well as benchmark codes
for evaluation of such systems are given as well. As this field
is developing very rapidly, new approaches and techniques
are being continuously developed. In this respect, [12] can be
seen as a more up-to-date review of parallelization approaches
while [13] as a more-up-to-date review of energy aspects for
high-performance computing systems.

There are several frameworks and systems which allow
parallelization of computations in hybrid high-performance
computing environments.

SkePU is a C++ framework meant for heterogeneous
systems focusing on multi-core and systems with potentially
many accelerators. Öhberg et al. [27] proposes and discusses

performance of a back-end for SkePU version 2 [15] able
to schedule a workload on CPU+GPU systems and showing
better performance than the previous SkePU implementation.
SkePU uses several skeletons such as Map, Reduce, MapRe-
duce, MapOverlap, Scan and Call. Original implementation
of SkePU 1 used StarPU [1] as back-end for heterogeneous
systems. StarPU is task based that encompasses input data
along with codelets that can be written with C/C++, CUDA,
and OpenCL. Scheduling policies such as eager, priority and
random along with caching are available. The new back-
end in SkePU 2 works with both CUDA and OpenCL. The
workload is partitioned among CPU and accelerator spaces
based on a ratio set manually or determined automatically.
Partitioning of the aforementioned skeletons is presented
in [27]. A simple linear performance model is built, that
distinguishes CPU and accelerator components. This was
used for autotuning by the system. The authors demonstrated
speed-ups of the hybrid auto-tuned versions over CPU and
accelerator versions.

KernelHive is a system that uses a multi-level architecture
that allows spanning computations across several clusters or
LANs, across several nodes within a cluster or a LAN and
across several compute devices of various types within each
node. Upper management layers: hive-engine selecting com-
pute devices based on optimization criteria as well as managing
computations and hive-cluster managing computations on each
cluster, are implemented in Java. hive-unit and hive-workers
located at node level were implemented in C++. Upper-most
layer hive-gui allows a user to define an application as a
workflow graph with vertices corresponding to operations such
as data partitioning or merging or computational functions
defined in OpenCL for portability across various compute
devices including CPUs and GPUs. Data is downloaded from
indicated data servers. This architecture allows for easy sub-
stitution of optimizers that can be performance, performance-
energy oriented, or custom built by the user. Demonstration
of system’s scalability in a heterogeneous CPU+GPU envi-
ronment (up to 18 nodes) was presented in [31] for a paral-
lel MD5 password-breaking application. The overhead of up
to 11% of KernelHive for inverse distance weighing inter-
polation of geospatial data was measured compared to pure
MPI+OpenCL code.

In [40], authors described an OpenCL task scheduling
method which schedules multiple kernels from multiple
programs in a CPU+GPU heterogeneous platform. It predicts
utilization of a device by a kernel. The authors showed that
speedup can be a good scheduling priority function and
presented a model predicting a kernel’s speedup based on
its code structure. Such prediction and input data size are
used for scheduling of a large set of concurrent OpenCL
kernels. The authors improved, compared to other approaches,
throughput 1.21 and 1.25 times on tested NVIDIA and AMD
systems while turnaround time was improved 1.5 and 1.2 times,
respectively.
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TREES [20] is a task-parallel runtime system, meant for
execution on CPU+ GPU systems, implemented with OpenCL.
It utilizes a work-together approach that follows the following
principles: the overhead on the critical path should be spent by
the whole system at once and work overheads should be spent
cooperatively. The paper shows, in particular, reaching 0.5-
0.7 performance of native OpenCL for sorting and promising
performance of TREES on GPUs compared to cilk running in
parallel on CPUs, assuming low OpenCL overheads for future
CPU/GPU chips.

Quasar [18] is a programming framework, aimed at image
and video processing, that can run in a hybrid CPU+GPU
environment. It provides a programmer with a programming
language and an IDE, a memory manager, scheduler, load
balancer (managing compute devices) as well as a runtime
back-end supporting CUDA and OpenCL. Furthermore, visual-
ization via OpenGL is possible. The environment allows easy
prototyping and execution. In [19], comparison of execution
times is given for 7 benchmarks implemented using OpenACC,
CUDA and Quasar with comparable times of the latter two with
Quasar codes being approximately 0.5 and 0.25 of the former
two in terms of length.

In [36], it was shown that highly specialized codes
such as 3D stencil computations can be efficiently trans-
formed, with use of proper additional directives, into efficient
parallel codes utilizing a combination of APIs such as
MPI+CUDA+OpenMP using the proposed source-to-source
compiler. The authors have presented the capability to achieve
around 90% of performance of highly, manually tuned codes
demonstrating a good trade-off between performance and ease
of development for the solution.

PSkel [28] is another framework allowing parallelization
within a CPU+GPU environment targeted at stencil type com-
putations. The solution is based on parallel skeletons and
using Intel TBB and NVIDIA CUDA as back-ends. Authors
demonstrated speed-ups of the CPU+GPU version up to 76%
and 28% as compared to CPU-only and GPU-only versions
respectively.

Other specialized applications include query processing and
necessary adaptation of patterns and techniques in order to
achieve better times compared to CPUs for 6 out of 7 TPC-H
queries [29].

In [33], authors show a framework that is able to use mul-
tiple CPUs and GPUs simultaneously for parallel and effi-
cient computing of k-vertex induced sub-graph statistics, i.e.
graphlets. Specifically, dynamic load balancing and complexity
are discussed. It has been demonstrated that the proposed
hybrid CPU+GPU approach using Intel Xeons + NVIDIA
GTX Titans is considerably better than both CPU and GPU
only results.

Demonstration of a computational framework for paral-
lelization across CPUs and GPUs is presented in [4], for
flow simulation type of processing. Specifically, a two blade
hovering rotor is investigated in terms of performance. It is

interesting to note that the authors obtained best times with a
GPU-only configuration with 24 GPUs, a CPU-only configu-
ration with 126 CPU cores. They note the need for the number
of cores for GPU management, that is considered in the model
and assessed in terms of performance compared to CPU only
and GPU only results in this very work.

It should be noted that apart from selection of a proper
combination of APIs considering parallelization levels that are
to be exploited by a parallel application [8], typically several
low-level optimizations can be applied in order to minimize
execution time of a hybrid CPU+GPU application. These
include, in particular: setting a proper number of computational
threads on CPU cores such that there are cores left for host
threads managing computations on GPU(s), overlapping com-
munication and computations using at least 2+ CUDA streams
(or queues in OpenCL) [10], reducing GPU offload latency via
fine-grained CPU-GPU synchronization with F/E (Full/Empty)
bits [24], optimizing CPU-GPU command offloading for real-
time applications using Vulkan [3].

Furthermore, there exist approaches, proposed for use at
various abstraction levels, that allow simulation of processing
on CPU+GPU systems. For instance, in [39] authors proposed
Multi2Sim, a simulation framework that provides architectural
simulation for x86 CPUs and Evergreen GPUs, performed at
the ISA level. Errors between the simulation and real execution
times for benchmarks such as BinomialOptions, BitonicSort,
DCT, MatrixMultiplication, SobelFilter, URNG, ScanLargeAr-
rays, RadixSort were reported between 7 and 30% with an
average of approximately 20%.

MERPSYS offers modeling of cluster nodes with CPU and
GPU components with selection of devices from its database
along with definition of cluster models with nodes and network
interconnects. This is done through a visual editor that allows to
create models of systems composed of a very large number of
components. Applications are modeled in Java extended with
MPI-like methods modeling communication and synchroniza-
tion. This abstraction level allows simulation of applications
reflecting shared memory programming on CPUs, CPU+GPU
systems as well as parallelization among cluster nodes. The
system allows simulation of application execution time along
with energy consumed during execution. In [11], simulation
and modeling results using CPUs for a master-slave application
for up to 64 processes with an average error of 1.4% and a
maximum error of 4.7%, geometric SPMD application up to
1000 processes with an average error of 5.4% and a maximum
error of 23.3% and a divide-and-conquer application up to
1024 processes with an average error of 4.8% and a maximum
error of 17.8% was presented. In [17], modeling running a
saxpy GPU kernel with configurable compute intensity with
simulation results showing an average error for large data
size 3.7% (GTX 970), 4.6% (GTX TITAN X) and 13.6%
(GTX 1070), compared to real runs was presented. In [32],
results of modeling and simulation of deep neural network
training in a CPU+multiple GPU environment with a mean
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percentage error up to 2.7%, regarding execution times, was
presented.

2.2. Integer (non-)linear programming approaches in the
context of high-performance heterogeneous systems

In [6], authors focused on optimization of task scheduling
which minimizes energy usage with a specified computation’s
deadline for the class of stencil computations. Single node
configurations with heterogeneous processors were assumed
which corresponds to modern workstations with CPUs and
GPUs. An integer linear programming approach was taken
and investigated. Accuracy of the model was shown to exceed
90%. Four heuristics have been proposed and compared to
optimal ILP results. The authors concluded that for CPU+GPU
environments, proper mapping of stencil tasks to the underlying
system considering communication costs plays an important
role in minimization of execution time and energy cost.

In [35], authors proposed two algorithms using Integer Pro-
gramming (IP) solvers for job scheduler SLURM with code
implemented as plug-ins. Furthermore, they verified the possi-
bility to use such a setting in a SLURM emulation mode, ready
to use in production for a large number of variables, such as
even 150K. According to the paper, the proposed AUCSCHED
algorithm allows to obtain better utilization, spread and pack-
ing, the proposed IPSCHED obtains better waiting time, as
compared to SLURM Backfill which gives better results in
terms of fragmentation.

Authors of paper [2] focused on algorithmic optimizations
of scheduling independent and moldable tasks on multiple
CPUs and multiple GPUs. Specifically, they presented a dual
approximation scheme which incorporated a fast integer linear
program (ILP). The task was two-fold, i.e. determination of
mapping a task to a CPU(s) or a GPU and finding out the
number of CPUs to assign, in the former case. An approxi-
mation ratio of 3/2 + ε is shown along with presentation of
a polynomial-time algorithm with an approximation ratio of 2
+ ε. The presented approach was shown to be faster than a
modified HEFT algorithm. One of the goals of that research
was to show that an ILP-based algorithm is able to solve larger
problem instances in a reasonable amount of time.

Mixed integer linear programming has also been used in
other, similar contexts such as for scheduling workflow appli-
cations [7]. In this case, a workflow is represented by an acyclic
directed graph in which vertices correspond to tasks that need
to be executed and edges denote dependencies. For each task,
there is a set of services, with various parameters such as cost
and execution time, out of which one has to be selected for each
task. Optimization criteria can include minimization of whole
workflow execution time with a bound on the cost of selected
services, minimization of execution-time product, etc. In [7] it
was shown, through several experiments, that for workflows of
type epigenomics, or sequences of the epigenomics workflows,
workflow applications for processing of multimedia content

such as application of successive filters on digital images,
business workflows for a company subcontracting services or
buying components from others, the MILP approach proved
better than divide-and-conquer, GAIN and genetic approach,
for minimization of workflow execution time with a bound
on total service cost. Particular services may have execution
time/cost values corresponding to parameters of various com-
pute devices in a heterogeneous environment while edges allow
for various communication costs for various combinations of
services, in the ILP formulation.

In [5], authors formulated an MILP model for an unrelated
parallel machines scheduling problem with consideration of
penalty cost of makespan and time varying electricity cost.
Benefits of the approach compared to genetic algorithm based
approaches were shown.

The authors in [26] discuss the impact of various mixed-
integer linear programming formulations for parallel machine
scheduling problems with consideration of, in particular, total
weighted completion time, makespan, maximum lateness, total
weighted tardiness. Formulated conclusions allow to prefer
particular formulations in terms of relative completion times,
frequency of obtaining optimal solution, problems with non-
zero job release dates as well as sizes of job processing times.

In [23], authors proposed to use Mixed Non-linear Integer
Programming (MNILP) to distribute input data among a col-
lection of herogeneous GPUs, based on prior profiling. They
presented good results compared to uniform distributed and
distribution based on performance estimates using numbers
of cores multiplied by clock frequency. However, experiments
only included small environments with 4 GPUs. Compared
to that work, our approach considers a much more complex
system, also with Intel Xeon Phis and communication costs.

2.3. Motivations

In view of the aforementioned works, CPU+GPU environ-
ments are important, in many labs there are heterogeneous
CPU+GPU environments with compute devices of various
generations. Consequently, it is important to develop an
approach to target scheduling applications for such environ-
ments and provide generic guidelines for optimization. In this
paper we provide these for a model of an application processing
a set of data chunks in parallel, with configurable compute-to-
communication time ratio.

The main contribution of the proposed model and this paper
is as follows:

• We assess accuracy of the model in a real-world hetero-
geneous parallel system as well as obtain model coef-
ficients corresponding to a real CPU+GPU system tak-
ing into account results of the aforementioned analysis.
Specifically, we take into account various overheads that
show up in a multi-level parallel system, i.e. startup times
and bandwidths not only between nodes in a parallel
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system but also corresponding to communication within
a node using, e.g. PCI Express, initialization of OpenCL
stack, etc.

• We analyze computation performance in terms of hard-
ware discrepancy. This allows us to observe overheads
corresponding to various system components including,
e.g. impact of co-scheduling computations on a CPU
and a GPU within the same node or hardware disparity,
i.e. various performance coefficients for identical hard-
ware (like two GPUs) placed in various PCI Express
slots. The hardware load impact is also considered for
proper scheduling of computations using OpenCL’s sub-
devices (so called device fission) versus direct schedul-
ing the computations straight on the default devices
present within the node.

• We investigate the actual complexity of the schedul-
ing problem for a typical LAN based heterogeneous
environment with workstations as well as servers with
compute devices of various generations. This is per-
formed by using various timeouts for the scheduling
phase in the context of the quality of the schedule versus
its running time. This, in turn, allows us to optimize
application running time, also considering GPU-only,
as well as CPU+GPU configurations. Results of tests
are shown for a heterogeneous environment and vari-
ous problem sizes corresponding to various compute-to-
communication ratios.

The proposed model takes into account all aspects of code
execution including data preparation times, function call times
and data transfer times, both between nodes and within the node
to its Processing Units (e.g. GPU). Furthermore, the model
can be easily extended with multiple layers – in our test we
consider a manager-worker configuration where the data is
transferred between the manager and worker nodes and than
within worker nodes to processing units. The worker node can
be, e.g. a cluster and then, by recursion, the model can consider
proper data assignment taking into account the transfer between
the manager node and worker cluster and then to cluster nodes
playing the role of cluster’s Processing Units. The distribution
with the cluster itself can be calculated analogously.

3. PROCESSING MODEL AND APPROACH TO
SOLUTION

For the considered model, let us adopt the following notation
for input, known data:

Ni – node Ni is the i-th node in the environment,
P

PU
Ni
j

– performance of the j-th PU (Processing Unit) on

node Ni counted as the number of problems solved per
time unit, where as a problem we consider processing of
one data packet,
din – size of input data,

dout – size of result,
dsi – size of a single input data packet,
dsr – size of a single result data packet.

Let us adopt the following notation for variables for which
values need to be found:

d
PU

Ni
j

∈ N+ – numbers of packets assigned to the j-th PU

(Processing Unit) on node Ni.

The following condition must be satisfied for the input data:

∑
i

⎛
⎝dsi ·

⎛
⎝∑

j

d
PU

Ni
j

⎞
⎠

⎞
⎠ = din (1)

and for the result:

∑
i

⎛
⎝dsr ·

⎛
⎝∑

j

d
PU

Ni
j

⎞
⎠

⎞
⎠ = dout (2)

Using the adopted notation execution time of the whole appli-
cation can be expressed as:

T = tgp + max
Ni

((aNi + dsi · dNi

bNi

)+

tpNi
+ max

j
(d

PU
Ni
j

· ((a
PU

Ni
j

+ dsi

b
PU

Ni
j

)+

t
PU

Niinit
j

+ 1

P
PU

Ni
j

+ t
PU

Nidinit
j

+ (a
PU

Ni
j

+ dsr

b
PU

Ni
j

)))

+ tmNi
+ (aNi + dsr · dNi

bNi

)) + tgm (3)

where:

dNi is the number of packets assigned to node Ni: dNi =∑
j d

PU
Ni
j

;

tgp denotes time spent (if needed) on input data partition-
ing;

tgm denotes time spent (if needed) on result merging;
tpNi

denotes potentially (if needed) additional data parti-
tioning time within a node;

tmNi
denotes potentially output merging time within a
node such as integration of results from GPUs and
CPUs;

t
PU

Niinit
j

denotes time needed to prepare and start the calcula-

tion function, it includes the parameters transfer via
system bus, system call time, etc.;

t
PU

Nidinit
j

denotes time needed for cleanup after and return from

the calculation function, it includes the result transfer
via system bus, system call return time, etc.;
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6 T. Boiński and P. Czarnul

aNi , bNi , a
PU

Ni
j

and b
PU

Ni
j

are coefficients that corre-

spond to effective startup time (a∗) and bandwidth
(b∗) when communicating between the manager
node and node Ni or with a processing unit (i.e. over
PCI Express) inside node Ni respectively. Effective
means that values of these coefficients may vary
depending on actual implementation, i.e. whether it
uses standard CPU-GPU communication, invocation
and GPU-CPU communication or overlapping
communication and computations [10] through use
of many streams (CUDA) or command queues
(OpenCL).

We should note that we profile execution time of each packet
as 1

P
PU

Ni
j

which allows us to consider it in the aforementioned

formula even if the processing time of a packet is not a linear
function of dsi.

Subsequently, an optimization goal needs to be specified.
Within this paper we consider minimization of execution time
T . Consequently, optimization in this case requires finding
values of d

PU
Ni
j

variables, i.e. data assignment to compute units

need to be found in order to minimize application execution
time.

When the expected data scheduled for one of the nodes
exceeds the memory capacity of that node the model can be
extended with a limit stating the maximum data size that should
be sent to the node in question. Failing to do so, as discussed in
Section 4.5.2, can lead to an undesired scenario, as going over
the memory capacity greatly increases kernel initialization and
deinitialization times.

The optimization methodology, for a given application,
includes performing the following steps: obtaining a∗ and
b∗ values through profiling, having the a∗ and b∗ values
use an integer linear programming solver to find desired
data assignment configurations, investigating optimal versus
heuristic approaches, including solver running time and final
application execution time.

4. EXPERIMENTS

4.1. Testbed environment

For the tests we decided to use a part of the environment
available at the Department of Computer Architecture at the
Faculty of Electronics, Telecommunication and Informatics,
Gdansk University of Technology, Poland. The environment
consists of machines obtained during different time periods, for
various types of projects. It is also a semi-open environment,
where multiple users can run different programs consuming
selected resources. As such, it suits our purpose and can be
treated as a heterogeneous environment not dedicated to a
given problem. For the tests we decided to use the following
machines:

• two servers (called apl09 and apl10) with Intel Xeon
W3540 cpu running at 2.93GHz clock speed, 4 cores
with hyper threading each (OpenCL platform 1, device
0), 12GB of RAM, NVIDIA Corporation GF114
GeForce GTX 560 Ti (OpenCL platform 0, device 1
on both apl09 and apl10 servers, platform 0 device 0
is not used in the tests as in both cases it was occupied
with very old hardware) GPU, with CentOS 7.4 Linux
operating system,

• server (called apl11) with two Intel Xeon E5-2640 CPUs
running at 2.50GHz clock speed, 6 cores with hyper
threading each (OpenCL platform 1, device 0), 64GB
of RAM and two NVIDIA Corporation GK110GL Tesla
K20m GPUs (OpenCL platform 0, devices 0 and 1), with
CentOS 7.4 Linux operating system,

• server (called apl12) with two Intel Xeon E5-2680 CPUs
running at 2.80GHz clock speed, 10 cores with hyper
threading each (OpenCL platform 0, device 0), 128GB
of RAM and two Intel Corporation Xeon Phi coproces-
sors 5100 (OpenCL platform 0, devices 1 and 2), with
CentOS 6.9 Linux operating system.

All servers are connected via a 1Gbit/s Ethernet network.
Due to the technical reasons (operating system and library
versions that could not be upgraded) we selected apl12 server
as the manager node that will perform both calculations and
will distribute tasks to other servers.

4.2. Application framework and testbed application

4.2.1. Application framework
The testbed framework is written in C and uses MPICH 3.1
for inter-process communication and OpenCL 1.2 for calcu-
lations. We have chosen OpenCL as a general framework for
computations as it allows running the same code in a hetero-
geneous environment where creation of dedicated implemen-
tations might have been time consuming. The main application
is run on the apl12 server and distributes tasks using MPI
messages. In case of servers apl09, apl10, apl11 and apl12
the tasks are distributed directly to threads responsible for
calculations on the CPU and each GPU or coprocessor. The
architecture of the test application is presented in Fig. 1.

4.2.2. Testbed application
The proposed solution aims to be able to cope with various
applications for which processing steps include partitioning,
processing and result merging, effectively available to be mod-
eled by acyclic directed graphs in which these steps correspond
to graph nodes. The testbed environment should thus allow
verification of the proposed approach for different ratios of
computation to communication times. For that reason during
the tests of the proposed model we decided to implement a
parallel solution for solving Ax = b systems of equations
using the Jacobi method. Throughout the paper we will use
term problem of size n to denote solving 1 system of n linear
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Optimization Of Data Assignment For Parallel Processing 7

TABLE 1. The expected time and average real time (from 100 runs) for problems of size 512.

Number of problems 64 128 256 512 768 1024 1536 2048

Time [s] 5.303 10.404 20.532 40.674 60.747 81.041 121.287 161.718
Real time [s] 6.186 11.03 22.085 41.759 63.449 82.04 123.238 167.277
Diff [s] 0.883 0.626 1.553 1.085 2.702 0.999 1.95 5.559
Diff [%] 16.65 6.018 7.562 2.667 4.449 1.233 1.608 3.438

TABLE 2. The expected time and average real time (from 100 runs) for problems of size 1024.

Number of problems 64 128 256 512 768 1024 1536 2048

Time [s] 11.939 23.464 46.101 92.03 138.038 183.982 275.75 367.474
Real time [s] 13.522 24.939 46.428 91.917 137.888 185.548 275.813 366.525
Diff [s] 1.583 1.475 0.327 -0.112 -0.15 1.566 0.063 -0.948
Diff [%] 13.256 6.287 0.71 -0.122 -0.108 0.851 0.023 -0.258

TABLE 3. The expected time and average real time (from 100 runs) for problems of size 2048.

Number of problems 64 128 256 512 768 1024 1536 2048

Time [s] 32.357 63.368 125.485 248.674 373.62 496.441 807.889 1304.797
Real time [s] 33.861 64.619 125.442 248.16 379.882 494.486 797.254 1303.96
Diff [s] 1.504 1.251 -0.043 -0.514 6.262 -1.954 -10.636 -0.836
Diff [%] 4.647 1.974 -0.034 -0.207 1.676 -0.394 -1.316 -0.064

FIGURE 1. Test application architecture.

equations with n unknowns using the Jacobi method. The area
of linear equations is vital for solving many of the current
problems. In the paper, the Jacobi method is used as a workload
that can be easily parametrized. By changing parameters like
the matrix size (thus the number of equations) or the number of
iterations we can change proportions between computation and
communication times. Consequently, obtained results, in terms
of scheduling, can also be useful for other workloads with simi-
lar computation to communication ratios. From the application
point of view, systems of linear equations play an important role

TABLE 4. Comparison of calculation times between optimal,
arbitrary and proportional to Processing Unit performance config-
urations for 2048 problems of size 1024.

Configuration Real time [s]

Optimal 366.525
Arbitrary 1 2680.943
Arbitrary 2 1764.693
Arbitrary 3 2598.601
Proportional 537.559
Min-min v1 726.168
Min-min v2 395.024

in various analysis and optimization problems. They are used
in polynomial interpolation, to model electricity in circuits.
Other uses can be observed in astronomy, traffic management,
electromagnetics [21] and particle simulations [16]. All those
fields usually deal with multiple objects that have to be tracked
or modeled introducing a need for the ability to solve multiple
systems of linear equations in parallel. Specifically, this can
be useful when solving many problems with various input
data sets in parallel which backs up the approach adopted in
this paper. Additionally, the test framework, with very basic
modifications, can be used for any problem following the same
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8 T. Boiński and P. Czarnul

TABLE 5. Comparison of calculation times between optimal,
arbitrary and proportional to Processing Unit performance config-
urations for 2048 problems of size 2048.

Configuration Real time [s]

Optimal 1303.96
Arbitrary 1 8946.678
Arbitrary 2 6963.740
Arbitrary 3 11996.284
Proportional 1713.970
Min-min v1 1899.181
Min-min v2 1404.234

application model. The user only needs to modify the data
structures used to store data and provide a proper OpenCL
kernel that will perform actual calculations.

We aimed at testing the solution with different ratios
between communication and computation times. To achieve
that we decided to test the approach with different matrix
sizes. The tests were thus performed with matrix sizes of
512x512, 1024x1024 and 2048x2048 each, holding a double
value in each cell. Single problem data sizes, using double
precision, for matrix size of 512, 1024 and 2048 are 2101248,
8396800 and 33570816 bytes respectively. For 1000 problems
to solve, of size 2048, the total input data size is 33570816000
bytes (around 32GB). Results are far smaller, each requires
4096, 8192 and 16384 bytes respectively. For 1000 problems
of size 2048, this accumulates to 16384000 bytes (around
16MB). Due to the size of the input data, the amount of the
RAM memory available on the servers and the limitations
to malloc/calloc functions in C language the input data
are stored in files mapped to the shared memory. Data for
calculations received by each compute unit is stored in the
system memory for faster access.

We decided to set the global work size equal to the size of
the input matrix. The local work group size was set to 128, as
this value should be divisible by 32 for CUDA devices and will
allow usage of a greater number of threads on the devices that
support it.

4.3. System profiling

The environment described above was profiled to determine
values of P∗, a∗ and b∗ parameters and to identify all potential
bottlenecks. Profiling was needed to assess both the calculation
time on a given Processing Unit and transfer time between
nodes and to the Processing Units.

Average time needed for the j-th PU on node Ni to calculate
1 iteration of Jacobi method was derived as the average time
from 100 calculations for a given problem size, 1000 Jacobi
iterations. Due to the fact, that the CPU was used for the
calculations and for system management at the same time,
an OpenCl 1.2 feature called device fission [38] was used

by creating OpenCL sub-devices. On apl09, apl10 and apl11
servers 2 threads were dedicated to management. On apl12, as
it served as the manager node for all calculations we decided to
use 8 threads for management purposes and 32 for calculations.
The detailed results are presented in Table A.1 in Appendix A.
The devices are described as <node name>(<platform id>,
<device id>). The tests also revealed that from the practical
point of view proper profiling can be done with fewer calcula-
tions as the difference between the average and the real time
does not exceed 5%. In our case for the rest of the test we
used only the results obtained while calculating 200 systems
of equations on any given Processing Unit.

The network and data bus profiling allowed us to measure
aNi , bNi , a

PU
Ni
j

and b
PU

Ni
j

coefficients. In all cases the transfer

times were calculated as an average from 1000 bidirectional
data transfers. The network transfer times were done starting
from apl12 node as it was the manager node for the test
framework. The aNi and a

PU
Ni
j

coefficients are average val-

ues for sending empty message between nodes and the node
and its Processing Units. Value of b was calculated as in
Equation 1. In the aforementioned formula Sm1 and Sm2 are
sizes of two messages (in bytes) and Tm1 and Tm2 are times
(in seconds) needed to transfer the message in one direction
between given nodes or devices. For calculations we used times
needed to transfer messages of sizes 0.5MiB, 1MiB, 2MiB,
8MiB, 16MiB and 32MiB. For smaller packages the transfer
times were inconsistent due to the small package size. The final
coefficients bNi and b

PU
Ni
j

were calculated as averages for the

aforementioned message sizes.

b = Sm1 − Sm2

Tm1 − Tm2
(4)

The detailed profiling information is presented in appropri-
ate tables in the Appendix section. The transfer times of a
single package (in ms) are presented in Table A.2 and values
of aNi and bNi in Table A.3. For transfers and coefficients from
the host to Processing Units available see Tables A.4 and A.5
respectively.

4.4. Results

We used Equation 3 to calculate the optimal problem distri-
bution for the environment described in Section 4.1. We used
the Jacobi solver to calculate problems with 512, 1024 and
2048 unknowns. Each problem was approximated using 1300
iterations. We tested the proposed solution for distribution of
64, 128, 256, 512, 768, 1024, 1536 and 2048 problems by
scheduling calculations on configurations that included CPUs,
GPUs and Intel Xeon Phi devices. The expected time and
average real time (from 100 runs) needed for calculations
are presented in Tables 1, 2 and 3 for problems of size 512,
1024 and 2048 respectively, where Time represents the the-
oretical time (in seconds) returned by lp_solve, Real Time
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TABLE 6. Initialization and deinitialization times with respect to percentage of RAM usage for problem of size 2048.

Server Device RAM usage [%] Initialization time [s] Deinitialization time [s]

0-100 0.0684957 0.0351841

apl09 (0, 1) 100-106 0.4006795 0.1230411

106-150 0.7705788 0.2866877

0-100 0.0562228 0.0268629

apl10 (0, 1) 100-106 0.2796496 0.1239514

106-150 0.4575722 0.1702592

TABLE 7. Profiling results (in seconds) for problems of size 1024 without the use of CPU as Processing Unit.

Processing unit Initialization [s] Calculation time (1 iteration) [s] Deinitialization [s]

apl09 (0, 1) 0.0003686 0.4792336 0.0508268
apl10 (0, 1) 0.0003786 0.4921547 0.0553940
apl11 (0, 0) 0.0000857 0.1113934 0.2174853
apl11 (0, 1) 0.0000858 0.1115055 0.2900736
apl12 (0, 1) 0.0004564 0.5933427 1.3193764
apl12 (0, 2) 0.0004204 0.5465164 1.3072380

represents actual time (in seconds) needed for the calculations,
Diff denotes the difference and Diff [%] denotes the difference
as percentage of the time returned by the lp_solve tool. For
detailed information including the configurations please see
Appendix B, Tables B.1, B.2 and B.3 respectively.

As can be seen from the results the actual times needed
to perform the calculations are similar to that returned by
lp_solve. In most of the cases the relative difference does
not exceed 5%. Only for cases with a very small number
of equations the difference between the real and theoretical
time exceeds 10%. For problems with a larger number of
equations the difference falls into 0.41% - 5%. In all cases the
configuration returned from lp_solve gave results faster than
other tested configurations.

We also compared the results obtained using lp_solve
with arbitrary selected and proportional assignments as well
as setups generated using the min-min algorithm [30]. The
comparison of real calculation times can be seen in Tables 4
and 5. For detailed information including the configurations
please see Appendix B, Tables B.4 and B.5. The three arbitrary
assignments (marked 1, 2 and 3) take into account relative
performances of Processing Units (unit PUNi

j with expected
P

PU
Ni
j

> P
PU

Nk
l

is assigned a larger number of packets than

unit PUNk
l , based on preliminary knowledge on the devices) but

without consideration of precise proportions. These show that

there are very significant differences between total execution
times for unoptimized and optimized configurations. This,
in turn, justifies the approach that engages a more complex
algorithm for bringing significant benefits over arbitrary
configurations. The configuration in the column marked as
proportional assigns data proportionally to the Processing
Unit performance (with consideration of memory capacity
as discussed in Section 4.5.2 – the excessive equations were
assigned proportionally across other nodes). This approach
does not take into account transfer times between nodes and
from the node to the Processing Units thus giving worse results
than from the proposed model. The Min-min v1 column shows
results generated by the min-min algorithm taking into account
single Jacobi equation calculation time and data transfer
time between nodes. The last column, denoted Min-min v2,
takes into account single Jacobi equation calculation time,
data transfer time between nodes and the initialization and
deinitialization times (as detailed in Section 4.5.2).

In the presented tests lp_solve always provided configura-
tions with, usually significantly, better run times than the oth-
ers. Furthermore the times returned by the min-min algorithm
were distant from real calculation times, e.g. for 2048 Jacobi
equations of size 2048 the time returned by the min-min algo-
rithm, when the computation, transfer and initialization/deini-
tialization times were taken into account, was 768.318 seconds,
whereas the real computation time was 1404.234 seconds. We
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10 T. Boiński and P. Czarnul

TABLE 8. Profiling results (in seconds) for problems of size 1024 with the use of CPU as Processing Unit.

Processing unit Initialization [s] Calculation time (1 iteration) [s] Deinitialization [s]

apl09 (0, 1) 0.0005222 0.6788314 0.0747633
apl09 (1, 0) 0.0152677 19.8480542 0.2427339
apl10 (0, 1) 0.0005559 0.7226309 0.0905048
apl10 (1, 0) 0.0153396 19.9414649 0.2535768
apl11 (0, 0) 0.0001476 0.1919251 0.3242558
apl11 (0, 1) 0.0001517 0.1972112 0.3373213
apl11 (1, 0) 0.0060809 7.9051094 0.2780281
apl12 (0, 0) 0.0036818 4.7863524 0.8856008
apl12 (0, 1) 0.0006830 0.8878551 1.5552522
apl12 (0, 2) 0.0006246 0.8119639 1.6193448

thus believe that this makes our proposed approach a useful tool
for deducing desired configurations in heterogeneous environ-
ments as it provides results very close to the real computation
times and allows great detail in modeling of the whole calcula-
tion process. Its performance with timeouts is discussed further.
It should be noted, that it would be possible to scale a solution
with, e.g. X problems onto 2X, 3X, etc. numbers of problems
by proportional assignment, however, without the guarantee of
it being optimal. For instance, if we consider a system with 2
identical compute devices and 3 problems (2 problems assigned
to 1 device and 1 to the other) then a proportionally scaled
solution for 6 problems (4 problems to 1 device, 2 to the other)
would not be optimal.

4.5. Discussion

As presented in the previous section the proposed model and
usage of lp_solve produces viable configurations for data
assignment in a heterogeneous environment. Some precautions
need to be taken, however, as proper hardware profiling is the
key to this solution.

4.5.1. Hardware disparity
In the paper we discuss a heterogeneous environment which,
by nature, consists of nodes described by different values of
parameters. During hardware profiling we, however, observed,
that even similar hardware show some substantial differences.
Such differences can be observed in Table A.2, where two
servers (apl09 and apl10) of the same model and connected to
the same switch show different transfer times, and in Table A.4
where two identical GPUs, located within the same server
(apl11) show different transfer times over PCI Express lanes.
In the first case the differences can be caused by the cables
and in the second case the system showed slightly slower
transfer times over PCI express slots located further on the lane.
Such differences have to be taken into account during optimal
solution calculation.

4.5.2. Computation time and memory usage
First of all, care needs to be taken when scheduling data
onto compute nodes as total calculation times are memory
dependent. If the data scheduled fits into the RAM the times
remain constant for such a configuration. After the data volume
reaching 100% of RAM the computation times remain the
same, however initialization and deinitialization times rise by
a level of magnitude. Sample initialization and deinitialization
times for Processing Units of apl09 and apl10 servers when
calculating problems of size 2048 are presented in Table 6.
In our approach, especially during tests with problems of size
2048, we introduced a limit of how many equations can be sent
to given compute node. The limits are as follows: apl09 and
apl10 – 348 equations, apl11 – 1000 equations, apl12 – 2000
equations. This limit is hardware related and should be adjusted
on an individual basis. This can be seen as a practical way
of dealing with these memory constraint effects. Given these
constraints, this results in smaller ILP solver running times. For
problems of size 512 and 1024 we did not introduce a limit as
they are considerably smaller in terms of memory consumption.

4.5.3. CPU as a Processing Unit
Thanks to usage of OpenCL as a language for computational
kernels in evaluation of our proposition we can run the code
on almost any devices. Care need to be taken with such an
approach as utilization of all physical cores of a CPU can
actually hinder performance. When all physical cores are allo-
cated to the calculation process the system needs more time to
perform system calls thus making the initialization, deinitial-
ization and computation times per one Jacobi solver iteration,
for calls made to the GPUs, higher. An example of such
behavior for problems of size 1024 can be seen in Tables 7
and 8. The impact of initialization and deinitialization times
depends on the algorithm. In our case the initialization and
deinitialization is done for every problem and total computation
time greatly depends on the number of iterations used in Jacobi
approximation. In our tests we run the approximation for 1300
iterations thus every increase of the time needed to perform 1
iteration impacts the final computation time to a great extent.
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Optimization Of Data Assignment For Parallel Processing 11

FIGURE 2. Comparison of optimal values for CPUs+GPUs with
device fission, CPUs+GPUs without device fission and GPUs only
for problems of size 1024.

As a result, using only GPUs for calculation yields better results
than using CPUs and GPUs in the default configuration. An
example of such a situation for problems of size 1024 can be
seen in Fig. 2. The aforementioned increase of initialization
and deinitialization times are to blame for this situation. In such
an approach, the lp_solve tool could not take this increase into
account and recommended not to use CPUs at all. The solution
to this problem turned out to be usage of the device fission
concept as described in Section 4.3. This way we can utilize
the CPUs without impacting the performance. All other results
in the paper are reported for this best configuration with device
fission. It should be noted however, that the CPU is usually
much slower than the GPU. It some cases, especially when
there is a low number of CPUs available it might be beneficial
to focus on GPUs only in terms of coding time.

4.5.4 Integer linear programming calculation times
The results presented in the previous sections of this paper show
that an integer linear programming solver can be used to find
optimal solution for data assignment. This applies to problems
of limited size unfortunately, as integer programming has a high
complexity and computation time. With many variables the
time needed to find the optimal solution can exceed the time to
actually run the application with even a random configuration.
The times needed to find the optimal solutions, in conjunction
with actual application running times, for our testbed applica-
tion are presented in Tables 9, 10 and 11.

The complexity of lp_solve increases greatly with the num-
ber of variables. As seen in the aforementioned tables the times
needed to find the optimal solutions are very high, around
2–7 times higher on average, even up to 48 times higher
(for the worst case – 2048 problems of size 512) than the
actual computation time. Times to find the optimal solution
for size 2048 are visibly smaller, apparently due to additional
constraints imposed due to memory limitations, as discussed in
Section 4.5.2.

We decided to limit the time for lp_solve to 30, 60 and
90 seconds. The lp_solve time and actual computation times

TABLE 9. lp_solve runtime, theoretical computation time and
real computation time for returned configuration (in seconds) for
problems of size 512.

Number of
problems

lp_solve solver
time to obtain
optimal config-
uration [s]

Theoretical
application
execution
time [s]

Real appli-
cation exe-
cution time
[s]

64 0.43 5.303 6.186
128 3.39 10.404 11.03
256 37.98 20.532 22.085
512 310.914 40.674 41.759
768 1014.695 60.747 63.449
1024 2402.737 81.041 82.04
1536 4829.618 121.287 123.238
2048 7844.227 161.718 167.277

TABLE 10. lp_solve runtime, theoretical computation time and
real computation time for returned configuration (in seconds) for
problems of size 1024.

Number of
problems

lp_solve solver
time to obtain
optimal config-
uration [s]

Theoretical
application
execution
time [s]

Real appli-
cation exe-
cution time
[s]

64 0.255 11.939 13.522
128 2.819 23.464 24.939
256 33.874 46.101 46.428
512 200.967 92.03 91.917
768 512.156 138.038 137.888
1024 891.536 183.982 185.548
1536 2335.38 275.75 275.813
2048 5049.07 367.474 366.525

TABLE 11. lp_solve runtime, theoretical computation time and
real computation time for returned configuration (in seconds) for
problems of size 2048.

Number of
problems

lp_solve solver
time to obtain
optimal config-
uration [s]

Theoretical
application
execution
time [s]

Real appli-
cation exe-
cution time
[s]

64 0.087 32.357 33.861
128 4.723 63.368 64.619
256 22.752 125.485 125.442
512 148.998 248.674 248.16
768 321.409 373.62 379.882
1024 658.16 496.441 494.486
1536 572.939 807.889 797.254
2048 62.797 1304.797 1303.96
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12 T. Boiński and P. Czarnul

TABLE 12. lp_solve runtime (with and without timeouts) and real computation times for returned configurations (in seconds) for problems of
size 512.

Number of
problems

lp_solve
time
without any
timeout [s]

Application
running
(calculation)
time for
configuration
without
lp_solve
timeout [s]

Total
running
time for
config-
uration
without
lp_solve
timeout [s]

lp_solve
time with
timeout set
[s]

Application
running
(calcula-
tion) time
for configu-
ration after
lp_solve
timeout [s]

Total
running
time for
configura-
tion after
lp_solve
timeout [s]

Total running
time with
lp_solve
timeout to
total running
time without
timeout [%]

256 37.98 22.085 60.065 30.018 29.606 59.624 99.266

37.98 22.085 60.065 39.44 22.085 61.525 102.431

37.98 22.085 60.065 38.594 22.085 60.679 101.022

512 310.914 41.759 352.673 30.018 69.297 99.315 28.161

310.914 41.759 352.673 60.017 60.17 120.187 34.079

310.914 41.759 352.673 90.018 60.17 150.188 42.586

768 1014.695 63.449 1078.144 30.017 101.771 131.788 12.224

1014.695 63.449 1078.144 60.017 98.154 158.171 14.671

1014.695 63.449 1078.144 90.025 98.154 188.179 17.454

1024 2402.737 82.04 2484.777 30.018 138.091 168.109 6.766

2402.737 82.04 2484.777 60.018 134.137 194.155 7.814

2402.737 82.04 2484.777 90.059 136.068 226.127 9.1

1536 4829.618 123.238 4952.856 30.017 204.057 234.074 4.726

4829.618 123.238 4952.856 60.018 204.057 264.075 5.332

4829.618 123.238 4952.856 90.066 204.057 294.123 5.938

2048 7844.227 167.277 8011.504 30.017 284.388 314.405 3.924

7844.227 167.277 8011.504 60.026 284.388 344.414 4.299

7844.227 167.277 8011.504 90.017 284.388 374.405 4.673

for 256, 512, 768, 1024, 1536 and 2048 problems of sizes
512, 1024 and 2048 are presented in Tables 12, 13 and 14
respectively.

While looking at ratios of lp_solve times (with timeout set)
to application running times in Tables 12, 13 and 14, we can
see that we have covered a large spectrum of ratios ranging
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TABLE 13. lp_solve runtime (with and without timeouts), theoretical computation times and real computation times for returned configurations
(in seconds) for problems of size 1024.

Number of
problems

lp_solve
time
without any
timeout [s]

Application
running
(calculation)
time for
configuration
without
lp_solve
timeout [s]

Total
running
time for
config-
uration
without
lp_solve
timeout [s]

lp_solve
time with
timeout set
[s]

Application
running
(calcula-
tion) time
for configu-
ration after
lp_solve
timeout [s]

Total
running
time for
configura-
tion after
lp_solve
timeout [s]

Total running
time with
lp_solve
timeout to
total running
time without
timeout [%]

256 33.874 46.428 80.302 30.018 65.229 95.247 118.611

33.874 46.428 80.302 34.897 46.428 81.325 101.274

33.874 46.428 80.302 34.959 46.428 81.387 101.351

512 200.967 91.917 292.884 30.018 185.62 215.638 73.626

200.967 91.917 292.884 60.018 160.312 220.33 75.228

200.967 91.917 292.884 90.017 160.312 250.329 85.47

768 512.156 137.888 650.044 30.018 278.231 308.249 47.42

512.156 137.888 650.044 60.017 252.633 312.65 48.097

512.156 137.888 650.044 90.017 252.633 342.65 52.712

1024 891.536 185.548 1077.084 30.018 372.326 402.344 37.355

891.536 185.548 1077.084 60.017 340.614 400.631 37.196

891.536 185.548 1077.084 90.018 340.614 430.632 39.981

1536 2335.38 275.813 2611.193 30.018 558.942 588.96 22.555

2335.38 275.813 2611.193 60.018 558.347 618.365 23.681

2335.38 275.813 2611.193 90.018 558.347 648.365 24.83

2048 5049.07 366.525 5415.595 30.018 773.552 803.57 14.838

5049.07 366.525 5415.595 60.018 773.552 833.57 15.392

5049.07 366.525 5415.595 90.019 773.552 863.571 15.946

from: 0.105-1.747, 0.039-0.753 and 0.022-0.229 respectively.
We can compare these ratios to other works such as [7] for
selection of services for workflow scheduling (with potential

rescheduling at runtime) in which ratios for one run of a
solver (various algorithms such as ILP, GA and GAIN tested)
are in the range of 0.007 (the smallest workflow for which
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14 T. Boiński and P. Czarnul

TABLE 14. lp_solve runtime (with and without timeouts), theoretical computation times and real computation times for returned configurations
(in seconds) for problems of size 2048.

Number of
problems

lp_solve
time
without any
timeout [s]

Application
running
(calculation)
time for
configuration
without
lp_solve
timeout [s]

Total
running
time for
config-
uration
without
lp_solve
timeout [s]

lp_solve
time with
timeout set
[s]

Application
running
(calcula-
tion) time
for configu-
ration after
lp_solve
timeout [s]

Total
running
time for
configura-
tion after
lp_solve
timeout [s]

Total running
time with
lp_solve
timeout to
total running
time without
timeout [%]

256 22.752 125.442 148.194 22.597 125.442 148.039 99.895

22.752 125.442 148.194 22.482 125.442 147.924 99.818

22.752 125.442 148.194 22.441 125.442 147.883 99.79

512 148.998 248.16 397.158 30.018 491.252 521.27 131.25

148.998 248.16 397.158 60.019 491.252 551.271 138.804

148.998 248.16 397.158 90.018 393.862 483.88 121.836

768 321.409 379.882 701.291 30.019 803.186 833.205 118.81

321.409 379.882 701.291 60.019 728.936 788.955 112.5

321.409 379.882 701.291 90.018 728.936 818.954 116.778

1024 658.16 494.486 1152.646 30.017 1068.15 1098.167 95.274

658.16 494.486 1152.646 60.019 1057.357 1117.376 96.94

658.16 494.486 1152.646 90.019 1057.357 1147.376 99.543

1536 572.939 797.254 1370.193 30.018 1298.564 1328.582 96.963

572.939 797.254 1370.193 60.018 1197.18 1257.198 91.753

572.939 797.254 1370.193 90.018 1229.935 1319.953 96.333

2048 62.797 1303.96 1366.757 30.019 1363.669 1393.688 101.97

62.797 1303.96 1366.757 60.019 1283.449 1343.468 98.296

62.797 1303.96 1366.757 65.482 1264.589 1330.071 97.316

an optimal solution could not be found in reasonable time)
to 0.104.

Our research shows, that the lp_solve tends to stick to a
local minimum for a long time. For that reason increasing

the timeout value does not generally yield benefits, espe-
cially for bigger numbers of problems, for problems of size
512 and 1024. However, the initial timeout of 30 seconds
allows lp_solve to find a feasible solution and corresponding
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computation time combined with the lp_solve time is usually
far lower than the total time needed to find and calculate the
optimal configuration. Only for problems of size 2048 both
times are comparable, still the solution obtained with lp_solve’s
timeout takes less time, in most cases. For problem sizes of
512 and 1024 and larger numbers of problems (1024+) the
total time needed to find a suboptimal solution and perform
the calculations is as low as 5-40% of the total time needed
to find and calculate the optimal solution and is usually much
smaller than time needed to calculate the solution using random
or proportional assignment (see Tables 4 and 5). Only in one of
the tested cases the total suboptimal solution lp_solve time with
timeout equal 30 seconds took 266 seconds longer than running
the calculations using proportional assignment. In all other
cases the total lp_solve and calculation time was considerably
shorter.

5. SUMMARY AND FUTURE WORK

In the paper we have shown that linear programming can be
used to find good data assignment for calculation problems in
heterogeneous environment. The process of finding optimal
configurations, however, is not always time-feasible as it
can take a long time due to a large number of unknowns.
This can be, however, mitigated by setting a timeout on
lp_solve thus providing sub-optimal, yet still time-feasible data
assignment that results in much better than random or device
performance proportional approaches to packet assignment to
Processing Units. The proposed model is also useful in multi-
layer heterogeneous environments. The conclusions obtained
within the research can be summarized as follows – we have
shown that:

1. Theoretical times from our model are accurate compared
to real results – for larger data sizes difference does not
exceed 5%, with up to 16.7% for small data sizes.

2. OpenCL 1.2’s device fission allowing sub-dividing of
a device into two or more sub-devices is a feature that
enables to obtain better performance in heterogeneous
CPU+GPU environments compared to the default
CPU+GPU or GPU-only configurations.

3. Using an integer linear programming solver (lp_solve)
with a timeout allows to obtain significantly better total
(solver+application) run times than runs without time-
outs, also significantly better than arbitrary chosen con-
figurations. Furthermore, we can see that testing time-
outs of 30, 60 and 90 seconds, for problems of size 512,
1024 generally best total times were obtained for timeout
30 seconds while for size 2048 best results were typically
for 60 or even 90 seconds.

4. There may be slightly different hardware performances
for identically specified nodes or compute devices con-
nected to various switch or PCI slots which suggests the
need for precise profiling.

The model presented in the paper does not take into account
calculations and data transfer overlapping within a single node
and between the manager and worker nodes. Some thought can
also be given to the order of the nodes in which the data is
sent to. The proposed solution can be further extended to take
into account power consumption. We can formulate equations
that correspond to energy consumption during computations on
CPU and GPU thus extending the model to take into account
all required parameters. This, however, complicates the model
and requires further research. We consider using the aforemen-
tioned MERPSYS simulation environment [11] to aid within
this area.

Data availability

Detailed data is available in Appendices A and B, source data
will be shared on request to the corresponding author.
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Appendix A. Detailed profiling results

TABLE A.1 Average time (in milliseconds) needed for PUNi
j to

calculate 1 iteration of Jacobi method for given problem size

Processing
Unit

Problem size

512 1024 2048

apl09(0, 1) 0.1151 0.4140 1.5546
apl09(1, 0) 5.0781 20.0501 67.6384
apl10(0, 1) 0.1162 0.4140 1.5539
apl10(1, 0) 4.3065 20.0363 78.9142
apl11(0, 0) 0.0462 0.0964 0.2619
apl11(0, 1) 0.0451 0.0933 0.2608
apl11(1, 0) 1.6276 6.3978 25.1866
apl12(0, 0) 0.9917 3.6538 17.6083
apl12(0, 1) 0.3488 0.5697 0.884
apl12(0, 2) 0.3534 0.5676 0.8631

TABLE A.2 Two-way transfer time (“ping-pong”) between apl12 and compute nodes (in milliseconds)

Ni Packet size

1 512KiB 1MiB 2MiB 8MiB 16MiB 32MiB

apl09 0.099 10.858 20.184 38.721 151.064 300.724 1047.023
apl10 0.048 10.505 18.326 36.227 143.374 285.649 570.863
apl11 0.068 9.38 18.246 36.175 151.187 285.692 570.819
apl12 0.001 0.152 0.56 1.369 6.11 8.188 28.05

TABLE A.3 The values of aNi and bNi for compute nodes

Ni aNi Packet size bNi

1MiB 2MiB 8MiB 16MiB 32MiB

apl09 0.00004929 112445513 113134106 112003566 112102776 44961074 98929407
apl10 0.00002414 134080755 117147582 117436034 117921680 117646286 120846467
apl11 0.00003422 118266729 116975475 109405047 124732869 117682182 117412460
apl12 0.00000056 2564006259 2593139127 2654231929 8072365027 1689374057 3514623280
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TABLE A.4 Two-way transfer time (“ping-pong”) between the compute node Ni and its Processing Units (in milliseconds)

PUj
Ni

Packet size

1 512KiB 1MiB 2MiB 8MiB 16MiB 32MiB

apl09 (0, 1) 0.004 0.176 0.345 0.694 3.066 6.139 12.504
apl09 (1, 0) 0.004 0.345 0.729 1.327 3.03 5.697 11.95
apl10 (0, 1) 0.004 0.176 0.345 0.695 3.073 6.077 12.471
apl10 (1, 0) 0.004 0.353 0.716 1.424 2.93 5.961 12.306
apl11 (0, 0) 0.004 0.172 0.338 0.859 8.463 14 29.131
apl11 (0, 1) 0.004 0.171 0.336 0.905 6.264 14.55 31.075
apl11 (1, 0) 0.005 0.581 1.219 2.645 9.527 17.504 39.713
apl12 (0, 0) 0.005 0.562 1.143 2.158 11.348 23.22 34.723
apl12 (0, 1) 0.592 1.396 1.815 4.505 17.73 30.087 77.42
apl12 (0, 2) 1.059 1.744 2.092 5.35 21.024 42.573 80.208

TABLE A.5 The values of a
PU

Ni
j

and b
PU

Ni
j

for Processing Units

PUj
Ni

a
PU

Ni
j

Packet size b
PU

Ni
j

1MiB 2MiB 8MiB 16MiB 32MiB

apl09 (0, 1) 0.00000183 6198466604 6012080625 5304632553 5458829592 5272045118 5649210898
apl09 (1, 0) 0.00000207 2732787423 3507324374 7388613364 6290068253 5365832175 5056925118
apl10 (0, 1) 0.00000184 6199199512 5997363296 5290845927 5584441919 5247767803 5663923691
apl10 (1, 0) 0.00000209 2885840727 2961196592 8358067620 5535166179 5288129866 5005680197
apl11 (0, 0) 0.00000215 6312843915 4021130014 1654797578 3030355181 2217472179 3447319773
apl11 (0, 1) 0.00000222 6358281538 3686302082 2347839424 2024672275 2030550821 3289529228
apl11 (1, 0) 0.00000234 1643793698 1470863994 1828337349 2103328160 1510862680 1711437176
apl12 (0, 0) 0.00000234 1802519390 2067840362 1369128594 1413113664 2917260467 1913972495
apl12 (0, 1) 0.00029578 2504426913 779725773 951388853 1357756394 708900065 1260439600
apl12 (0, 2) 0.00052974 3012275173 643808268 802780525 778551730 891586151 1225800369
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Appendix B. Configuration details

TABLE B.1 The configurations, expected time and average real time (from 100 runs) for problems of size 512

Number of problems 64 128 256 512 768 1024 1536 2048

Time [s] 5.303 10.404 20.532 40.674 60.747 81.041 121.287 161.718
Real Time [s] 6.186 11.03 22.085 41.759 63.449 82.04 123.238 167.277
Diff [s] 0.883 0.626 1.553 1.085 2.702 0.999 1.95 5.559
Diff [%] 16.65 6.018 7.562 2.667 4.449 1.233 1.608 3.438
dapl09 19 38 75 148 221 296 443 591
dapl10 18 36 72 145 217 288 433 577
dapl11 23 46 92 183 274 366 549 732
dapl12 4 8 17 36 56 74 111 148

dapl09
(0,1) 19 37 73 144 215 287 430 573

dapl09
(1,0) 0 1 2 4 6 9 13 18

dapl10
(0,1) 18 35 70 140 209 278 417 556

dapl10
(1,0) 0 1 2 5 8 10 16 21

dapl11
(0,0) 11 22 43 85 127 170 255 340

dapl11
(0,1) 11 21 43 85 127 170 254 339

dapl11
(1,0) 1 3 6 13 20 26 40 53

dapl12
(0,0) 2 4 9 18 28 37 55 74

dapl12
(0,1) 1 2 4 9 14 19 28 37

dapl12
(0,2) 1 2 4 9 14 18 28 37

TABLE B.2 The configurations, expected time and average real time (from 100 runs) for problems of size 1024

Number of problems 64 128 256 512 768 1024 1536 2048

Time [s] 11.939 23.464 46.101 92.03 138.038 183.982 275.75 367.474
Real Time [s] 13.522 24.939 46.428 91.917 137.888 185.548 275.813 366.525
Diff [s] 1.583 1.475 0.327 -0.112 -0.15 1.566 0.063 -0.948
Diff [%] 13.256 6.287 0.71 -0.122 -0.108 0.851 0.023 -0.258
dapl09 11 24 48 95 143 191 286 382
dapl10 12 24 48 96 144 192 288 384
dapl11 36 70 139 278 417 556 834 1111
dapl12 5 10 21 43 64 85 128 171

dapl09
(0,1) 11 24 47 93 140 187 280 374

dapl09
(1,0) 0 0 1 2 3 4 6 8

dapl10
(0,1) 12 24 47 94 141 188 282 376

dapl10
(1,0) 0 0 1 2 3 4 6 8

dapl11
(0,0) 18 34 68 136 203 271 407 542

dapl11
(0,1) 18 35 68 136 204 272 407 543

dapl11
(1,0) 0 1 3 6 10 13 20 26

dapl12
(0,0) 1 2 5 11 16 22 33 44

dapl12
(0,1) 2 4 8 16 24 32 48 64

dapl12
(0,2) 2 4 8 16 24 31 47 63
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TABLE B.3 The configurations, expected time and average real time (from 100 runs) for problems of size 2048

Number of problems 64 128 256 512 768 1024 1536 2048

Time [s] 32.357 63.368 125.485 248.674 373.62 496.441 807.889 1304.797
Real Time [s] 33.861 64.619 125.442 248.16 379.882 494.486 797.254 1303.96
Diff [s] 1.504 1.251 -0.043 -0.514 6.262 -1.954 -10.636 -0.836
Diff [%] 4.647 1.974 -0.034 -0.207 1.676 -0.394 -1.316 -0.064
dapl09 2 10 21 42 62 84 153 301
dapl10 5 10 21 42 64 85 155 303
dapl11 49 93 184 365 549 729 1000 1000
dapl12 8 15 30 63 93 126 228 444

dapl09
(0,1) 2 10 21 41 62 82 149 292

dapl09
(1,0) 0 0 0 1 0 2 4 9

dapl10
(0,1) 5 10 21 41 63 83 151 295

dapl10
(1,0) 0 0 0 1 1 2 4 8

dapl11
(0,0) 25 47 92 181 273 362 497 500

dapl11
(0,1) 24 46 91 181 271 360 494 500

dapl11
(1,0) 0 0 1 3 5 7 9 0

dapl12
(0,0) 0 1 2 5 7 10 18 35

dapl12
(0,1) 4 7 14 29 43 58 105 205

dapl12
(0,2) 4 7 14 29 43 58 105 204

TABLE B.4 Comparison of calculation times between optimal, arbitrary and proportional to Processing Unit performance configurations for
2048 problems of size 1024

Configuration Optimal Arbitrary 1 Arbitrary 2 Arbitrary 3 Proportional Min-min v1 Min-min v2

Real Time [s] 366.525 2680.943 1764.693 2598.601 537.559 726.168 395.024
dapl09 382 312 465 365 168 209 412
dapl10 384 312 465 365 168 216 425
dapl11 1111 712 815 1100 1453 1239 1021
dapl12 171 712 303 218 259 384 190

dapl09
(0.1) 374 212 400 251 165 204 401

dapl09
(1.0) 8 100 65 114 3 5 11

dapl10
(0.1) 376 212 400 251 165 211 414

dapl10
(1.0) 8 100 65 114 3 5 11

dapl11
(0.0) 542 306 365 450 710 608 494

dapl11
(0.1) 543 306 365 450 732 616 493

dapl11
(1.0) 26 100 85 200 11 15 34

dapl12
(0.0) 44 100 73 51 19 27 56

dapl12
(0.1) 64 306 115 85 120 178 67

dapl12
(0.2) 63 306 115 82 120 179 67
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TABLE B.5 Comparison of calculation times between optimal, arbitrary and proportional to Processing Unit performance configurations for
2048 problems of size 2048

Configuration Optimal Arbitrary 1 Arbitrary 2 Arbitrary 3 Proportional Min-min v1 Min-min v2

Real Time [s] 1303.96 8946.678 6963.740 11996.284 1713.970 1899.181 1404.234
dapl09 301 312 465 365 189 166 295
dapl10 303 312 465 365 187 170 303
dapl11 1000 712 815 1000 1000 1000 1000
dapl12 444 712 303 318 672 712 450

dapl09
(0.1) 292 212 400 251 184 162 284

dapl09
(1.0) 9 100 65 114 5 4 11

dapl10
(0.1) 295 212 400 251 184 167 294

dapl10
(1.0) 8 100 65 114 3 3 9

dapl11
(0.0) 1000 306 365 400 496 495 493

dapl11
(0.1) 0 306 365 400 497 495 491

dapl11
(1.0) 0 100 85 200 7 10 16

dapl12
(0.0) 35 100 73 51 16 17 42

dapl12
(0.1) 205 306 115 134 324 343 204

dapl12
(0.2) 204 306 115 133 332 352 204
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