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Abstract

We report major algorithmic improvements of the UNRES package for physics-
based coarse-grained simulations of proteins. These include (i) introduction of interac-
tion lists to optimize computations, (ii) transforming the inertia matrix to a pentadiag-
onal form to reduce computing and memory requirements, (iii) removing explicit angles
and dihedral angles from energy expressions and recoding the most time-consuming en-
ergy/force terms to minimize the number of operations and to improve numerical sta-
bility, (iv) using OpenMP to parallelize those sections of the code for which distributed-
memory parallelization involves unfavorable computing/communication time ratio, and
(v) careful memory management to minimize simultaneous access of distant memory
sections. The new code enables us to run molecular dynamics simulations of protein sys-
tems with size exceeding 100,000 amino-acid residues, reaching over 1 ns/day (1 µs/day
in all-atom timescale) with 24 cores for proteins of this size. Parallel performance of
the code and comparison of its performance with that of AMBER, GROMACS and
MARTINI 3 is presented.
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Molecular dynamics with the optimized and efficiently parallelized implementation of the
highly-reduced physics-based UNRES model of polypeptide chains enables us to reach, with
moderate computer resources, several nanosecond/day of MD time, for protein systems with
size over 100,000 residues, which translates to microsecond/day real time given a 1,000 fold
faster occurrence of events in the simulations with the UNRES model compared to the all-
atom representation.
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INTRODUCTION

Molecular simulations, especially molecular dynamics (MD), are now established method-

ologies with which to study the structure, properties, dynamics, and transformations of

biological macromolecules and assemblies, polymers, crystals, glasses, and other systems1–5.

In biological applications, the simulations are already capable of treating viruses and cell or-

ganelles and it is very likely that their scope will soon be extended to the minimal bacterial

cell6. Efficient algorithms for all-atom molecular dynamics and dedicated hardware, namely

the ANTON supercomputer of the D.E. Shaw group7,8 have been developed. With these

resources, millisecond-scale all-atom simulations of small proteins and microsecond-scale sim-

ulations of entire viruses or cell fragments9 are now feasible. However, all-atom simulations

have not yet reached the time scale of biological events for larger systems. Consequently,

coarse-grained (CG) models, in which each interaction site comprises several atoms, are a

plausible means to overcome the time- and size-scale problem10–18. A number of coarse-

grained models have been developed, including AWSEM19, OpenAWSEM20, CABS10, the

residue-level coarse-grained model recently implemented in the GENESIS MD software21 by

Tan and colleagues22 (which will hereafter be referred to as the GENESIS CG model), MAR-

TINI23,24, SIRAH25, and UNRES26,27. Of those, MARTINI is most widely used, because of

is generality and possibility of automatic coarse-graining.

Switching from the all-atom to a coarse-grained representation of a system results in

omitting the fast-moving degrees of freedom corresponding to uncorrelated motions involving

only few atoms (e.g., bond vibrations), to preserve only correlated motions of larger parts of

a system. Consequently, the time scale of coarse-grained dynamics is accelerated by several

orders of magnitude with respect to that of all-atom dynamics28–30. Moreover, omitting

the fast motions from the model makes it much easier for a researcher to extract important

events from simulations. The cost of the calculation of energy and forces is also reduced

with respect to all-atom representation, owing to fewer interaction sites. However, a coarser

representation also implies reduced accuracy of results, which decreases with the extent of

coarse graining.

As the extent of coarse graining increases, it also becomes more and more problematic
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to keep a straightforward and easy to implement scheme, in which each extended atom

is centered in a point and its distribution of mass and the interaction potentials are cen-

trosymmetric. Introducing axially-symmetric sites is a sensible solution, which has been

implemented first by Berne and Pechukas31 to coarse-grain liquid-crystal molecules, which

was further modified by Gay and Berne32 to become the well-known family of the Gay-Berne

anisotropic potentials.

The axial symmetry of interaction sites appears a natural choice when polymer chains

are considered. Polymer-chain units can then be linked by virtual bonds, between which

the backbone sites are located, while the “side groups” are attached to the main chain with

virtual bonds. The main degrees of freedom to average over are the angles for rotation of the

groups of atoms constituting extended sites about the respective virtual bonds. The solvent

is considered explicitly as extended solvent atoms or superatoms comprising a number of

solvent molecules (as in MARTINI23) or is averaged over to be absorbed in the mean-field

interaction potentials.

Recently, using the axial-symmetry ansatz, and taking advantage of our earlier deriva-

tion33 of coarse-grained effective energy functions as Kubo cluster-cumulant34 expansions

of the respective potentials of mean force, we developed a mathematical formalism for the

construction of scale-consistent expressions in coarse-grained force fields35,36. Owing to this

formalism, expressions for pairwise and multibody interaction potentials that exhibit cor-

rect dependence on site orientation and on local chain geometry can be derived35–37. We

implemented this formalism and its earlier versions in the derivation of the effective en-

ergy expressions in the coarse-grained UNRES model of polypeptide chains developed in our

laboratory26,27. Owing to these expressions, UNRES is capable of quite accurate modeling

of the structure, dynamics, and thermodynamics of proteins, despite heavy coarse graining

(only two interaction sites per amino-acid residue)26,27. The formalism of UNRES has been

extended to nucleic acids38 and polysaccharides26.

Assuming the axial symmetry of the interacting polymer beads implies that the vari-

ables present in the equations of motion are not necessarily identified with the Cartesian

coordinates of the site centers. In our first implementation of molecular dynamics with the

UNRES model of polypeptide chains39, we used virtual-bond vectors as variables, which
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resulted in the presence of a full, albeit constant, inertia matrix in the equations of motion.

Consequently, the memory requirements and the number of operations necessary to solve the

equations of motion grew with the square of problem size. In this work, we use the anchor

points of the interaction sites as variables, which results in a pentadiagonal (five-band) iner-

tia matrix and, therefore, linear growth of memory and computing-time requirements with

system size.

In biomolecular computations the non-bonded interactions between the atoms that are

separated by more than the selected distance cut-off are omitted and the particle mesh Ewald

(PME) scheme is used to handle electrostatic interactions40 to speed up computations. In

most CG force fields, for example in MARTINI41, a cut-off is used on all interactions. Lists

of interactions that are within the cut-off are constructed; these lists are updated only every

given number of MD steps. With the interaction lists, the cost of computations grows linearly

or as n log n (where n is the number of interacting sites) when the PME is used. The cut-

off-based calculation schemes in coarse-grained simulations are constantly being improved42.

We made an attempt at introducing the cut-off on long-range interactions in UNRES in

our previous work43. However, the site-site distances were evaluated every MD step, this

resulting in the still quadratic growth of the cost of computations with system size, albeit

with a smaller coefficient compared to the situation in which the interaction energies of all

pairs are computed. In this work, we have introduced interaction lists and carefully selected

the cut-off distance to achieve the best compromise between computing cost and accuracy.

Even though coarse graining heavily reduces the computation time compared to all-

atom schemes28, parallelization of the code is a necessity for larger systems. There are

currently several application programming interfaces (APIs) that can be used for paral-

lelizing computation-intensive C/Fortran applications, mainly depending on target system

type (distributed or shared memory) and computing device type (CPU or GPU)44. For

distributed-memory parallelization the Message Passing Interface (MPI)45 is typically used

for communication among processes of a parallel application that run on various nodes.

Shared-memory parallelization is accomplished by multithreading with synchronization us-

ing OpenMP46, Pthreads47, OpenCL48, with multi-core CPUs and CUDA49, OpenCL48,

OpenACC50 on GPUs. All these means are extensively used in the codes developed for

5

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


molecular simulations such as AMBER51, GROMACS52, LAMMPS53, DESMOND54, and

TINKER55.

In our earlier work56,57, we parallelized UNRES with MPI, by designing a two-grain

parallelization scheme. The tasks were divided into coarse-grain and fine-grain ones. Each

coarse-grain task was handling a single MD trajectory. The communication between these

tasks was necessary only upon ending the job or every 10,000–20,000 MD steps when replica-

exchange simulations were carried out. Each coarse-grain task was divided into fine-grain

subtasks, each of those computing its assigned part of energy and forces of a single con-

formation. Because relatively small systems were considered at that time, no cut-off on

long-range interactions was introduced and, therefore, the pairwise interactions could be

partitioned between the fine-grain tasks at the beginning of a run. Very good scalability was

achieved, which amounted to about 70 % parallel efficiency with 256 coarse-grain tasks, each

divided into 64 fine-grain tasks (16,384 tasks total) with IBM Blue Gene, for a 600-residue

protein56,57.

Extensive code optimization is essential for the development of high-performance simu-

lation software. It includes the minimization of the amount of costly (e.g. floating point)

operations, using caches for proper data partitioning, using vectorization, proper mapping

of threads onto cores (thread affinity), the minimization of false sharing in case of mul-

tiple threads accessing locations in the same cache line, proper data representation, data

alignment, loop unrolling, (dynamic) load balancing, the minimization of recurrent memory

allocation and data copying, and the minimization of thread creation overheads. In this work

we followed the above guidelines and achieved major improvements of the UNRES software

through (i) introducing interaction lists, together with computation- and memory-saving

construction and management of these, (ii) transformation of the inertia matrix to a penta-

diagonal (five-band) form to reduce memory requirements, (iii) removing explicit angles and

dihedral angles from energy expressions and recoding the most time-consuming energy/force

terms to minimize the number of operations and to improve numerical stability, (iv) the

use of OpenMP to parallelize those sections of the code for which distributed-memory par-

allelization can additionally benefit from multithreading within computing nodes, and (v)

careful memory management to minimize simultaneous access of distant memory sections.
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It should be noted that the solutions designed here are not specific for UNRES but apply to

any model of polymer chains with axially-symmetric interaction sites.

The paper is organized as follows. In the Methodology section, we describe the UNRES

model of polypeptide chains, the equations of motions of the CG molecular dynamics with

UNRES along with the selection of variables that leads to the most economic five-band

structure of the inertia matrix, and solving the equations of motion. Next we describe the

components of the energy function and forces, the computation of which was optimized in

this work and the solutions applied in this optimization. Then we describe the construction

and management of the interaction lists, including the selection of the optimal cut-off dis-

tance. We conclude the section with the description of the parallelization solutions applied,

which involves the use of both MPI and OpenMP, as well as profiling and optimization of the

code. In the Results section, we report the functional tests of the new UNRES code, memory

and CPU time scaling with system size, as well as the scalability of parallel implementation.

We also compare the timing of the optimized UNRES with those of the MARTINI 324, Ope-

nAWSEM20, and GENESIS22 coarse-grained packages and the AMBER51 and GROMACS52

all-atom MD packages. Lastly, we address the extension of UNRES time-scale compared to

that of all-atom simulations. We conclude the paper with outlining further algorithmic

developments of the UNRES package and its applications.

METHODOLOGY

UNRES model of polypeptide chains

In the UNRES model26,27,33,35,37,58, a polypeptide chain is represented by a sequence of α-

carbon (Cα) atoms linked with virtual bonds, with peptide groups (p) located strictly (not

just by imposing the relevant restraints) halfway between the consecutive Cαs and united

side chains attached to the Cαs with the Cα · · · SC virtual bonds. Only the ps and the

SCs are interaction sites, while the Cαs assist in chain-geometry definition; these points will

hereafter be referred to as the anchor points. The positions of the glycine and dummy-residue

side chains coincide with those of the anchor points. The equilibrium length of the backbone
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Cα · · ·Cα virtual bonds equals 3.8 Å, which corresponds to the trans peptide group, while the

equilibrium Cα · · · SC bond lengths depend on side-chain kind59,60. The N- and C-terminal

chain-blocking groups are represented by placing a glycine residue on the respective end,

while the unblocked chain ends are represented by dummy residues, which have no mass and

do not take part in interactions. Multichain systems are technically represented by single

chains, with two dummy residues placed between the preceding and the succeeding chain.

The model is illustrated in Figure 1. It should be noted that, although we discuss the UNRES

model only in this paper, the considerations of this and the next section are also valid for

any model of polymer chains, where the backbone interaction sites are located between (not

necessarily halfway) anchor points and side groups are attached to them. Extension is also

possible to branched polymers.

The UNRES energy function is expressed by Equation (1).

U = wSC

∑
i<j

USCiSCj
+ wSCp

∑
i ̸=j

USCipj + wV DW
pp

∑
i<j−1

UV DW
pipj

+ wel
ppf2(T )

∑
i<j−1

U el
pipj

+ wtorf2(T )
∑
i

Utor(γi, θi, θi+1) + wb

∑
i

Ub(θi) + wrot

∑
i

Urot(θi, r̂SCi
)

+ wbond

∑
i

Ubond(di) + wssbond

∑
i

Ussbond(d
SS
i )

+ w(3)
corrf3(T )

∑
i<j−1

U
(3)
corr;ij + w

(3)
turnf3(T )

∑
i

U
(3)
turn;i (1)

where the terms USCiSCj
are sidechain-sidechain interaction energies represented by the modi-

fied Gay-Berne potentials58, USCipj are excluded-volume potentials that prevent the collapse

of the united side chains on the backbone, UV DW
pipj

(with spherical symmetry) and U el
pipj

(with axial symmetry) are the non-bonded and mean-field-electrostatic interaction poten-

tials of united peptide groups, Ubond, are the bond-deformation potentials, Ub and Utor are

the backbone-virtual-bond-angle and the backbone-virtual-bond-torsional potentials, respec-

tively, θi and γi denoting the virtual-bond- and virtual-bond-dihedral angles, respectively

(Figure 1), Urot are the side-chain-rotamer potentials, in which r̂SCi
denotes the local co-

ordinates of the unit vector pointing from Cα
i to SCi, while U

(3)
corr and U

(3)
turn are multibody

terms that account for the coupling of the backbone-local and backbone-electrostatic in-

teractions33,35. Ussbond denotes the terms that account for the energetics of disulfide bonds,
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including their formation and breaking61,62. Because the energy terms have been discussed in

detail in our earlier work26,27,35,58,59 and the respective formulas consume substantial space,

we do not show detailed formulas here but will bring the optimized formulas for Ub, Utor,

U
(3)
corr and the respective gradient components in section “Removing explicit angles from

energy expressions”.

The factors fn(T ) account for the dependence of the force-field terms that correspond to

higher-order terms in the Kubo cluster-cumulant expansion on temperature63, as given by

Equation (2).

fn(T ) =
ln [exp(1) + exp(−1)]

ln
{

exp
[
(T/T◦)

n−1] + exp
[
− (T/T◦)

n−1]} (2)

where T◦ = 300 K.

The ws are the weights of the energy terms and have been determined, along with some

other parameters, by maximum-likelihood calibration of the force field37. The variant of

UNRES used in this work has been termed NEWCT-9P37.

The Ub, Utor, U
(3)
corr, and U

(3)
turn terms are the scale-consistent terms derived in our earlier

work35; in particular, the torsional and correlation terms depend on both virtual-bond-

dihedral angles γ and virtual-bond angles θ. Because the solvent degrees of freedom belong

to the set of secondary variables that are averaged out when passing to the coarse-grained

representation33,35, the interactions involving the solvent are implicit in the effective energy

function; they are mainly contained in the USCiSCj
terms33.

As can be seen from Equation (1), all long-range energy terms, including the multibody

terms, are technically pairwise. The multibody terms (U
(3)
corr and U

(3)
turn) depend not only on

the positions and orientation of the sites but also on the local geometry of the surrounding

chain segment33,35–37.

Coarse-grained molecular dynamics and its extensions with UNRES

Selection of variables

Because the UNRES interaction sites have axial and not spherical symmetry (cf. section

“UNRES model of polypeptide chains”), their coordinates must comprise both the posi-
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tion and direction. In our previous work28,39, we used the Cα · · ·Cα (dC0,dC1,dC2, . . . ,dCn−1)

and Cα · · · SC (dX2,dX3, . . . ,dXn−1) virtual-bond vectors, n being the total number of

residues (including the dummy residues) in the system under study, dC0 denoting the posi-

tion of Cα
1 . For glycine and dummy groups, the corresponding dXs were absent, because the

positions of the respective side chains coincide with those of the Cα anchor points. These

vectors define the interaction-site axes and the positions of site centers can easily be calcu-

lated by summing over the virtual-bond vectors39. However, such an approach results in a

full square symmetric constant inertia matrix, the storage of which requires memory growing

with the square of system size, the time to compute forces from accelerations also growing

quadratically with system size. In our recent work64 on using the force-matching method

to obtain a variant of UNRES compatible with all-atom MD, we changed the variables to

the Cartesian coordinates of the Cα anchor points (C1,C2, . . . ,Cn) and side-chain centers

(X2,X3, . . . ,Xn−1). With these coordinates, the positions of the peptide-group centers (p),

those of the side-chain centers (SC), and the virtual-bond vectors are defined by Equations

(3–6)64.

pi =
1

2
(Ci + Ci+1) , i = 1, 2, . . . n− 1; i, i+ 1 not a dummy residue (3)

SCi =

Xi if i is not glycine

Ci otherwise

(4)

dCi = Ci+1 −Ci (5)

dXi = Xi −Ci (6)

We arrange the Cα-atom and side-chain-center coordinates into the 3m-dimensional vec-

tor q defined by Equation (7).

q =


qx

qy

qz

 qξ =



Cξ1

Cξ2

[XT
ξ2]
...

Cξn


(7)
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where ξ = x, y or z and [Xξi] denotes the coordinates of the side chain of the ith residue.

The square bracket around the symbol indicates that the side-chain coordinates are equal

to the Cα coordinates if residue i is a glycine or a dummy residue. The dimension of each

sub-vector is equal to m = n− nGly − nD, nGly and nD denoting the number of glycine and

dummy residues, respectively. We array all site coordinates into a single vector R defined

by Equation (8).

R =


rx

ry

rz

 rξ =



[pξ1]

[SCξ1]

pξ2

SCξ2

...

[pξn]

[SCξn]


(8)

With this notation, Equations (3–6) can be written as Equation (9).

R = Aq (9)

where A is the matrix that relates the generalized coordinates to the site coordinates. Its

elements are implicitly defined by Equations (3–6). It should be noted that, for a multichain

system, A consists of disjoint blocks, each corresponding to one chain.

Equations of motion

The Langevin equations of motions have a similar form as those derived in our earlier work39

and are given by Equation (10). It should be noted that, because different chains are not

bonded, the equations of motion for each chain are not coupled through the inertia matrix

but only through the potential forces. Likewise, the equations of motion for the x, y, and z

coordinates are not coupled through the inertia matrix but only through the potential forces.

GI q̈Iξ = −∇qIξ
U −AT

I ΓΓΓIAq̇Iξ + AT
I F

r
Iξ, I = 1, 2, . . . Nc; ξ = x, y, z (10)
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where q̇ and q̈ denote the velocities and accelerations of the generalized coordinates [defined

by Equation (7)] GI is the inertia matrix for chain I, ΓΓΓI is the diagonal matrix of site

friction coefficients for chain I, Fr
I are the random forces acting on the sites of chain I, and

Nc is the number of chains. Instead of explicit introduction of the friction and stochastic

forces, the Berendsen65, Nosé-Hoover66 or Nosé-Poincaré67 thermostats can also be used, as

implemented in our earlier work28,68 to provide thermostating.

The inertia matrix GI is a pentadiagonal (five-band) matrix of the Ith chain. The diago-

nal, first-band off-diagonal, and second-band off-diagonal elements are defined by Equations

(11–15). For clarity sake, we drop the chain index I. We denote the index of the starting

anchor point of the chain by s, the indices of the Cα atoms as α and those of the side-chain

centers as β.

Gss =
1

4
mp + Ip +mSCs (11)

Gαα =
1

2
mp + 2Ip +mSCα (12)

Gββ = mSCβ
+ ISCβ

(13)

Gα,α+1 = Gα+1,α =


1
4
mp − Ip if residue α is Gly

−ISCα otherwise

(14)

Gα,α+2 = Gα+2,α =

0 if residue α is Gly

1
4
mp − Ip otherwise

(15)

where mp is the mass of the peptide group, mSCα is the mass of the side chain corresponding

to index α; if a residue is glycine, mSC is the mass of glycine’s central methylene group,

while Ip = 1
12
mp, ISCi

= 1
3
mSCi

are the normalized moments of inertia of a peptide group

and a side chain, respectively, computed with the assumption that their masses are uniformly

distributed along the virtual-bond axes39.

The friction coefficients of the sites are calculated by using the Stokes’ law, as in our

previous work28 [Equation (16)]

γi = 6π(ri + rwat)ηwatf (16)
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where γi is the friction coefficient of site i, ri is the effective radius of site i, rwat is the

effective radius of water (taken in this study as 1.4 Å), ηwat is the viscosity of water equal to

0.8904 cPoise at 298 K, and f < 1 is a scaling factor introduced to speed up the calculations;

usually f = 0.01 is assumed.

As in our earlier work28, the stochastic forces acting on the sites are calculated following

the fluctuation-dissipation theorem, from Equation (17).

Fr
i =

√
2γiRT

δt
N(0, 1) (17)

where Fr
i is the vector of random forces acting on site i, γi is the friction coefficient of this site

[defined by Equation (16)], R is the universal gas constant, T is the absolute temperature,

δt is the integration time step, and N(0, 1) is the 3-dimensional vector whose components

are sampled independently for a normal distribution with zero mean and unit variance. The

balance between the stochastic and the friction forces provides a thermostat that maintains

the average temperature at the pre-set value.

Solving the equations of motion

We use the variant of the velocity-Verlet algorithm69 developed in our earlier work28,39

to solve the equations of motion. To solve the equations system given by Equation (10),

we implemented the Fortran 77 fdisy subroutine (subroutine F 4.12.2) described in Ref.

70, designed for solving linear equations systems with symmetric five-band matrices. For

multichain systems, a separate system of linear equations is solved for each chain. The five-

band matrix is stored in form of three vectors: the diagonal (DM), defined by Equations

(11–13), the first off-diagonal (DU1), defined by Equation (14), and the second off-diagonal

(DU2), defined by Equation (15). Therefore, the memory requirements grow linearly with

system size. Likewise, the number of operations in solving the system of equations by fdisy

grows linearly with chain length.

The initial structures read from the PDB or randomly generated require local energy

minimization before starting MD. In this implementation, we adapted the Limited Memory

Broyden Fletcher Goldfarb Shanno (LBFGS)71 quasi Newton minimizer from the TINKER

package55. Owing to the fact that the approximation to the inverse of the Hessian is con-
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structed on the fly, the memory requirements of this algorithm scale linearly with the number

of variables (roughly 6 times the number of residues). This feature enables us to treat large

systems while preserving the Q-superlinear convergence, which is characteristic of quasi-

Newton minimizers. In the previous implementations of UNRES, we used the quasi-Newton

Secant Unconstrained Minimization Solver (SUMSL)72, the memory requirements of which

scale with the square of the number of variables, due to storing the whole lower triangle of

the approximation to the inverse of the Hessian matrix.

As pointed out in our earlier work39, the diagonalization of the inertia matrix is needed to

set the initial velocities corresponding to a given temperature. The memory requirements of

this step change from square to linear in system size when passing from virtual-bond vectors

to the coordinates of the Cα and SC centers.

Periodic boundary conditions

To enable us to treat multichain systems we apply periodic boundary conditions introduced

into UNRES in our previous work43. In our implementation, the periodic box is cuboidal

in general, usually cubic. We apply the minimum-image convention, setting the box-side

length at more than twice the cut-off distance.

Extensions of UNRES MD

To search the conformational space more extensively (e.g., in determining the conformational

ensembles of proteins), we apply the replica exchange molecular dynamics (REMD)73 and

multiplexed replica exchange molecular dynamics (MREMD)74. In REMD, m trajectories

(replicas) are run independently, each at a different temperature. Every M time steps

(iterations), attempts at exchanging temperatures between the neighboring replicas are made

according to the Boltzmann criterion. As a result, a trajectory stuck in a local high-energy

minimum and run at a low temperature gets a higher temperature that enables this trajectory

to overcome energy barriers and land in a lower-energy basin, while that having a low energy

but run at a high temperature gets a lower temperature, enabling it to explore the low-energy

basin to find even lower-energy conformations. MREMD is a multiplexed variant of REMD,

in which multiple trajectories are run at a given temperature. Both extensions of MD have
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been implemented in UNRES63,75.

Removing explicit angles from energy expressions

As opposed to all-atom force fields, in which the bond-angle terms depend explicitly on

bond angles and the torsional terms depend on the cosines (and, sometimes, sines) of the

dihedral angles, the scale-consistent energy expressions for the UNRES bond-angle (Ub) and

torsional (Utor) terms contain only the trigonometric functions of the bond angles and the

sines and cosines of multiples of the torsion angles multiplied by the reciprocating powers of

the adjacent virtual-bond angles, respectively35. Especially the second feature removes the

problem of indefiniteness of the torsional potentials when the virtual bonds involved become

collinear, as the scale-consistent torsional potentials become zero in such a case. Likewise,

the local parts of the scale-consistent correlation terms (U
(3)
corr and U

(3)
turn) are expressed in the

same way as the torsional angles, avoiding indefiniteness for collinear fragments of the chain.

Consequently, in the new version of UNRES we replaced explicit angles in the UNRES energy

expressions with the scalar and cross products of the virtual-bond vectors, as detailed in the

subsections below. This modification improved the numerical stability of and accelerated

the evaluation of energy and energy gradient.

Virtual-bond-angle terms (Ub)

The virtual-bond-valence energy terms (Ub) in Equation (1) depend only on the cosines of

the angles θ (cf. Refs. 35 and 37). Hence, Ub can be generally expressed by Equation (18).

Ub(θi) = Ub(cos θi) = Ub(−d̂Ci−1 ◦ d̂Ci) (18)

where d̂Ci = 1
||dCi||dCi is the virtual-bond vector normalized to unit length and

cos θi = −d̂Ci−1 ◦ d̂Ci (19)

The gradient in d̂Ci and d̂Ci+1 is expressed by Equation (20).
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∇dCk
Ub(θi) =

dUb

d cos θi
∇dCk

cos θi, k = i− 1, i (20)

∇dCi−1
cos θi = − 1

||dCi−1||

(
d̂C

T

i−1 + cos θid̂C
T

i

)
(21)

∇dCi
cos θi = − 1

||dCi||

(
d̂C

T

i + cos θid̂C
T

i−1

)
(22)

Virtual-bond-dihedral-angle terms (Utor)

The scale-consistent expressions for the torsional energy involve expressions of the form given

by Equations (23) and (24)35.

ϕ
(n)
i = (sin θi sin θi+1)

n cosnγi (23)

ψ
(n)
i = (sin θi sin θi+1)

n sinnγi (24)

In the present UNRES, only up to second-order terms are used35,37. Compared to the

commonly applied expressions for the torsional energy, which involve cosnγ and sinnγ,

the expressions given by Equations (23) and (24) have the advantage that they tend to 0

as the respective fragment becomes linear, which makes the dihedral angle undefined. To

compute ϕ
(n)
i and ψ

(n)
i and their derivatives without having to evaluate cosnγ and sinnγ,

we developed modified Tschebyshev polynomials of the first (Θ) and the second (Υ) kind,

respectively, as given by Equations (25–27) and (28–30), respectively. In the equations below,

x = ϕ
(1)
i = sin θi sin θi+1 cos γi, y = ψ

(1)
i = sin θi sin θi+1 sin γi, t = sin θi sin θi+1.

Θ0(x, t) = 1

Θ1(x, t) = x

Θn(x, t) = 2Θ1(x, t)Θn−1(x, t)−Θn−2(x, t)t
2 (25)
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∂Θ0

∂x
= 0

∂Θ1

∂x
= 1

∂Θn

∂x
= 2Θn−1 + 2Θ1

∂Θn−1

∂x
− ∂Θn−2

∂x
t2 (26)

∂Θ0

∂t
= 0

∂Θ1

∂t
= 0

∂Θn

∂t
= 2Θ1

∂Θn−1

∂t
− ∂Θn−2

∂t
t2 − 2Θn−2t (27)

Υ0(x, t) = 1

Υ1(x, t) = 2x

Υn(x, t) = Υ1(x, t)Υn−1(x, t)−Υn−2(x, t)t
2 (28)

∂Υ0

∂x
= 0

∂Υ1

∂x
= 2

∂Υn

∂x
= 2Υn−1 + Υ1

∂Υn−1

∂x
− ∂Υn−2

∂x
t2 (29)

∂Υ0

∂t
= 0

∂Υ1

∂t
= 0

∂Υn

∂t
= Υ1

∂Υn−1

∂t
− ∂Υn−2

∂t
t2 − 2Υn−2t (30)

x and y can be computed directly from the virtual-bond vectors, as given by Equations

(31) and (32).
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x = sin θi sin θi+1 cos γi = −d̂Ci−1 ◦ d̂Ci+1 + cos θi cos θi+1 (31)

y = sin θi sin θi+1 sin γi =
(
d̂Ci−1 × d̂Ci

)
◦ d̂Ci+1 (32)

With the above definitions, the expressions for ϕ(n) and ψ(n) are given by Equations (33)

and (34), respectively.

ϕ
(n)
i = Θn(sin θi sin θi+1 cos γi, sin θi sin θi+1) (33)

ψ
(n)
i = sin θi sin θi+1 sin γi ×Υn−1(sin θi sin θi+1 cos γi, sin θi sin θi+1) (34)

The derivatives of x and y and, thereby those of Utor, in the virtual-bond vectors, can be

calculated by using Equations (35 – 40).

∇dCi−1
x = − 1

||dCi−1||

[
d̂C

T

i+1 − (d̂Ci−1 ◦ d̂Ci+1)d̂C
T

i−1

]
+ cos θi+1∇dCi−1

cos θi−1(35)

∇dCi
x = cos θi+1∇dCi

cos θi−1 + cos θi−1∇dCi
cos θi+1 (36)

∇dCi+1
x = − 1

||dCi+1||

[
d̂C

T

i−1 − (d̂Ci−1 ◦ d̂Ci+1)d̂C
T

i+1

]
+ cos θi−1∇dCi+1

cos θi+1(37)

∇dCi−1
y =

1

||dCi−1||
(d̂Ci × d̂Ci+1 − yd̂Ci−1)T (38)

∇dCi
y = − 1

||dCi||
(d̂Ci−1 × d̂Ci+1 + yd̂Ci)

T (39)

∇dCi+1
y =

1

||dCi+1||
(d̂Ci−1 × d̂Ci − yd̂Ci+1)T (40)

The gradient in virtual-bond vectors can easily be transformed into the gradient in Carte-

sian coordinates by using Equations (41) and (42).

∇Ci
= ∇dCi−1

−∇dCi
−∇dXi

(41)

∇Xi
= ∇dXi

(42)

Correlation terms (U (3)
corr)

The terms U
(3)
corr, which account for the coupling of the backbone-local and backbone-electrostatic

interactions also depend on the products of the cosines or sines of the virtual-bond-dihedral
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and the sines of the neighboring virtual-bond angles35,37. These are expressed by Equation

(43)35,37.

U
(3)
corr;ij =

sel;i+1,j+1

R3
ij

[
µµµi ◦ µµµj − 3(µµµi ◦ R̂ij)(µµµj ◦ R̂ij)

]
(43)

where sel;i+1,j+1 =
√
Bpi+1,pj+1

of Equation (5) of Ref. 76 absorbs the magnitude of the

dipole moments of the interacting peptide groups (it depends on whether the residues at

positions i+1 and j+1 are regular residues or proline residues77) and the effective dielectric

constants, Rij is the distance between peptide group i (located between Cα
i and Cα

i+1) and

peptide group j (located between Cα
j and Cα

j+1), R̂ij is the unit vector pointing from peptide

group i to peptide group j, and µµµi and µµµj are fictitious dipole moments, which depend on

the coefficients of the second-order Fourier expansion of the energy surface of a terminally-

blocked residue35,37, which are defined by Equation (44).

µµµk = b21;kŷ
R
k + b22;kẑ

R
k + b11;k+1ŷ

L
k+1 + b12;k+1ẑ

L
k+1 (44)

where the coefficients blm;k, k = 1, 2, l = 1, 2 are the above-mentioned coefficients of the

expansion of the energy surface of the terminally-blocked residue with index k, defined by

Equation (45)35,37, while ŷL
k , ẑLk , ŷR

k , and ŷR
k are the y and z axes of the right-handed

coordinate systems of residue i whose x axes are vectors −d̂Ck−1 and d̂Ck, respectively, and

the y axes are in the Cα
i−1 · · ·Cα

i and Cα
i · · ·Cα

i+1 planes, respectively, as defined by Equations

(46–49).

bij;k = bij;k(θk) =
[
b
(0)
ij;k + b

(1)
ij;k cos θk + b

(2)
ij;k (cos θk)2

]
sin θk = b′ij;k sin θk, i = 1, 2; j = 1, 2

(45)

The coefficients b
(0−2)
ij;k in Equation (45) depend on the kind of residue with index k. In

the present UNRES we define three kinds of residues regarding local interactions: glycine,

proline, and alanine, alanine comprising all residues except for glycine and proline. The

coefficients for D-amino-acid residues are obtained by changing the sign of the b2j;k coeffi-

cients35,37.
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ŷL
k =

1

sin θk

(
d̂Ck−1 + cos θkd̂Ck

)
(46)

ẑLk =
1

sin θk
d̂Ck × d̂Ck−1 (47)

ŷR
k =

1

sin θk

(
d̂Ck + cos θkd̂Ck−1

)
(48)

ẑRk =
1

sin θk
d̂Ck−1 × d̂Ck = −ẑLk (49)

It should be noted that the terms sin θk in Equation (45) cancel with those in the denom-

inators in Equations (46–49), when combined in Equation (44). The final folded expression

for the fictitious dipole moment of peptide group k, µk is given by Equation (50).

µµµi = b′21;id̂Ci−1 + b′11;i+1d̂Ci+1 +
(
b′21;i cos θi−1 + b′11;i+1 cos θi

)
d̂Ci

−b′22;id̂Ci−1 × d̂Ci − b′12;i+1d̂Ci × d̂Ci+1 (50)

In contrast to the expression derived in our earlier work35,37, Equation (50) involves no

explicit dependence on the virtual-bond-dihedral angle γi and expresses µµµi in the global coor-

dinate system. In our earlier work35,37 the dipole moments were expressed in local coordinate

systems of the respective residues, which required the calculation of the scalar products of the

unit vectors of the coordinate systems to compute the energy and transformation of forces

from the local to the global coordinate system for each pair of interacting peptide groups,

this incurring additional cost. The new formulas are not only more stable numerically but

reduce the number of operations by about 25 % with respect to the old formulas.

To calculate the gradient of U
(3)
corr, in this work we use Equations (51) and (52), respec-

tively. Equation (51) expresses the radial derivatives that depend explicitly on Cα-atom

coordinates, while Equation (52) expresses the derivatives in virtual-bond vectors. The

derivatives in virtual-bond vector can easily be converted into those in Cα coordinates by

using Equation (41).

∇Ck
U

(3)
corr;ij =

3

2

U
(3)
corr;ij

Rij

R̂T
ij, k = i, i+ 1 (51)

∇dCk
U

(3)
corr;ij =

sel;i+1,j+1

R3
ij

[
µµµj − 3

(
µµµj ◦ R̂ij

)
R̂ij

]T
∇dCk

µµµi, k = i− 1, i, i+ 1 (52)
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The derivatives corresponding to site j can easily be obtained by exchanging j with i.

In Equation (51), we used the relationship between the Cα- and peptide-group coordinates

[Equation (3)]. The matrix of the derivatives of the dipole moment ∇dCk
µµµi is given by

Equation (53).

∇dCk
µµµi = b′21;i∇dCk

d̂Ci−1 + b′11;i+1∇dCk
d̂Ci+1 + d̂Ci

(
b′21;i∇dCk

cos θi−1 + b′11;i+1∇dCk
cos θi

)
+
(
b′21;i cos θi−1 + b′11;i+1 cos θi

)
∇dCk

d̂Ci

−b′22;i∇dCk

(
d̂Ci−1 × d̂Ci

)
− b′12;i+1∇dCk

(
d̂Ci × d̂Ci+1

)
, k = i− 1, i, i+ 1 (53)

The gradients of the cosines of the virtual-bond angles (θ) are expressed by Equations

(21) and (22), respectively, while the other gradients are defined by Equations (54) and (55),

respectively.

∇dCi
d̂Ci = I− d̂Cid̂C

T

i (54)

∇dCi

(
d̂Ci × d̂Ci+1

)
=


0 d̂Ci+1,z −d̂Ci+1,y

−d̂Ci+1,z 0 d̂Ci+1,x

d̂Ci+1,y −d̂Ci+1,x 0

− (
d̂Ci × d̂Ci+1

)
d̂C

T

i .(55)

where I is the unit matrix of dimension 3. It should be noted that ∇dCk
d̂Ci = 0 for k ̸= i

and ∇dCi
(d̂Ci × d̂Ci+1) = 0 if k ̸= i and k ̸= i + 1. The derivatives of d̂Ci × d̂Ci+1 in the

components of dCi+1 can also be obtained from Equation (55) by exchanging the indices i

and i+ 1 and changing all signs in that Equation.

It should be noted that, with the algorithm for the computation of U
(3)
corr outlined above,

the bulk of computations is done on the “per residue” and not “per residue pair” basis,

this involving linear growth of the computational cost with system size. Once the dipole

moments and their derivatives are computed, the evaluation of energy requires calculating

the peptide-group distance (Rij) and the respective unit vector (R̂ij), this involving a total

of 3 multiplications, one square root, and 3 division, then 4 multiplications and 1 division to

compute the energy, and a total of 18 multiplications and 9 divisions to compute gradient

components. On the other hand, due to large amount data that would have to be transmitted,
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the computation of the dipole moments and their derivatives, as well as that of the quantities

needed for the computation of the virtual-bond and virtual-bond-dihedral angle energies,

cannot be parallelized on the distributed-memory basis, this resulting in reduced parallel

efficiency of energy and gradient computation in case many cores are used. Therefore, we

parallelized this part with OpenMP, in the shared-memory mode.

Handling long-range interactions

In our earlier work on the parallelization of UNRES56, we considered proteins with size less

than 1,000 amino-acid residues, which enabled us to consider all long-range interactions at

the coarse-grained level. The list of interacting pairs was, therefore, fixed and could be

distributed between parallel tasks at the beginning of a run. In this work, to treat large

proteins, we applied cut-off on long-range energy terms [USCiSCj
, USCipj , U

V DW
pipj

, U el
pipj

, and

U
(3)
corr in Equation (1)]. Because no explicit charge-charge interactions are considered in the

present UNRES, we did not use PME at this time, although we plan to do so in the future in

order to treat U
(3)
corr, which are on the borderline between the slow- and fast-decaying energy

contributions. It should be noted that the long-range multibody terms in the scale-consistent

UNRES (U
(3)
corr) depend only on the distance between two peptide groups, their multibody

component coming from the coupling with the local interactions within the neighboring

residues [cf. section “Correlation terms (U
(3)
corr)”]. Thus, they are technically pairwise. We

set the respective UXiYj
= 0 (where Xi and Yj denote the ith interaction site of type X

and the jth interaction site of type Y , respectively) if the site-site distance rXiYj
> rcut,

rcut being the cut-off distance determined to keep energy error reasonably small and apply

a smoothing function, s(r), introduced in r-RESPA78 and used in our earlier work43 in the

transition region to achieve continuous forces [Equation (56)].

s(r) =


1 r < rcut − λ

1 + γ2(2γ − 3) rcut − λ ≤ r < rcut

0 r ≥ rcut

(56)

γ =
r − (rcut − λ)

λ
(57)
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We set UXiYj
(r)← s(r)UXiYj

(r) and λ = 0.3.

In the following subsections we describe the choice of an optimal cut-off distance and the

construction and management the interaction list.

Determining the cut-off distance

To determine the cut-off distance, we generated diverse conformations of the Aβ40 pentamer

by performing multiplexed replica exchange molecular dynamics (MREMD). The starting

structure was formed by extended chains stacked on top of each other and separated by 20 Å.

We ran 1,000,000 simulation steps with the 0.489 fs time step at 20 temperatures equal to

250 K, 260 K, 270 K, 280 K, 285 K, 290 K, 295 K, 300 K, 305 K, 310 K, 315 K, 320 K, 330 K,

340 K, 350 K, 360 K, 370 K, 380 K, 390 K, and 400 K, respectively (20 trajectories). Replicas

were exchanged every 10,000 steps and snapshots were saved at every replica exchange, giving

a total of 2,000 conformations. The energies of all conformations were recalculated with rcut

of 20 Å, 25 Å, and 30 Å. A plot of the distributions of the differences between the energies

calculated with cut-off and without cut-off is shown in Figure S1 of the Supplementary

Material. The average differences and standard deviations of energy for the three cut-

off radii are ∆E20 = −0.45 kcal/mol, σE,20 = 0.25 kcal/mol, ∆E25 = −0.03 kcal/mol,

σE,25 = 0.12 kcal/mol, and ∆E30 = 0.01 kcal/mol, σE,30 = 0.05 kcal/mol, respectively.

Given a small average difference between the energy calculated without and with applying

the cut-off and small standard deviations of the energy difference, we selected rcut = 25 Å.

Construction and management of interaction lists

In all-atom simulations with explicit solvent the space is nearly uniformly filled with particles

(atoms), thus enabling us to distribute the particles between processes or threads in a parallel

implementation of the code, by using the domain-decomposition algorithms79–83. Conversely,

in a coarse-grained system with implicit solvent the particles (CG interaction sites) do not

fill the space uniformly. Consequently, as in our earlier parallel implementation of UNRES56,

we make explicit lists of pairs of interacting sites, which we term the interaction lists. To

construct the interaction lists, we took an approach combining the cut-off distance, cell

index method79,80 and Verlet neighbor list method81, together with a few tweaks. Similar
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approaches, which have been coined a name of pairwise Verlet lists, can be found in the

literature82,83. It should be noted that, in our approach, the cells play only an auxiliary

role by enabling us to exclude the majority of pairs that are out of the cut-off distance by

checking cell coordinates and without having to calculate all site-site distances.

We build three lists of interactions, one for the SC–SC, one for the SC–p interactions,

and one for all interactions between the peptide groups (UV DW
pipj

, U el
pipj

, and U
(3)
corr). At the

construction time, a given list contains the pairs of sites of given kind(s) that lie within

a distance of rcut + δ, where δ is the cut-off (or Verlet) buffer. In our implementation,

rcut = 25 Å (see the preceding subsection) and we set δ = 0.5 Å. The purpose of introducing

δ is to enable us to use an interaction list for a number of MD steps and its value has been

determined as a compromise between the number of MD steps during which a given list can

be used on one hand and not including too many pairs that are separated by more than the

cut-off distance on the other hand. With the current settings, there are 5 % pairs beyond

the cut-off that need to be processed, while the same lists of interactions can be used every

50 MD steps on average.

To determine whether the interaction lists need to be rebuilt, we track the movement

of every particle. The lists are rebuilt if any particle moves by more than half of the Ver-

let buffer, because this means that some pairs that had been beyond the rcut + δ at list-

construction time could become closer than rcut. This approach is similar to the one taken

in LAMMPS83.

Rebuilding the interaction list begins with assigning particles to cells with each side equal

to or slightly greater than the extended cut-off length. Such a choice of cell size guarantees

that any two interaction sites that are within the considered distance occupy either the same

or neighboring grid cells. If a periodic-box side is not an integer multiple of this cut-off

length, the cells are enlarged accordingly to fully cover the entire simulation space with an

integral number of cells.

For every cell, a list is constructed, which holds those particles that are potentially in

the range of a particle within this cell. Once a particle has been assigned to its home cell

(based on its coordinates), it is added to its home cell’s list and to the lists of those of the 26

neighboring cells, which are sufficiently close to this particle. The latter condition is checked

24

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


by computing the distance of the particle to the closest point of the neighbor cell. If this

distance does not exceed the extended cut-off distance, the particle is added to the list of

the neighboring cell, otherwise it is not (see Figure 2). While this approach multiplies lists’

memory usage up to 27-fold, only the particles from the home-cell list of a given particle

need to be considered to find the particles which are within the extended cut-off distance

from it. These neighbors can be enumerated in a sequential order, which is important for

further parallelization (see subsection “Parallelization”). If every particle appeared only

in its home cell’s list, the 27 lists would have to be merged and sorted to obtain such a

sequential list of neighbors.

Once the grid is fully built, the cell list of every particle is iterated over. At each iteration,

the distance of the particle from a given neighbor is calculated and the pair consisting of

the particle and the neighbor is appended to the interaction list if they are not farther from

each other than the cut-off distance. The cost of the above computations scales linearly with

system size, although with quite a large constant, except for the final step.

Each of the three interaction lists is stored in a 2D array. The first element of each row

is the index of the first particle in a pair, while the second and the third elements define

the range of the index of the second particle in the pair. For example, if the interactions

involving pairs (1, 2), (1, 3), . . . (1, 10), (1, 20), (1, 21), . . . (1, 30) have been enumerated (the

interactions of particle 1 with particles 11 through 19 being excluded because by applying

cut-off), the two consecutive rows of the interaction array are 1, 2, 10 and 1, 20, 30. This

form of storage requires much less memory than explicit storage of all pairs of the particles

that are within the cut-off distance.

The construction of the interaction lists is a good target for parallelization and has been

parallelized with OpenMP and MPI in our current implementation of UNRES.

Parallelization

Parallelization strategy and tools

We apply the two-grain parallelization scheme of the first parallel implementation of UN-

RES56, which is depicted in Figure 3A. At the coarse-grain level, the tasks assigned to a
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parallel job are divided into coarse-grain (CG) tasks, each handling an MD trajectory in an

(M)REMD or a multi-trajectory canonical MD run or other multi-CG-task runs (e.g. eval-

uation or minimization of the energy of multiple input structures). In an (M)REMD run,

the CG tasks are synchronized every pre-set number of MD steps (cf. section “Extensions of

UNRES MD”), in the other types of runs they are synchronized only at the end of a run.

The CG-level parallelization is accomplished with MPI45 exclusively. Thus, each CG

task corresponds to an MPI process. All CG processes have their dedicated communicator

(CG COMM). Synchronization is governed by the assigned master CG task, which also does

its share of computations. For the non-(M)REMD run types, the master CG task only serves

to synchronize the termination of all tasks to end the parallel job smoothly.

At the fine-grain level, each CG task is divided into fine grain (FG) tasks, each handling

a single MD trajectory, energy minimization or energy evaluation. This parallelization is

also done with MPI. The FG tasks that correspond to CG task n have their dedicated

communicator (FG COMMn). The master FG task does its share of computations, divides

the work between the slave tasks, collects the energy and energy-gradient contributions from

the slave tasks, synchronizes the slave tasks, updates the coordinates and velocities in MD

steps, does energy minimization, and also does the I/O operations. The FG slave tasks only

do their share of energy and energy-gradient evaluation.

In this work, we have extended the earlier parallel implementation of UNRES56 by split-

ting the FG tasks into OpenMP46 threads. With a single FG task per conformation, fine-

grain parallelization is done using OpenMP only, while hybrid (MPI and OpenMP) paral-

lelization takes place when the number of FG tasks is greater than 1. OpenMP is more

efficient with shared-memory machines, because all threads of a process parallelized with

OpenMP live in the same address space, thereby minimizing communication which, as op-

posed to MPI, does not involve the operating-system layer. Consequently, there is no sub-

stantial communication overhead. This feature has enabled us to parallelize not only the

pairwise energy computation but also the computation of the arrays and vectors needed for

Ub, Utor, Urot and U
(3)
corr. These calculations require a remarkable fraction of computing time

and cannot be parallelized with MPI due to the need of significant data transmission. On

the other hand, the downside of OpenMP is that it is possible only within a single physical
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node of a supercomputer.

Parallelization with MPI

For MPI parallelization, we use essentially the same scheme as tools as in our earlier work56

except that only those pairwise interactions which are in the interaction lists are considered.

Collective communication is used extensively at both the CG and the FG level. In particular,

the coordinates are transmitted to the slave FG processes with MPI Bcast and MPI Reduce

is used to collect the energy and energy-gradient contributions. The interaction lists are

partitioned between the MPI processes subject to the condition of load balance; subsequently

each chunk is partitioned into OpenMP threads, if applicable, as shown in Figure 3B. A

scheme of work and communication between the CG and FG tasks is shown in Figure S2 of

the Supplementary Material.

Parallelization with OpenMP

As mentioned, in the current implementation of UNRES, the FG processes are split into

OpenMP threads, thus enabling us to take advantage of shared memory. We also utilize the

instruction-level parallelism termed SIMD (Single Instruction Multiple Data) to parallelize

the most time-consuming loops. The OpenMP parallelism, however, carries a risk that a

number of threads could interfere with each other when trying to write to the common address

at the same time, namely while updating the energy, energy-gradient components, and other

quantities in a common accumulator, unless the threads are synchronized at every update,

this incurring severe loss of performance. Therefore, in our current OpenMP implementation

of UNRES, every thread has its own private copy of every accumulator where it gathers its

result. After completing the loop, all accumulators are summed to produce the final result.

This approach requires more memory but no coordination of accesses between threads and,

thus, is much more performant.

Every thread runs multiple SIMD lanes that also must be coordinated to avoid updating

the same memory locations simultaneously. This problem was solved by grouping together

interactions. A group consists of a set of interactions between a single particle (the “source”)

and a number of its neighbors. For such a group, the computations can be safely vectorized,
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because they do not involve overlapping updates. All neighbors are distinct from each

other and also from the source. The updates to the source can be gathered in a separate

accumulator that is added to the remaining results only after the loop completes, as shown

in Algorithm 1.

Algorithm 1 Handling concurrent updates to the common particle of interactions in a

group. accumulator for u is summed with OpenMP reduction clause.

1: u = first of group

2: accumulator for u = 0

3: for i = 1, number of pairs in group do ▷ OpenMP parallelized

4: v = second in group(i)

5: contribution = calculate contribution(u, v)

6: accumulator for u = accumulator for u+ contribution ▷ OpenMP reduction

7: accumulator(v,my thread) = accumulator(v,my thread) + contribution

8: end for

9: accumulator(u,my thread) = accumulator(u,my thread) + accumulator for u

The first index of the accumulator corresponds to the index of the respective contribu-

tion to the energy gradient; if the accumulator stores the respective chunk of an energy

contribution, there is no first index.

The OpenMP dynamic scheduler is also used to balance the load during building the

interaction lists. Specifically, interaction sites are grouped in batches of 16 consecutive

elements. Threads repeatedly take the next free batch and determine, if interactions between

sites in the batch and all other sites are within a given threshold. The value of 16 was chosen

as a balance between conflicting goals. On the one hand, the number of batches should be

significantly greater than the number of threads so the processing time differences between

batches are not as impactful. A batch must be large enough to minimize the relative overhead

of work allocation and thread management. Results are then merged and sorted to create

a deterministic order of interactions, independent of the number of threads or the batch

scheduling sequence. In this step, every thread has an equal number of interactions to

process and every interaction requires the same amount of work. Finally, the resulting list of
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interactions is equally partitioned for the threads to handle in the next computational steps.

Another issue with the SIMD vectorization is that a conditional execution flow is very

difficult for a compiler to parallelize. Such a code often ends up with computing both

conditional branches and then selecting the result based on a given condition. If one of

these paths of computations is costly but rarely used, it can noticeably impact performance.

This is the case of the SC-p interactions, which only require the powers of the square of the

site-site distance but, with the smoothing function [Equation (56)] which is needed for the

pairs that are between the regular and the extended cut-off, the square root is also required.

However, the square of the distance is sufficient to check whether the sites involved are within

this range. Similarly, for all interactions, only the square of the distance must be checked to

determine whether the sites are within the extended cut-off.

Given the above considerations, we rewrote the code to provide different paths for differ-

ent computations. A given list of interactions is first split into equal-sized lists for OpenMP

threads. Every thread then passes its list through a scheduler. Its job is to verify that the

interaction is within the cut-off limit, by calculating the square of the Euclidean distance

(see section “Profiling”). Then, if the interaction has not been rejected, it is scheduled to

one of different queues, based on the particles of the pair and their distance. The pairs to

be processed by the same code path, which contain the same source particle are gathered

in one queue, termed the sequential queue, those that break the sequence but still need the

same code path and keep the same source particle are gathered in a non-sequential queue,

while the pairs requiring different execution paths are gathered in other, dedicated queues.

When a queue fills up or a pair with another source particle was reached, the data gathered

in a queue are passed to a proper computing function (Figure 4).

When running parallel jobs with OpenMP, it should be kept in mind that the NUMA

(Non Uniform Memory Access) topology is not covered. This can result in some latency

when OpenMP threads encompass more than a single physical processor. For example,

when running the current implementation of UNRES on a machine with 2 12-core proces-

sors/node, we observed up to 20 % longer run times of the 1-process 24-threads per process

runs compared to the 2-process, 12-threads per process setup, while running the code on a

node with 2 12-core CPUs, until the number of such out-of-NUMA-node memory accesses
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were significantly reduced.

Hardware implementation of the parallel code

The new UNRES code was implemented on the Tryton Linux cluster located in the Aca-

demic Computer Center in Gdańsk, TASK, with the peak performance of 1.792 PFLOPS.

The cluster consists of 1607 servers with a total of 3214 Intel Xeon Processors E5 v3 @

2,3 GHz, 12-core (Haswell), 128/256 GB RAM DDR4 memory per server, InfiniBand FDR

56 Gb/s network, fat-tree topology, Mellanox switches. The development environment con-

sisted of two reserved nodes of Tryton supercomputer and Intel Parallel Studio XE Cluster

edition 2019 toolkit, providing the Fortran compiler (ifort version 19.0.5.281 20190815)

both OpenMP and MPI runtime (version 2019 Update 5 Build 20190806).

Profiling

We used an in-house built profiler, which is based on Linux performance events API, and the

Intel VTune Profiler84 to monitor the performance of UNRES and to detect the bottlenecks

in the code. These two tools have different area of expertise. The in-house profiler was

designed as a quick-and-dirty alternative for a Linux perf utility, and a research platform

for gathering and correlating performance data from jobs run on a supercomputer. It was

used for sampling the executable during the run and precisely pinpointing the hot spots.

On the other hand, the VTune Profiler was used to gather more coarse-grained information

about the code, but also of a much wider scope.

With the profiling tools described above, we identified and eliminated a number of im-

portant bottlenecks in the code. The first one was confining particles to the periodic box

and selecting, for a pair of particles, their images that have the shortest distance (wrapping).

The use of the floating point mod function seems to be a natural choice; however, its cost is

remarkable given the fact that, for wrapping, it has to be called for every pair within the

cut-off. Therefore, the floor function was used to confine the particles to the periodic box

and a series of additions and subtractions was used for wrapping. Another improvement was

introducing explicit code of the Gay-Berne potentials with fixed “12” and “6” exponents.
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Although these are the values that are exclusively used at present in UNRES, the exponents

are read from the respective parameter file to give the developers some room for modification,

should there be a need to change the exponents to make the potential less or more steep.

Another improvement was the computation of the square of the distance only instead of the

distance itself to check if an interaction is within the extended cut-off and to evaluate the

bulk of USCipj . Finally, the profiler enabled us to identify all sections of the code in which

multiple arrays were zeroed out in the same loop which, for large arrays, implies consecutive

writings to distant memory elements, incurring significant delays.

Memory requirements

As can be gathered from the description of the modifications of the UNRES package discussed

in the subsections above, the memory requirements of the present code scale linearly with

the system size, thus enabling us to treat very large protein systems. The total memory

requirements are about 6 × 100 × n double precision words for the storage of coordinates,

gradient components and auxiliary quantities for energy and gradient calculations and, 2×

(6×n−3) double-precision words for the storage of the five-band inertia and friction matrices

and their inverses, 9×52×n, n×number of CG tasks×6 double precision words for storing

the information from all trajectories by the master CG processes in (M)REMD runs, and

9 × 52 × n integer words for the storage of the interaction lists, where n is the number

of residues. The largest protein system considered in this work has over 150,000 amino-

acid residues and the largest number of trajectories in our MREMD simulations was 96

(usually 48 are run). Altogether, about 1 GB of memory is required for a protein of this

size. This analysis does not include auxiliary bioinformatics and sparse experimental data,

which occupy about 3.2 GB of memory for proteins with this size; however, these data are

rarely used in full amount for such big systems. Altogether, the memory requirements are

very moderate.

The main reason for favorable memory scaling was changing the coordinates in the equa-

tions of motion from virtual-bond vectors to Cα atoms and SC centers, this resulting in

the reduction of the inertia matrix from a symmetric square matrix [which requires storing

2n(2n+ 1)/2 elements] to a symmetric five-band matrix (which requires storing only 6n− 3
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elements). It can easily be realized that a 150,000 residue system would be impossible to

treat, because storing the inertia matrix alone would require over 160 GB of RAM even in

single precision, given the fact that also the inverse of the inertia matrix has to be computed.

With Langevin dynamics, these memory requirements are doubled because of the necessity

to store the friction matrix. With the modification, only 0.033 GB of memory is needed for

the storage of the inertia matrix and its inverse in double precision, the same amount being

required for the friction matrix.

RESULTS AND DISCUSSION

Functional tests

To assess the correctness of the new code (after changing the variables to Cα and SC coordi-

nates, introducing interaction lists and optimizing energy expressions), we carried out tests

of energy conservation in the NVE mode (constant number of particles, constant volume,

and constant energy) and temperature conservation in the NVT mode (constant number of

particles, constant volume and constant temperature), using gramicidin D (a small dimer

with chains containing both L- and D-amino-acid residues, tightly intertwined into a right-

handed double helix; PDB code: 1AL4), as a benchmark. The calculations were run starting

from the energy-minimized experimental structure.

The plots of the total energy for the time steps 0.978 fs, 4.89 fs, and 9.78 fs, 1,000,000

time steps run, are shown in Figure S3A of the Supplementary Material. It can be seen

from the Figure that, the total energy oscillates about the “shadow Hamiltonian” value, the

oscillations increasing with time-step length; however no drift and no jumps of the total

energy are observed. The standard deviations of the total energy over the trajectory are

0.0009, 0.024, and 0.10 kcal/mol for the time step of 0.978 fs, 4.89 fs, and 9.78 fs, respectively,

compared to those of the kinetic or potential energy, which range from 2.62 to 3.67 kcal/mol

(panel B of the Figure). The differences between the minimum and maximum total-energy

values are 0.009, 0.268, and 1.12 kcal/mol for the three time-step lengths. Consequently, the

MD algorithm appears to be stable even with a nearly 10 fs time step, while the 4.89 fs time

32

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


step assessed in our earlier work (which reported the first MD-enabled version of UNRES)39

as a recommended time-step length without using the time-split algorithms appears to be a

safe value. Additionally, it can be seen from Figure S3B of the Supplementary Material that

the kinetic and potential energies get swapped after 380,000 steps. Even though this change

is not accompanied by any major structural changes (the radius of gyration of the dimer

stays around 9 Å), the fact that the total energy does not drift or jump in the swapping

region is an additional proof of the stability of the algorithm.

It should also be noted that, in the versions of UNRES/MD prior to the current one, we

did observe occasional energy jumps in NVE trajectories, which was caused by instability

of the energy expressions that included explicit torsional angles, removed in the current

work owing to the introduction of the formulas described in section “Removing explicit

angles from energy expressions”. Further increase of the time step can be achieved with

the time-split algorithms, one of which, based on the velocity-Verlet integration scheme has

been implemented in UNRES/MD39,85. Implementation of the time-split algorithms in the

optimized UNRES/MD code will be a subject of our further research.

To test temperature conservation, we carried out the calculations for the gramicidin D

system with the Berendsen thermostat65 (rescaling velocities) and in the Langevin mode

(adding explicit friction and stochastic forces). The coupling constant in Berendsen calcu-

lations was set at τ = 48.9 fs and the stochastic and friction forces in Langevin-dynamics

calculations were scaled down by the factor of 0.01, as in our earlier work28. In both cal-

culations 1,000,000 steps with 4.89 fs length were run, the thermostat temperature being

T = 300 K. The graphs of temperature distribution with superposed theoretical distribution

resulting from the Maxwell-Boltzmann law, are shown in Figure S3C of the Supplementary

Material. The histograms were constructed from the trajectories after skipping the initial

100,000 step section, the momentary temperatures being sampled every 100 steps (a total

of 9,000 snapshots). The temperature distribution resulting from the Langevin-mode calcu-

lations approximates very well the Maxwell-Boltzmann distribution [Equation (58)], while

that resulting from Berendsen-mode simulations is too narrow, which is characteristic of

the weak-coupling (WC) thermostat family, which includes the Berendsen thermostat. The

momentary temperatures averaged over the 9,000 snapshots were 300.0 and 302.5 for the
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Berendsen and the Langevin simulation, respectively, thus being equal or close to the bath

temperature (300 K).

P (T ) =

(
g
2T

) g
2

Γ(g
2
)
T

g−2
2 exp

(
−gT

2T

)
(58)

where T = Ek/gR is the momentary temperature (with Ek being the kinetic energy and R

being the universal gas constant), T is the bath temperature, g is the number of the degrees

of freedom, and Γ is the Euler function.

Performance tests

The performance of a parallel application running in a high-performance computing (HPC)

system can be assessed in several ways: the evaluation of the observed processing performance

(e.g. in FLOPS), memory bandwidth vs. theoretical performance of a compute device such

as CPU/GPU or memory specs as well as code scalability evaluated as speed-up (s), i.e., the

ratio of the 1 core (or node/CPU/GPU) runtime divided by the n core (or node/CPU/GPU)

runtime or parallel efficiency (η) computed as speed-up divided by n. These quantities are

defined by Equations (59) and (60), respectively.

s =
t(1)

t(n)
(59)

η =
s(n)

n
=

t(1)

n× t(n)
(60)

where t(n) is the code-execution time with n cores.

In this section we describe the scalability of the new optimized UNRES code in single-

and multi-trajectory runs, which correspond to fine-grain and coarse- and fine-grain paral-

lelization runs (Figure 3) and compare the timing of the optimized UNRES code developed

in this work with that of the previous versions and with that of all-atom simulations.

To assess the performance of UNRES, we selected 9 proteins with size from 109 to 153,243

amino-acid residues. The PDB IDs and other characteristics of these proteins are collected

in Table 1.
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In what follows, the old scale-consistent parallel UNRES code with the force field pa-

rameterized in our earlier work with 9 training proteins37 is referred to as UNRES-9P. The

non-optimized code obtained by changing the variables to Cα and SC Cartesian coordinates,

which results is a five-band inertia matrix, and with interaction lists enabled is referred to

as UNRES-9P-5D. These two versions of the UNRES code are parallelized with MPI only.

The optimized UNRES-9P-5D code is referred to as UNRES-9P-5D(o). In this code, MPI,

OpenMP, and mixed fine-grain parallelization has been implemented.

Scalability tests

Single-trajectory runs. For all proteins of Table 1, we carried out single-trajectory

canonical-simulation runs with the Berendsen thermostat and time step of 0.489 fs. The

number of time steps varied from 100 to 10,000, depending on system size and the number

of cores. We analyzed only the non-setup time, i.e., the time spent on running MD, excluding

data reading, generation of initial velocities, and other initial computations. For production

runs, these computations constitute a negligible fraction of the total wall-clock time. For

runs shorter than 10,000 steps, the non-setup time was scaled to correspond to 10,000 steps.

For a given protein, all runs were started from the same coordinates and velocities obtained

by energy-minimizing the starting structure (the experimental structure for all proteins ex-

cept H1081, in which we used our CASP14 model86, as its experimental structure is not

available yet) and carrying out a 1000-step canonical MD run. Each run was repeated three

times and the average non-setup time taken for further processing. In these calculations we

used the fully optimized UNRES-9P-5D(o) version.

The speedup and efficiency plots obtained with using MPI parallelization and OpenMP

or hybrid parallelization are shown in panels A – D of Figure 5, respectively. Detailed

timings with splitting between the list construction and the evaluation of the site-site inter-

action energies (USCiSCj
, USCipj and Upipj) are summarized in Table S1 of the Supplementary

Material.

It can be seen from the Figure that OpenMP or hybrid parallelization results in better

scalability. Inspection of the contributions to the computing time (Table S1) shows that

the difference is caused by list construction, the evaluation of Upipj and U
(3)
corr, local energy
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components and the summation of gradient and calculating accelerations from forces. Some

differences are also observed for the updates of coordinates and related quantities and ve-

locities in MD steps; however, these calculations do not contribute much to the non-setup

time. For proteins with size bigger than about 100 residues, there are only small differences

in the ratios of the times for the evaluation of USCiSCj
or USCipj to non-setup time.

The above observations are illustrated in Figure 6, in which the ratios of the non-setup

time and the times for list-construction and for the evaluation of the energy components

obtained with 24 cores (the entire node) in two OpenMP modes: one with 24 threads (panel

A of the Figure) and one with 2 FG processes (panel B of the Figure), each split into

12 threads, to those obtained with 24 MPI processes are shown. It can be seen that the

differences are the biggest for energy and gradient-component summation (8 times or more)

then for list construction (up to 3.5 times with 24 and up to 3 times with 2×12 OpenMP

threads), and last is Upipj + U
(3)
corr (up to 1.5 times). In summary, for bigger proteins, the

total non-setup time is up to about 3 times greater for the calculations with 24 or 2 × 12

threads compared to those with 24 MPI processes. It can also be noted that the ratios of

all contributions to the execution time in MPI and OpenMP/hybrid calculations grow with

protein size to reach an asymptote.

It can also be seen that for the smallest protein (5OMT, 109 residues), the calculations

with 24 MPI processes result in shorter execution times compared to those with 24 OpenMP

threads and take about or a shorter time than those with 2 MPI processes split into 12

OpenMP threads each. With 24 threads, the computations of all components, except for

list construction and gradient summation, take longer compared to that of the calculations

with 24 MPI processes. The reason for unfavorable timing for OpenMP for small protein is

a large overhead of initializing and management of the threads compared to the gain from

using them.

Analysis of single-trajectory timings. An analysis of the relative contributions of the

non-setup time mentioned above (Figure 7) helps us to understand the reason for the benefits

from using shared-memory parallelization. List construction and calculation of Upipj +U
(3)
corr

are the dominant contributions to the non-setup time for which shared-memory calculations
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are faster. With 24 MPI processes, these contributions require about 28 % and about 17 %

of non-setup time, respectively, for the largest system. The longer time required for list

construction with MPI parallelization results from extensive message passing between the

processes while working on the load-balanced partition of the groups of interactions (Figure

3B). The partition of groups of interactions between OpenMP threads uses shared memory,

which causes very low communication overhead, thus resulting in faster list construction. It

can also be seen from Figure 7 that, while the contribution of the list-construction time to

the non-setup time decreases with protein size, it remains nearly constant for systems with

size bigger than 3,143 residues (half of 4R3O).

The reason for longer execution time of the Upipj + U
(3)
corr contributions with MPI com-

pared to OpenMP is that, with cut-off on long-range interactions applied, the number of

these interactions grows nearly linearly with the number of residues, as does the number

of operations required to compute the quantities dependent on single-residue or adjacent-

residue geometry that occur in the expressions for U
(3)
corr (section “Correlation terms (U

(3)
corr)”)

and their derivatives. Thus, with many FG processes, the single-residue-quantity compu-

tations become a remarkable fraction of total computational effort. These computations

have not been parallelized with MPI, because of large amount of data to be transmitted

(which kills the gains from distributed-memory parallelization), but have been parallelized

with OpenMP.

The next contribution that benefits from shared-memory parallelization is the summation

of gradient components and computing accelerations, which takes about 14 % of non-setup

time for the largest system for MPI parallelization. This contribution decreases to a few

percent and takes up to 16-fold shorter (Figure 6) with OpenMP. One reason for the much

longer execution time of this step with MPI is a large amount of communication when

summing the gradient contributions from different processes (which uses shared memory

with OpenMP) and parallelization of the transformation of some of some of the gradient

contributions from virtual-bond vectors to Cα and SC-center coordinates, which can be

accomplished efficiently only using shared memory. The overhead of energy and gradient-

component calculations with MPI amounts to about 7 % for the largest system and is

reduced about 15 fold for the largest system when using OpenMP. This overhead includes
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the preparation for energy and gradient calculations (computing the positions of the peptide

groups, wrapping the sites in the central box, zeroing the gradient components), which

are worth parallelizing only with shared memory, summation of energy contributions from

different MPI tasks, and MPI task synchronization.

The evaluation of local energy and energy-gradient components (Ubond, Ub, Utor, and Urot)

amounts to about 12 % of the non-setup time for the largest systems and takes about 15 times

longer with MPI than with OpenMP. The reason for this difference is that this contribution

includes the computation of the scalar and cross-products and their derivatives described

in sections “Virtual-bond-dihedral-angle terms (Utor)i” and “Virtual-bond-dihedral-angle terms

(Utor)” (it should be noted that these quantities are also used for computing U
(3)
corr). These

computations have not been parallelized with MPI but have been with OpenMP. Finally, the

greater fraction of velocity-Verlet step processing in MPI calculations results from the con-

tribution from coordinate updating and the calculation of normalized virtual-bond vectors,

which have been parallelized only with OpenMP.

Analysis of hybrid-parallelization performance. While using OpenMP exclusively or

in addition to MPI results in shorter non-setup times for all but the smallest systems, it is

remarkable that, for the number of residues up to 3,143 (half of 4R3O), using 12 OpenMP

cores gives a greater speed-up, compared to using 24 OpenMP cores, while the tendency is

reversed for larger proteins. These differences are visualized in more detail in the form of bar

plots of non-setup time per 10,000 MD steps shown in Figure 8. A more detailed plot that

shows the differences of the non-setup times for all number of cores and parallel-run modes

executed in this work is presented in Figure S4 of the Supplementary Material. As pointed

out at the end of section “Parallelization with OpenMP”, the use of 12 OpenMP threads on

the hardware architecture with 2×12-core processors has the advantage of caching all data

processed by OpenMP threads. The benefit from this is greater than the loss of using two

FG MPI processes instead of one. However, for larger systems, the amount of data becomes

too large to be cached and the threads have to use RAM, which is slower, this removing the

advantage of caching and, consequently, making the use of 1 FG MPI process split into 24

threads a better choice. Qualitatively the same difference are observed for calculations with
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2 nodes (2 MPI processes, each split into 24 OpenMP threads and 4 MPI processes, each

split into 12 OpenMP threads, respectively).

It can be seen from Figure 6C, in which the ratio of the non-setup time contributions

obtained with 2 MPI processes, each split into 12 OpenMP threads to that obtained with

24 OpenMP threads, that the list-construction contribution is the main reason for switching

the order of non-setup times obtained in the two modes of calculation. The list-construction

time starts to be greater for the 2×12 mode for 3,143 residues (half of 4R3O) while, starting

from the whole 4R3O system (6,268 residues), the non-setup time becomes greater with the

2×12 mode. Compared to the change of the ratio of the list-construction time, those of

the gradient/Lagrangian handling and local-energy calculations are much bigger; however,

those contributions to the non-setup time are much smaller than that from list construction

(Figure 7).

Multiple-trajectory MREMD runs. Because replica exchange involves synchronization

of coarse-grained tasks (Figure 3A), the parallel performance of the calculations run in this

mode need not be as high as that for single-trajectory runs. Therefore, we tested the parallel

performance of MREMD calculations for the following three of the test proteins: 5HKQ (263

residues), 2SY1 (1458 residues), and H1081 (15,200 residues) (see Table 1 for the information

of these proteins). For each of these proteins, we ran from 2 to 96 replicas, exchanged every

1,000 MD steps, the total length being 10,000 steps (10 exchanges). The time step was set at

4.89 fs and the Berendsen thermostat with the coupling parameter of τ = 48.9 fs was used.

For 5HKQ and 2SY1, each trajectory was run with 1, 4, 12, 24, and 2×12 cores dedicated to

fine-grain tasks, pure OpenMP mode used in all but the last series of runs, in which 2 MPI

tasks each split into 12 OpenMP threads were set. For H1081, additionally, runs with 2×24

(2 nodes) and 4×12 fine-grain cores were also carried out. Thus, the total number of cores

dedicated to all (coarse-grain and fine-grain tasks) was from 2 to 4608. The results are shown

as non-setup times and efficiency in Figure 9A-E, in which the non-setup times and efficiencies

for single-trajectory runs (no exchanges) are also shown for reference. It can be seen that

the non-setup times and efficiencies are nearly constant for the number of trajectories up

to 24, some minor increase of the non-setup time and decrease of efficiency being observed
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starting from 48 trajectories. Consequently, the coarse-grain task synchronization has a

negligible effect on the parallel performance of the code. As observed in single-trajectory

runs, organizing the fine-grain tasks per a 24-core node into 2 MPI tasks, each split into

12 OpenMP threads gives a better performance for the smallest protein considered in this

section (5HKQ) but not for the larger proteins (2SY1 and H1081), for which allocating all

cores of a node to OpenMP threads gives better results.

Timing of UNRES and other MD codes

The timings, measured as non-setup time per MD step and achievable simulation length

(ns/day) of UNRES-9P, UNRES-9P-5D, and UNRES-9P-5D(o) (with or without the 25 Å

cut-off on long-range interactions and MPI, OpenMP or hybrid parallelization), all-atom

explicit-water GROMACS 202052 code (which uses MPI and OpenMP), all-atom implicit-

water AMBER 2051 (Generalized Born Surface Area, GBSA model87,88), and MARTINI 324

coarse-grained model with explicit coarse-grained solvent (built on the GROMACS platform)

are plotted in number of amino-acid residues in panels A and B, respectively, of Figure

10. The 11 Å cut-off on non-bonded interactions and particle-mesh Ewald summation on

electrostatic interactions was used in the explicit-solvent calculations with GROMACS. A

25 Å cut-off on all long-range interactions, including electrostatic interactions, was applied

in the implicit-solvent AMBER calculations. All calculations were carried out on a single

24-core node; consequently exclusively OpenMP parallelization was used in the GROMACS

and AMBER calculations and in the OpenMP-enabled UNRES calculations.

As can be seen from Figure 10, the previous, NEWCT-9P version of UNRES exhibits the

poorest performance, with per-MD-step CPU time growing quadratically with system size.

After optimization, the CPU time dropped by a factor of 10 when the optimized code with

no cut-off on nonbonded interactions was run with MPI and about 20 when it was run with

OpenMP. The NEWCT-9P-5D and NEWCT-9P-5D(o) execution times corresponding to

runs with a 25 Å cut-off exhibit asymptotic linear dependence on protein size, the optimized

code with MPI and OpenMP being 5 and 20 times faster, respectively. As can be seen from

Figure S5 of the Supplementary Material, the change of the dependence of the non-setup

time on protein size from quadratic to linear corresponds to that of the number of long-range

40

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


interactions before and after applying the 25 Å cut-off. AMBER with implicit water is slower

compared to all versions of UNRES due to large cut-off, which results from the inability of

applying the particle mesh Ewald scheme40 to implicit water simulations. Depending on

system, GROMACS is 6 – 12 times slower than the OpenMP NEWCT-9P-5D(o) version of

the UNRES code. The CG MARTINI 3 code is, on the other hand, about 10 times faster

than UNRES for large proteins. One of the reasons is that the UNRES energy function is

more complicated than the MARTINI energy function, which has only radial pair-interaction

potential and a smaller cut-off of 11 Å is applied (as opposed to the 25 Å cut-off in UNRES).

Therefore, even though more centers are involved in the MARTINI 3 model, the energy

function is not as expensive as in UNRES. There is a room to improve UNRES in this

regard, by alternating the cut-off depending on the kinds of interacting sites. The present

25 Å cut-off has to handle both small and large sites and is, therefore, overestimated. The

other reason is that MARTINI 3 benefits from the long-time development of GROMACS,

thus implementing more developed algorithms, which are difficult to translate to coarse-

grained models with axial symmetry such as UNRES. On the other hand, the benefit from

using a more complex energy function in UNRES is that it can fold proteins in the ab initio

mode, which is not possible with MARTINI 3, which requires imposing secondary-structure

restraints.

We also compared the UNRES timings with those of OpenAWSEM20 and the GENESIS

CG model22 presented in the references cited for similar systems. The AWSEM model

has all-atom backbone and united single-center side chains, while 1 interaction site per

residue, centered on the Cα atom is present in the GENESIS CG model. Both models

implement centrosymmetric site-site interaction potential. According to the data in Ref. 20,

OpenAWSEM requires 200 CPU hours per 4,000,000 MD steps with the Intel Xeon CPU

E5-2650 v2 processor or 8 CPU hrs with the Nvidia V100 GPU accelerator for the 4QQW

protein (3274 residues). For a protein with similar size (2 chains of 4R3O; 3,143 residues)

UNRES requires 78.7 CPU hours with a single core of the Intel Xeon Processors E5 v3 @

2,3 GHz or 6.3 hours with all 24 cores and using OpenMP (we have not yet implemented

the UNRES code on GPU). The GENESIS CG model can run 2,200,000 MD steps/day for

a system containing 120 copies of the DPS protein (a total of 222,360 residues) with 8 MPI
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processes, each split into 5 threads with the Intel Xeon Gold-6148 (2.4GHz) processor22,

compared with 5Y6P (153,243 residues) 340,828 MD steps/day with UNRES run with 4MPI

processes, 12 thread each (the optimal setup). Thus, UNRES is faster than OpenAWSEM

but slower than the GENESIS CG code. This feature results from the presence of a greater

number of centers in AWSEM (all-atom backbone) and only 1 center per residue in the

GENESIS CG model compared to 2 sites with axially-symmetric potentials in UNRES. It

should be noted that, as opposed to UNRES and AWSEM, the GENESIS CG model has

not been used in ab initio folding of proteins22.

Relationship between UNRES and all-atom time scale

In addition to faster calculations with UNRES compared to those with the all-atom model,

it should be noted that the events (e.g., formation of secondary structure, folding, and

docking) occur faster compared to all-atom simulations. This feature of coarse-grained sim-

ulations results from the elimination of the secondary degrees of freedom in coarse-grained

approaches, which results in a large reduction of free-energy barriers to conformational tran-

sitions28,29,89,90. In order to estimate this speed-up, we simulated the folding of a variant

of tryptophan cage (a small 20-residue protein; PDB: 2JOF), which folds and unfolds re-

peatedly in both UNRES and all-atom simulations. The folding of this protein was studied

by Lindorff-Larsen et al.91 by all-atom simulations with explicit water run on the ANTON

supercomputer7. The total length of simulations was 208 µs. The average folding and un-

folding times obtained from these all-atom simulations were τf = 14 µs and τu = 3 µs,

respectively.

We ran 24 trajectories with UNRES, each lasting 0.8 µs (19.2 µs total), using the same

2 fs time step as in Ref. 91, in the Langevin dynamics mode with water viscosity scaled by

the factor of 0.01 at a temperature T = 273 K, at which the ratio of folding to unfolding

time was comparable to that obtained in Ref. 91. We used a variant of the UNRES force

field developed in our recent work64 by applying force matching to the NEWCT-9P scale-

consistent force field, to make the forces compatible with the average forces obtained from the

all-atom trajectories of the standard tryptophan cage (PDB: 1L2Y) simulated with AMBER.

Therefore, the selected variant of the UNRES force seems to be most closely related to the
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all-atom force field and can be considered its smoothed version.

We performed the same analysis as in Ref. 91 to determine the folding and unfolding time

(see Supplementary Material for details), obtaining the average folding and unfolding times

of τUNRES
f = 0.018 µs and τUNRES

u = 0.004 µs, respectively. These values are averaged over

600 folding and unfolding events. This gives the ratio of the times of folding and unfolding

events in the all-atom and UNRES simulations of 778 and 750, respectively. Consequently,

it can be concluded that the events that occur in a time unit of UNRES simulations require

over 700 times longer all-atom simulations with the same time step. In view of the fact that

the standard UNRES time step (4.89 fs) is about 2.5 times longer than that available in

all-atom simulations (2 fs) and that UNRES simulations run 6 – 12 times faster than the

all-atom simulations (after applying cut-off on long-range interactions in both simulation

types; Figure 10), the UNRES simulations can cover at least 1000-fold longer time scale

compared to the all-atom simulations. Detailed research of the relationship between the

UNRES and all-atom time scale, which requires using force matching with more training

proteins to produce a variant of the UNRES force field related to all-atom force fields (and,

consequently, compatible with them) will be the subject of our further research.

CONCLUSIONS

Molecular simulations with coarse-grained models offer a tremendous advantage over the

all-atom approaches regarding the speed of computations, owing to the presence of fewer

interaction sites4,10–18. However, the coarse-grained models derived rigorously on the phys-

ical basis, with effective energy surfaces strictly linked to all-atom energy surfaces, pose a

number of challenges to the developers, the greatest one being the non-spherical symmetry

of the interacting sites and the presence of coupling terms in the expressions for effective

potential energy18. Site anisotropy and the coupling contributions become essential with ex-

tensive coarse graining for the resulting CG model to have good predictive capacity35. Thus,

even though the number of interacting sites is much smaller in the CG models, the energy

expressions are more complex and, consequently, more expensive to evaluate compared to

those of the all-atom models. Moreover, site anisotropy results in the appearance of non-
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diagonal inertia tensors in the equations of motion. These features of coarse-grained models

also make the memory management more difficult. Finally, the force fields and algorithms

for all-atom MD have a much longer history than the CG ones (which often mimic their

all-atom counterparts) and are, therefore, much more developed than the CG approaches

both regarding the advancement of parameterization and bench-marking, parallelization,

and hardware implementation1–5.

In this work, we heavily optimized the implementation of the coarse-grained UNRES

model of proteins26,27, which includes site anisotropy and coupling terms in the effective

potential energy, by bringing the expressions for the effective energy and energy gradient to

the most optimal and numerically stable forms. In particular, we eliminated explicit angles

and explicit dihedral angles from the equations, calculating only the scalar and cross products

of the respective virtual-bond vectors that occur in the energy expressions. We implemented

cut-off on long-range interactions and interaction lists, with which the computation time

grows linearly with system size, as in all-atom calculations. By changing the variables, we

transformed the inertia matrix to the pentadiagonal form, this resulting in reduced memory

and computation cost in solving the equations of motion.

We also took advantage of both distributed- and shared-memory architectures, thus

enabling efficient parallelization of the construction of the interaction list (which involves

substantial communication between processes/threads), the computation of the quantities

dependent on single residue that are needed in the calculations of local and coupling en-

ergy terms, as well as other tasks requiring data exchange. These computations are not

as time-consuming as the site-site interaction energies, however, with high degree of paral-

lelization of the latter those do count. Distributed-memory parallelization of pre-computing

single-residue quantities is not an option because, as opposed to site-site energy evaluation,

sizeable data are generated. With shared memory, the latter feature is not a problem. With

shared-memory parallelization, we reached the efficiency of over 60 % and about 50 % with

24 and 48 cores, respectively, for proteins with sizes over 5,000 residues. With 24 cores, we

are able to reach over 1 ns/day computing time for a system with over 100,000 residues.

This is 6-12 times more compared to the highly optimized GROMACS52 code and, apart

from faster per-MD-step computations, the fact that the time step in UNRES can be about
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2.5 times longer than in all-atom MD without violating the integration-algorithm stability

also contributes to this feature. Moreover, due to the elimination of the fine-grain degrees of

freedom the events occur about 1,000 faster than in all-atom simulations. Therefore, UNRES

is able to reach effectively 1 µs/day with 24 cores.

Further improvements of the UNRES code involve porting the most computation-intensive

parts to GPU, optimizing the cut-off to make it dependent on site size, and optimizing the

time-split algorithm of numerical solution of the equations of motion, which was introduced

in our earlier work85, which makes it possible to use longer time steps. This work is underway

in our laboratory.
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Figure 1: A scheme of polypeptide-chain representation in the UNRES model. The vari-

ables are the Cartesian coordinates of the α-carbon (Cα) atoms and those of side-chain

centers (SC). The interaction sites are the peptide groups (p) located halfway between the

consecutive Cαs and the side chains. These sites interact via axially-symmetric and not

centrosymmetric potentials, the axes being the Cα · · ·Cα (dC) and Cα · · · SC (dX) virtual-

bond vectors. It should be noted that the coordinates of the peptide-group centers need to

be calculated from the Cα coordinates, which implies a non-diagonal inertia matrix of the

system. The backbone-virtual-bond (θi) and the backbone-virtual-bond-dihedral angle (γi)

ascribed to the ith residue are also indicated.

Figure 2: Illustration of assignment of two selected particles (labelled A and B, respectively)

to grid cells neighboring their home grid cell. For clarity, only two dimensions are shown and

the grid is equal in the parallel and perpendicular direction. The size of the grid is equal to

the extended cut-off adjusted to divide each side of the simulation box into equal segments.

A circle with radius equal to grid dimension is drawn around each particle. Particle B has

all neighbor cells within the cut-off range and, consequently, is assigned to its home cell

and to all neighboring cells. Conversely, the circle around particle A does not extend to the

top-right cell (filled gray) and, therefore, this particle is beyond the cut-off distance from

any particle of the gray cell. Consequently, particle B is not assigned to the list of particles

of the gray cell.
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Figure 3: (A) General parallelization scheme of UNRES. The upper diagram shows the MPI-

level parallelization, with n coarse-grain (CG) tasks, each spanning m fine-grain (FG) tasks.

The CG MPI processes (with the assigned CG COMM communicator) supervise the pro-

cessing of an MD trajectory or an energy evaluation/minimization job. The master process

(with rank 0 in MPI COMM WORLD), doing its share of computation, governs the whole

parallel job. Each fine-grain task has a dedicated communicator (FG COMM). The CG task

is simultaneously the master of the respective FG task. All FG processes (both master and

slave) do energy and energy-gradient evaluation; the master process additionally governs

the calculations (gathering the contributions from the slave processors, doing MD steps or

energy minimization, doing I/O operations). The numbers in parentheses show the ranks of

the CG/FG processes; the first number is the absolute rank in MPI COMM WORLD, the

second number is the rank in CG COMM or FG COMM, respectively. The bottom diagram

shows the division of a given FG process into OpenMP threads. (B) A scheme of partition-

ing of the blocks of interactions between FG processes and OpenMP threads. The pairs of

interacting particles are stored in NG groups, each with the same first (source) particle in

the pair. For each group, the index of the source particle (i), and the indices of the first

(j(s)) and the last (j(e)) particle interacting with it are stored. The groups are combined into

blocks assigned to the subsequent FG task (FG1 . . .FGm). The consecutive groups are as-

signed to tasks subject to the load-balance condition. The blocks corresponding to a process

can further be split between different OpenMP threads.
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Figure 4: An example of an interaction scheduler in action. A list of interaction ranges is

passed through the scheduler. In this example, these are the interactions between particle

2 and particles 4, 5, 6, 7, 9, 10, 11. Assume that the distance between particles 4 and 10 is

between rcut−λ and rcut so that the smoothing function [Equation (56)] has to be triggered.

The scheduler will handle the interactions in order, assigning the pair of (2, 4) to the smooth-

ing queue first. Next, the pairs (2, 5), (2, 6), (2, 7) will be put in a sequential queue. The

next pair, (2, 9), breaks the sequence and will be moved to the non-sequential queue. Next,

pair (2, 10) will be put into the smoothing queue and pair (2, 11) into the non-sequential

one. After scheduling, the interactions within each queue can be computed with instruction

level-parallelism without any conditional branches.

Figure 5: Plots of the speedups (A and C) and efficiencies (B and D) for canonical single-

trajectory UNRES/MD simulations using MPI libraries (A and B) and OpenMP or hybrid

OpenMP/MPI parallelization (C and D) for proteins with different sizes. The graphs are

labelled with protein codes (see Table 1). For 24 cores (single node with two CPUs, 12 cores

each) the graphs corresponding to OpenMP (panel B) are labelled with 1 × 24 and hybrid

OpenMP/MPI are labelled with 2 × 12, indicating two MPI processes each split into 12

OpenMP threads. For 48 cores (two nodes) the two versions of hybrid OpenMP/MPI setups

are labelled with 2× 24 (24 OpenMP threads on each node) and 4× 12 (two MPI processes

each split into 12 OpenMP threads on each node). The optimized UNRES-9P-5D(o) code

was used. Each calculation was repeated 3 times and the average values are shown. The

error bars are smaller than symbol sizes.
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Figure 6: Bar plots of the ratios of the contributions to the non-setup time and to the total

non-setup time of single 10,000-step canonical MD runs carried out with 24 cores and three

MPI/OpenMP modes. (A) t(24×1)/t(1×24), (B) t(24×1)/t(2×12), (C) t(2×12)/t(1×24),

where t(24× 1), t(1× 24), and t(2× 12) denote the times corresponding to the runs carried

out with 24 MPI processes, 24 OpenMP threads, and 2 MPI processes, each split into 12

OpenMP threads, respectively. The respective contributions are labelled as follows: ‘lists’:

list construction, ‘ene prep/sum’: preparation for energy and energy-gradient calculations

(which include putting the particles into the simulation box, coordinate and energy-term

weight broadcast to slave processes, and zeroing the gradient components) and the reduc-

tion of energy contributions from different processes, ‘SC-SC’: the evaluation of USCiSCj

energy/gradient components, ‘SC-p’: the evaluation of USCipj energy/gradient components,

‘p-p+corr’: the evaluation of Upipi and U
(3)
corr energy/gradient components, ‘local’: the evalua-

tion of local-energy/gradient components (Ubond, Ub, Utor, and Urot), ‘grad/lagr’: summation

of gradient components and calculating accelerations.

Figure 7: Stacked-bar plots of the contributions to the non-setup time for the runs with 24

MPI processes (24 × 1), with 2 MPI processes, each split into 12 OpenMP thread (2 ×

12), and 24 OpenMP threads (1 × 24). The contributions are labelled as in Figure 6.

Additionally, ‘VV’ stands for updating the coordinates and velocities in velocity-Verlet steps

and computing normalized virtual-bond vectors.

Figure 8: Bar plot of nonsetup times per 10,000 MD steps using OpenMP and hybrid

OpenMP/MPI parallelization in number of residues. As in Figure 5B, the label n×m stands

for a calculation carried out with n MPI processes, each split into m OpenMP threads. Each

calculation was repeated 3 times and the average values with error bars (from minimum to

maximum) are shown. The error bars are shown on the top of each bar. The optimized

UNRES-9P-5D(o) code was used.
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Figure 9: Plots of nonsetup times (A, C, and E) and efficiencies (B, D, and F) in 10,000-step

MREMD simulations, for the 5HKQ (263 residues; A and B), 5SY1 (729 residues; C and

D), and H1081 (15,200 residues; E and F) proteins. The number of trajectories ranges from

1 (reference MD simulation) to 96. Different points correspond to calculations carried out

with 1, 4, 12, and 24 OpenMP threads per core and 2 MPI processes split into 12 OpenMP

threads each, respectively, as indicated by the respective labels. The maximum number of

cores used was 48×96=4608 (for 96 MREMD trajectories of H1081, each run with 48 cores).

Each run was repeated 3 times and the average values and error bars (from minimum to

maximum) are shown for each point.
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Figure 10: Plots of (A) nonsetup times per 1 MD step and (B) the per-day (24 hrs of non-

setup time) trajectory length (ns/day) in number of residues obtained with a single 24-core

processor in UNRES and all-atom calculations of proteins with various sizes. The logarithmic

scale is used on both axes. The respective graphs are labelled according to the types of

calculations as follows: NEWCT-9P: the old scale-consistent version of UNRES prior to this

work (MPI only, no cut-off on long-range interactions), NEWCT-9P-5D: the preliminary

version of UNRES with variables changed to Cα and SC coordinates described in this work

prior to code optimization (no cut-off and 25 Å cut-off, MPI only), NEWCT-9P-5D(o): the

optimized NEWCT-9P-5D code (no cut-off and 25 Å cut-off, MPI only or MPI and OpenMP),

MARTINI 3, (cut-off 11 Å, explicit coarse-grained water), GROMACS: explicit-water all-

atom-simulation times simulations with cut-off 8 Å using GROMACS 202052, AMBER:

all-atom simulations with AMBER 2051 with implicit water, GBSA model87,88, 25 Å cut-

off. The speedups and per-day times of the runs carried out with no cut-off (dashed lines)

exhibit the quadratic (speedup ∝ number of residues2) and inverse-quadratic dependence

on number of residues (traj length per day ∝ 1/number of residues2), respectively, while,

for larger proteins, those of the runs carried out with cut-off (solid lines) are proportional

to the number of residues (speedup ∝ number of residues) or to the inverse of the number

of residues (traj length per day ∝ 1/number of residues), respectively. The simulations

with UNRES were run with a 5 fs time step except the ones where the 10 fs time step is

indicated explicitly at the respective graph and those with MARTINI 3 were carried out

with a 20 fs time step. All-atom simulations were carried out with a 2 fs time step.
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Table 1: The proteins used for benchmark

Description PDB code
number

of

residues

number of

atoms with

implicit

solvent

number of

atoms with

explicit

solvent

endonuclease NucB 5OMT 109 1640 15172

CDI complex, 2 chains 5HKQ 263 4114 32762

STRA6 receptor, 2 chains 5SY1 729 11733 114739

STRA6 receptor, 4 chains 5SY1 1458 23466 160334

human proteasome 20S, 14 chains 4R3O 3143 48913 344178

human proteasome 20S, 28 chains 4R3O 6286 97826 568791

bacterial arginine decarboxylase,
H1081 CASP14 target, 20 chains

- 15200 237960 959732

Duck hepatitis B virus, 240 chains 6YGH 62880 1029120 5904390

the phycobilisome from the red
alga, 862 chains

5Y6P 153243 2283236 15702431
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Table S1: Non-setup times and their components (in seconds) for 10,000-step single-trajectory
canonical MD runs with the optimized NEWCT-9P-5D(o) variant of UNRES. The 25 Å cutoff on
long-range interactions has been applied.

5OMT (109 residues)

m ∗ nta
non-setupb ene prep/sumc listsd SC-SCe SC-pf p-p+corrg localh grad/lagri

[min,max] [min,max] [min,max] [min,max] [min,max] [min,max] [min,max] [min,max]
1*1 12.9 [ 12.9, 13.0] 0.190 [0.187,0.182] 2.41 [ 2.41, 2.42] 3.85 [ 3.83, 3.88] 1.78 [ 1.78, 1.78] 3.48 [ 3.45, 3.49] 0.784 [0.790,0.782] 0.133 [0.130,0.129]
1*2 8.67 [ 8.48, 8.76] 0.275 [0.252,0.280] 1.97 [ 1.95, 1.99] 2.02 [ 2.01, 2.02] 0.941 [0.937,0.944] 2.03 [ 1.99, 2.05] 0.715 [0.674,0.737] 0.255 [0.236,0.264]
2*1 8.36 [ 8.35, 8.37] 0.289 [0.301,0.277] 2.18 [ 2.18, 2.19] 1.95 [ 1.94, 1.97] 0.926 [0.924,0.927] 1.89 [ 1.89, 1.90] 0.540 [0.540,0.531] 0.267 [0.264,0.268]
1*4 6.76 [ 6.71, 6.82] 0.300 [0.300,0.298] 1.88 [ 1.86, 1.89] 1.14 [ 1.14, 1.15] 0.542 [0.539,0.546] 1.43 [ 1.42, 1.45] 0.643 [0.642,0.653] 0.326 [0.324,0.328]
2*24 6.21 [ 6.13, 6.30] 0.538 [0.554,0.541] 2.18 [ 2.16, 2.19] 0.398 [0.391,0.412] 0.213 [0.210,0.218] 0.918 [0.907,0.924] 0.567 [0.549,0.593] 0.640 [0.639,0.628]
1*6 6.08 [ 5.96, 6.14] 0.338 [0.325,0.341] 1.75 [ 1.74, 1.76] 0.878 [0.871,0.885] 0.414 [0.410,0.419] 1.22 [ 1.20, 1.23] 0.584 [0.562,0.594] 0.320 [0.303,0.331]
4*1 6.01 [ 6.00, 6.01] 0.379 [0.379,0.381] 2.05 [ 2.05, 2.05] 0.989 [0.989,0.990] 0.491 [0.490,0.493] 1.11 [ 1.10, 1.11] 0.404 [0.403,0.402] 0.282 [0.281,0.281]
1*24 5.92 [ 5.82, 6.02] 0.390 [0.421,0.370] 2.07 [ 2.06, 2.10] 0.517 [0.511,0.521] 0.255 [0.244,0.261] 0.977 [0.922,1.007] 0.600 [0.585,0.609] 0.360 [0.365,0.360]
1*12 5.40 [ 5.26, 5.48] 0.342 [0.345,0.348] 1.70 [ 1.68, 1.72] 0.594 [0.583,0.600] 0.290 [0.285,0.294] 0.932 [0.906,0.958] 0.573 [0.547,0.576] 0.342 [0.330,0.345]
6*1 5.26 [ 5.26, 5.27] 0.416 [0.416,0.414] 2.03 [ 2.03, 2.03] 0.671 [0.670,0.674] 0.337 [0.336,0.338] 0.845 [0.844,0.845] 0.354 [0.355,0.354] 0.304 [0.302,0.305]
12*1 4.46 [ 4.45, 4.46] 0.305 [0.314,0.297] 1.98 [ 1.98, 1.99] 0.409 [0.400,0.428] 0.199 [0.199,0.200] 0.620 [0.613,0.626] 0.308 [0.306,0.306] 0.324 [0.329,0.316]
24*1 4.42 [ 4.38, 4.48] 0.338 [0.330,0.353] 2.15 [ 2.14, 2.19] 0.261 [0.257,0.264] 0.136 [0.134,0.138] 0.518 [0.512,0.525] 0.311 [0.317,0.312] 0.376 [0.377,0.370]
2*12 4.36 [ 3.85, 5.36] 0.336 [0.274,0.460] 1.66 [ 1.59, 1.81] 0.313 [0.277,0.382] 0.167 [0.149,0.201] 0.570 [0.505,0.700] 0.362 [0.282,0.521] 0.428 [0.378,0.524]
4*12 3.93 [ 3.92, 3.95] 0.381 [0.385,0.377] 1.63 [ 1.62, 1.63] 0.200 [0.197,0.203] 0.114 [0.114,0.114] 0.441 [0.439,0.443] 0.268 [0.266,0.271] 0.490 [0.490,0.496]
48*1 4.66 [ 4.66, 4.66] 0.539 [0.539,0.539] 2.20 [ 2.20, 2.20] 0.182 [0.182,0.182] 0.100 [0.100,0.100] 0.460 [0.460,0.460] 0.301 [0.301,0.301] 0.539 [0.539,0.539]

5HKQ (263 residues)

m ∗ nta
non-setupb ene prep/sumc listsd SC-SCe SC-pf p-p+corrg localh grad/lagri

[min,max] [min,max] [min,max] [min,max] [min,max] [min,max] [min,max] [min,max]
1*1 45.0 [ 45.0, 45.0] 0.385 [0.392,0.380] 5.73 [ 5.73, 5.74] 15.8 [ 15.8, 15.8] 7.40 [ 7.39, 7.40] 13.0 [ 13.0, 13.0] 1.78 [ 1.82, 1.74] 0.334 [0.332,0.334]
2*1 26.0 [ 26.0, 26.1] 0.989 [0.977,0.992] 4.32 [ 4.32, 4.32] 7.83 [ 7.82, 7.83] 3.77 [ 3.77, 3.77] 6.82 [ 6.81, 6.83] 1.15 [ 1.16, 1.15] 0.550 [0.547,0.549]
1*2 25.3 [ 25.2, 25.3] 0.375 [0.394,0.362] 3.88 [ 3.87, 3.89] 8.10 [ 8.09, 8.11] 3.78 [ 3.78, 3.78] 6.82 [ 6.79, 6.86] 1.26 [ 1.27, 1.25] 0.403 [0.402,0.402]
4*1 16.0 [ 16.0, 16.0] 0.799 [0.799,0.798] 3.45 [ 3.45, 3.45] 3.97 [ 3.96, 3.97] 1.90 [ 1.90, 1.90] 3.83 [ 3.82, 3.85] 0.842 [0.847,0.836] 0.593 [0.595,0.594]
1*4 15.8 [ 15.6, 16.0] 0.341 [0.316,0.349] 2.85 [ 2.82, 2.87] 4.39 [ 4.38, 4.40] 1.98 [ 1.97, 1.99] 4.24 [ 4.22, 4.26] 0.960 [0.881,0.973] 0.453 [0.423,0.469]
6*1 12.7 [ 12.7, 12.8] 0.600 [0.615,0.580] 3.21 [ 3.20, 3.21] 2.77 [ 2.76, 2.77] 1.34 [ 1.33, 1.34] 2.88 [ 2.87, 2.89] 0.738 [0.737,0.739] 0.630 [0.630,0.630]
1*6 12.7 [ 12.6, 12.8] 0.395 [0.435,0.378] 2.44 [ 2.43, 2.46] 3.05 [ 2.99, 3.09] 1.40 [ 1.39, 1.40] 3.29 [ 3.17, 3.38] 0.920 [0.947,0.929] 0.477 [0.480,0.491]
1*12 9.49 [ 9.41, 9.55] 0.395 [0.399,0.397] 2.21 [ 2.20, 2.22] 1.67 [ 1.65, 1.68] 0.877 [0.870,0.886] 2.31 [ 2.29, 2.32] 0.788 [0.776,0.806] 0.486 [0.474,0.491]
12*1 9.44 [ 9.44, 9.44] 0.564 [0.575,0.547] 2.90 [ 2.89, 2.90] 1.47 [ 1.47, 1.48] 0.744 [0.744,0.745] 1.85 [ 1.85, 1.86] 0.637 [0.636,0.638] 0.675 [0.678,0.669]
2*24 8.50 [ 8.41, 8.62] 0.631 [0.693,0.601] 2.65 [ 2.63, 2.66] 0.752 [0.736,0.766] 0.540 [0.516,0.554] 1.48 [ 1.43, 1.53] 0.674 [0.657,0.709] 0.885 [0.887,0.879]
1*24 8.49 [ 8.28, 8.62] 0.405 [0.404,0.391] 2.59 [ 2.58, 2.60] 1.09 [ 1.07, 1.11] 0.672 [0.638,0.702] 1.72 [ 1.67, 1.77] 0.691 [0.652,0.710] 0.490 [0.473,0.497]
24*1 8.39 [ 8.38, 8.40] 0.612 [0.615,0.612] 3.10 [ 3.09, 3.10] 0.816 [0.813,0.819] 0.454 [0.451,0.458] 1.36 [ 1.35, 1.36] 0.648 [0.650,0.646] 0.794 [0.793,0.790]
2*12 6.12 [ 6.12, 6.13] 0.374 [0.385,0.358] 1.99 [ 1.99, 1.99] 0.850 [0.845,0.857] 0.435 [0.434,0.436] 1.05 [ 1.05, 1.05] 0.364 [0.360,0.368] 0.548 [0.547,0.549]
4*12 5.73 [ 5.72, 5.75] 0.444 [0.438,0.452] 2.04 [ 2.04, 2.04] 0.519 [0.516,0.521] 0.290 [0.289,0.291] 0.806 [0.805,0.808] 0.331 [0.332,0.333] 0.757 [0.762,0.756]
48*1 8.24 [ 8.24, 8.24] 0.810 [0.810,0.810] 3.20 [ 3.20, 3.20] 0.484 [0.484,0.484] 0.303 [0.303,0.303] 1.11 [ 1.11, 1.11] 0.624 [0.624,0.624] 1.07 [ 1.07, 1.07]

5SY1 (2 chains) (729 residues)

m ∗ nta
non-setupb ene prep/sumc listsd SC-SCe SC-pf p-p+corrg localh grad/lagri

[min,max] [min,max] [min,max] [min,max] [min,max] [min,max] [min,max] [min,max]
1*1 151 [ 151, 151] 0.974 [0.968,0.965] 20.4 [ 20.4, 20.5] 53.6 [ 53.5, 54.0] 25.8 [ 25.8, 25.9] 42.8 [ 42.7, 42.8] 4.88 [ 4.90, 4.83] 1.02 [ 1.02, 1.03]
2*1 84.0 [ 83.9, 84.1] 1.15 [ 1.10, 1.26] 14.3 [ 14.3, 14.3] 26.9 [ 26.9, 26.9] 13.1 [ 13.1, 13.1] 22.5 [ 22.5, 22.6] 3.12 [ 3.16, 3.06] 1.44 [ 1.44, 1.43]
1*2 79.3 [ 79.3, 79.4] 0.719 [0.722,0.716] 11.9 [ 11.9, 11.9] 27.0 [ 26.9, 27.0] 13.2 [ 13.1, 13.2] 21.5 [ 21.4, 21.5] 2.80 [ 2.90, 2.70] 1.16 [ 1.16, 1.16]
4*1 49.0 [ 49.0, 49.1] 1.07 [ 1.09, 1.00] 9.83 [ 9.81, 9.86] 13.6 [ 13.6, 13.6] 6.69 [ 6.68, 6.71] 12.4 [ 12.4, 12.5] 2.26 [ 2.26, 2.25] 1.69 [ 1.70, 1.69]
1*4 44.5 [ 44.3, 44.6] 0.524 [0.513,0.512] 7.03 [ 7.03, 7.04] 13.8 [ 13.8, 13.9] 6.74 [ 6.73, 6.75] 12.5 [ 12.4, 12.6] 1.73 [ 1.73, 1.68] 1.09 [ 1.08, 1.10]
6*1 37.2 [ 37.2, 37.3] 1.06 [ 1.07, 1.07] 8.04 [ 8.03, 8.05] 9.24 [ 9.23, 9.25] 4.57 [ 4.57, 4.58] 9.04 [ 9.02, 9.06] 1.97 [ 1.97, 1.95] 1.84 [ 1.84, 1.85]
1*6 32.8 [ 32.5, 32.9] 0.526 [0.549,0.513] 5.37 [ 5.36, 5.38] 9.46 [ 9.41, 9.52] 4.60 [ 4.59, 4.60] 9.20 [ 8.94, 9.35] 1.44 [ 1.46, 1.38] 1.11 [ 1.09, 1.12]
12*1 25.9 [ 25.9, 25.9] 1.27 [ 1.27, 1.25] 6.63 [ 6.62, 6.63] 4.76 [ 4.76, 4.76] 2.44 [ 2.43, 2.44] 5.61 [ 5.58, 5.64] 1.73 [ 1.73, 1.73] 2.00 [ 2.01, 1.99]
24*1 22.6 [ 22.5, 22.6] 1.80 [ 1.80, 1.79] 6.47 [ 6.45, 6.47] 2.57 [ 2.57, 2.58] 1.44 [ 1.42, 1.45] 4.07 [ 4.05, 4.09] 2.13 [ 2.16, 2.11] 2.56 [ 2.56, 2.57]
1*12 20.7 [ 20.5, 20.9] 0.497 [0.479,0.495] 3.87 [ 3.85, 3.88] 4.97 [ 4.95, 5.00] 2.52 [ 2.52, 2.53] 5.46 [ 5.37, 5.52] 1.19 [ 1.16, 1.21] 1.12 [ 1.09, 1.14]
1*24 16.0 [ 15.7, 16.3] 0.517 [0.526,0.545] 3.63 [ 3.60, 3.66] 2.81 [ 2.79, 2.84] 1.65 [ 1.60, 1.71] 4.00 [ 3.92, 4.09] 1.02 [ 1.00, 1.06] 1.15 [ 1.10, 1.20]
2*24 14.5 [ 14.2, 14.7] 0.903 [0.866,0.938] 3.67 [ 3.61, 3.76] 1.66 [ 1.65, 1.66] 1.10 [ 1.08, 1.12] 3.09 [ 3.07, 3.12] 0.845 [0.843,0.842] 1.90 [ 1.79, 1.98]
2*12 12.8 [ 12.8, 12.9] 0.454 [0.437,0.465] 3.21 [ 3.21, 3.22] 2.53 [ 2.52, 2.54] 1.30 [ 1.30, 1.30] 2.67 [ 2.67, 2.67] 0.558 [0.568,0.552] 1.28 [ 1.28, 1.28]
4*12 10.6 [ 10.6, 10.8] 0.593 [0.563,0.642] 2.96 [ 2.95, 2.99] 1.40 [ 1.40, 1.40] 0.748 [0.746,0.749] 1.84 [ 1.83, 1.84] 0.469 [0.470,0.471] 1.73 [ 1.71, 1.74]
48*1 20.5 [ 20.5, 20.5] 2.11 [ 2.11, 2.11] 6.26 [ 6.26, 6.26] 1.43 [ 1.43, 1.43] 0.915 [0.915,0.915] 3.20 [ 3.20, 3.20] 2.06 [ 2.06, 2.06] 2.91 [ 2.91, 2.91]
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5SY1 (1458 residues)

m ∗ nta
non-setupb ene prep/sumc listsd SC-SCe SC-pf p-p+corrg localh grad/lagri

[min,max] [min,max] [min,max] [min,max] [min,max] [min,max] [min,max] [min,max]
1*1 329 [ 329, 329] 1.76 [ 1.78, 1.73] 51.0 [ 51.0, 51.0] 114 [ 114, 115] 55.7 [ 55.7, 55.8] 91.6 [ 91.3, 91.8] 9.69 [ 9.89, 9.48] 2.26 [ 2.25, 2.26]
2*1 180 [ 180, 181] 2.44 [ 2.13, 2.76] 33.0 [ 33.0, 33.0] 57.2 [ 57.1, 57.2] 28.0 [ 28.0, 28.1] 47.8 [ 47.8, 47.9] 6.21 [ 6.19, 6.19] 2.96 [ 2.96, 2.95]
1*2 171 [ 171, 172] 1.28 [ 1.28, 1.25] 28.1 [ 28.1, 28.1] 58.3 [ 58.1, 58.7] 28.4 [ 28.4, 28.4] 46.0 [ 45.8, 46.4] 5.20 [ 5.22, 4.65] 1.75 [ 1.75, 1.74]
4*1 105 [ 105, 106] 2.70 [ 2.63, 2.78] 22.3 [ 22.3, 22.3] 29.1 [ 29.1, 29.1] 14.5 [ 14.5, 14.5] 26.2 [ 26.1, 26.2] 4.45 [ 4.48, 4.40] 3.50 [ 3.49, 3.49]
1*4 92.0 [ 91.7, 92.3] 0.768 [0.807,0.578] 15.5 [ 15.4, 15.6] 29.4 [ 29.3, 29.4] 14.3 [ 14.3, 14.4] 26.1 [ 25.9, 26.6] 2.83 [ 3.03, 2.59] 1.46 [ 1.44, 1.49]
6*1 79.9 [ 79.8, 80.0] 2.43 [ 2.40, 2.52] 18.2 [ 18.2, 18.2] 19.9 [ 19.9, 19.9] 9.85 [ 9.85, 9.85] 19.0 [ 19.0, 19.1] 3.88 [ 3.88, 3.87] 3.80 [ 3.81, 3.80]
1*6 65.6 [ 65.6, 65.6] 0.712 [0.736,0.698] 11.2 [ 11.2, 11.2] 19.8 [ 19.8, 19.9] 9.82 [ 9.80, 9.85] 18.8 [ 18.8, 18.9] 2.19 [ 2.22, 2.12] 1.44 [ 1.47, 1.43]
12*1 56.0 [ 56.0, 56.1] 2.74 [ 2.77, 2.72] 14.1 [ 14.1, 14.1] 10.3 [ 10.3, 10.4] 5.31 [ 5.30, 5.33] 12.0 [ 12.0, 12.0] 4.04 [ 4.06, 4.05] 4.56 [ 4.55, 4.58]
24*1 50.7 [ 50.3, 51.3] 4.17 [ 4.03, 4.32] 12.2 [ 12.1, 12.3] 5.74 [ 5.71, 5.78] 3.15 [ 3.14, 3.16] 9.07 [ 9.03, 9.14] 6.18 [ 6.17, 6.21] 6.98 [ 6.86, 7.11]
1*12 39.7 [ 39.4, 40.0] 0.608 [0.604,0.555] 7.29 [ 7.27, 7.32] 10.6 [ 10.5, 10.8] 5.25 [ 5.24, 5.25] 11.3 [ 11.2, 11.4] 1.63 [ 1.60, 1.63] 1.45 [ 1.43, 1.47]
1*24 26.9 [ 26.7, 27.1] 0.644 [0.626,0.656] 5.77 [ 5.76, 5.79] 5.68 [ 5.65, 5.72] 3.07 [ 3.04, 3.09] 7.09 [ 6.98, 7.22] 1.35 [ 1.42, 1.32] 1.57 [ 1.53, 1.59]
2*12 23.7 [ 23.7, 23.7] 0.500 [0.497,0.489] 5.54 [ 5.53, 5.55] 5.37 [ 5.37, 5.38] 2.74 [ 2.74, 2.75] 5.49 [ 5.48, 5.49] 0.890 [0.900,0.883] 1.85 [ 1.85, 1.85]
2*24 21.9 [ 21.6, 22.3] 1.01 [ 1.08, 1.07] 5.32 [ 5.21, 5.42] 3.16 [ 3.13, 3.19] 1.91 [ 1.89, 1.93] 4.92 [ 4.81, 5.00] 1.14 [ 1.12, 1.14] 2.57 [ 2.50, 2.66]
4*12 18.8 [ 18.4, 19.7] 1.22 [ 0.92, 1.82] 4.99 [ 4.89, 5.19] 2.82 [ 2.82, 2.82] 1.51 [ 1.51, 1.51] 3.54 [ 3.54, 3.54] 0.720 [0.716,0.723] 2.53 [ 2.49, 2.61]
48*1 45.8 [ 45.8, 45.8] 4.43 [ 4.43, 4.43] 11.2 [ 11.2, 11.2] 3.57 [ 3.57, 3.57] 2.08 [ 2.08, 2.08] 7.24 [ 7.24, 7.24] 6.22 [ 6.22, 6.22] 7.59 [ 7.59, 7.59]

4R3O (half) (3,143 residues)

m ∗ nta
non-setupb ene prep/sumc listsd SC-SCe SC-pf p-p+corrg localh grad/lagri

[min,max] [min,max] [min,max] [min,max] [min,max] [min,max] [min,max] [min,max]
1*1 708 [ 707, 708] 3.68 [ 3.74, 3.62] 107 [ 107, 107] 249 [ 249, 249] 118 [ 118, 118] 199 [ 199, 199] 20.6 [ 20.6, 20.2] 4.82 [ 4.82, 4.82]
2*1 394 [ 394, 394] 3.77 [ 3.85, 3.76] 70.8 [ 70.7, 70.8] 127 [ 127, 127] 60.1 [ 60.1, 60.3] 106 [ 106, 106] 13.2 [ 13.3, 12.9] 6.25 [ 6.25, 6.26]
1*2 364 [ 363, 367] 2.20 [ 2.27, 2.14] 57.7 [ 57.6, 57.7] 126 [ 126, 127] 59.9 [ 59.8, 59.9] 99.9 [ 98.8,101.8] 10.7 [ 10.7, 10.6] 3.49 [ 3.49, 3.50]
4*1 225 [ 225, 226] 4.65 [ 4.66, 4.31] 47.3 [ 47.3, 47.4] 63.2 [ 62.9, 63.8] 30.3 [ 30.3, 30.3] 56.8 [ 56.7, 56.8] 9.71 [ 9.80, 9.57] 7.25 [ 7.24, 7.28]
1*4 194 [ 191, 196] 1.41 [ 1.37, 1.43] 31.0 [ 30.9, 31.0] 64.1 [ 64.0, 64.1] 30.3 [ 30.3, 30.3] 56.3 [ 53.6, 57.8] 5.71 [ 5.73, 5.71] 2.45 [ 2.38, 2.46]
6*1 175 [ 175, 176] 5.28 [ 5.20, 5.48] 39.6 [ 39.5, 39.7] 43.0 [ 42.8, 43.2] 20.9 [ 20.9, 20.9] 41.8 [ 41.8, 41.9] 9.43 [ 9.37, 9.37] 8.71 [ 8.68, 8.72]
1*6 136 [ 135, 136] 1.16 [ 1.15, 1.18] 22.2 [ 22.2, 22.2] 43.2 [ 42.8, 43.6] 20.5 [ 20.4, 20.5] 40.0 [ 39.7, 40.3] 4.06 [ 4.06, 3.57] 2.10 [ 2.09, 2.11]
12*1 125 [ 125, 125] 6.25 [ 6.35, 6.20] 30.2 [ 30.1, 30.2] 22.3 [ 22.3, 22.4] 11.3 [ 11.3, 11.4] 26.7 [ 26.7, 26.8] 10.2 [ 10.2, 10.1] 11.0 [ 11.0, 11.0]
24*1 113 [ 112, 114] 11.8 [ 12.4, 11.7] 26.4 [ 26.4, 26.5] 12.7 [ 12.7, 12.8] 6.55 [ 6.50, 6.62] 20.3 [ 19.8, 20.6] 13.8 [ 13.3, 14.0] 14.4 [ 14.3, 14.5]
1*12 76.9 [ 76.5, 77.2] 0.860 [0.899,0.788] 13.3 [ 13.2, 13.4] 22.1 [ 22.0, 22.3] 10.7 [ 10.7, 10.7] 22.9 [ 22.7, 23.2] 2.57 [ 2.52, 2.25] 1.94 [ 1.92, 1.94]
1*24 50.7 [ 50.2, 51.6] 0.813 [0.814,0.912] 9.96 [ 9.92, 9.99] 12.0 [ 12.0, 12.0] 5.97 [ 5.93, 6.04] 15.4 [ 15.1, 16.1] 1.92 [ 1.92, 1.93] 1.91 [ 1.87, 1.98]
2*12 46.9 [ 46.6, 47.2] 0.760 [0.730,0.778] 10.3 [ 10.2, 10.3] 11.4 [ 11.3, 11.4] 5.61 [ 5.59, 5.63] 11.7 [ 11.6, 11.8] 1.67 [ 1.67, 1.65] 2.99 [ 2.96, 3.01]
2*24 39.7 [ 38.9, 40.5] 1.46 [ 1.33, 1.64] 9.69 [ 9.59, 9.79] 6.54 [ 6.46, 6.65] 3.40 [ 3.36, 3.44] 10.1 [ 9.9, 10.3] 1.76 [ 1.74, 1.73] 3.67 [ 3.55, 3.88]
4*12 37.2 [ 37.1, 37.2] 0.933 [0.968,0.913] 10.3 [ 10.3, 10.3] 5.99 [ 5.98, 6.00] 3.16 [ 3.15, 3.17] 7.76 [ 7.75, 7.78] 1.35 [ 1.35, 1.35] 4.80 [ 4.79, 4.80]
48*1 101 [ 101, 101] 11.4 [ 11.4, 11.4] 24.1 [ 24.1, 24.1] 7.96 [ 7.96, 7.96] 4.14 [ 4.14, 4.14] 17.4 [ 17.4, 17.4] 13.5 [ 13.5, 13.5] 15.3 [ 15.3, 15.3]

4R3O (6,286 residues)

m ∗ nta
non-setupb ene prep/sumc listsd SC-SCe SC-pf p-p+corrg localh grad/lagri

[min,max] [min,max] [min,max] [min,max] [min,max] [min,max] [min,max] [min,max]
1*1 1668 [ 1667, 1670] 7.89 [ 7.84, 7.77] 281 [ 281, 281] 580 [ 580, 581] 278 [ 277, 278] 457 [ 457, 458] 41.4 [ 41.9, 41.3] 11.0 [ 10.9, 10.9]
2*1 915 [ 914, 918] 7.87 [ 7.83, 7.90] 183 [ 183, 183] 293 [ 292, 295] 140 [ 140, 140] 239 [ 239, 239] 26.6 [ 27.1, 26.6] 13.6 [ 13.5, 13.6]
1*2 846 [ 845, 847] 4.23 [ 4.68, 3.77] 148 [ 148, 148] 294 [ 292, 296] 140 [ 140, 140] 224 [ 224, 225] 21.0 [ 21.6, 19.8] 6.61 [ 6.61, 6.60]
4*1 536 [ 536, 537] 14.4 [ 15.2, 13.3] 121 [ 121, 121] 146 [ 146, 147] 70.9 [ 70.7, 71.1] 130 [ 130, 131] 22.3 [ 22.2, 22.3] 18.0 [ 17.9, 18.1]
1*4 453 [ 452, 456] 2.39 [ 2.39, 2.44] 78.6 [ 78.3, 78.9] 149 [ 148, 149] 71.2 [ 71.0, 71.3] 132 [ 130, 133] 10.9 [ 11.3, 10.7] 4.53 [ 4.54, 4.56]
6*1 401 [ 400, 402] 14.0 [ 14.0, 13.9] 94.7 [ 94.6, 94.7] 99.0 [ 98.5, 99.9] 48.1 [ 47.9, 48.3] 94.0 [ 93.9, 94.0] 20.5 [ 20.7, 20.3] 17.8 [ 17.8, 17.8]
1*6 307 [ 303, 313] 1.94 [ 1.95, 1.86] 55.0 [ 54.9, 55.0] 98.9 [ 98.4, 99.7] 47.9 [ 47.9, 48.0] 86.8 [ 83.3, 91.9] 7.58 [ 7.58, 7.62] 3.87 [ 3.87, 3.90]
4*12 94.1 [ 92.9, 98.6] 2.93 [ 2.40, 6.00] 22.0 [ 21.9, 22.5] 14.2 [ 14.1, 14.3] 7.87 [ 7.83, 7.93] 19.6 [ 19.4, 19.7] 3.84 [ 3.83, 3.86] 15.2 [ 15.0, 15.4]
12*1 275 [ 274, 275] 16.1 [ 16.3, 15.6] 69.7 [ 69.6, 69.7] 51.4 [ 51.3, 51.4] 25.5 [ 25.4, 25.6] 59.1 [ 58.8, 59.4] 19.8 [ 19.8, 20.0] 20.1 [ 20.1, 20.1]
24*1 255 [ 254, 256] 24.0 [ 23.6, 23.9] 59.2 [ 59.1, 59.2] 28.9 [ 28.9, 28.9] 14.5 [ 14.4, 14.5] 50.3 [ 50.2, 50.5] 34.7 [ 34.6, 35.1] 29.6 [ 29.5, 29.7]
2*24 83.2 [ 81.7, 88.4] 2.50 [ 3.63, 5.30] 19.4 [ 19.1, 20.0] 14.8 [ 14.5, 15.6] 8.34 [ 8.15, 8.51] 21.6 [ 20.1, 22.5] 3.00 [ 2.89, 2.54] 6.44 [ 6.35, 6.68]
1*12 172 [ 171, 173] 1.35 [ 1.37, 1.33] 31.6 [ 31.6, 31.6] 50.6 [ 50.3, 50.9] 24.8 [ 24.8, 24.8] 51.3 [ 50.4, 52.1] 4.46 [ 4.41, 4.10] 3.31 [ 3.28, 3.34]
2*12 110 [ 110, 110] 1.82 [ 1.71, 2.02] 23.5 [ 23.5, 23.6] 26.5 [ 26.5, 26.6] 13.9 [ 13.9, 14.0] 28.6 [ 28.4, 28.6] 4.36 [ 4.45, 4.41] 6.13 [ 6.11, 6.15]
1*24 108 [ 106, 109] 1.27 [ 1.27, 1.28] 21.6 [ 21.6, 21.7] 27.2 [ 27.0, 27.4] 14.2 [ 14.0, 14.4] 32.1 [ 31.4, 32.8] 3.11 [ 3.03, 3.16] 3.44 [ 3.40, 3.51]
48*1 226 [ 226, 226] 24.6 [ 24.6, 24.6] 52.6 [ 52.6, 52.6] 16.8 [ 16.8, 16.8] 8.91 [ 8.91, 8.91] 42.1 [ 42.1, 42.1] 33.4 [ 33.4, 33.4] 30.7 [ 30.7, 30.7]
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H1081 (15,200 residues)

m ∗ nta
non-setupb ene prep/sumc listsd SC-SCe SC-pf p-p+corrg localh grad/lagri

[min,max] [min,max] [min,max] [min,max] [min,max] [min,max] [min,max] [min,max]
1*1 4571 [ 4529, 4645] 25.3 [ 25.4, 25.3] 850 [ 849, 850] 1568 [ 1531, 1640] 745 [ 745, 746] 1209 [ 1207, 1211] 112 [ 111, 110] 33.3 [ 33.1, 33.6]
2*1 2470 [ 2468, 2471] 24.5 [ 25.3, 24.2] 529 [ 529, 529] 769 [ 769, 770] 376 [ 376, 378] 629 [ 628, 630] 72.2 [ 72.3, 70.0] 40.0 [ 40.1, 40.0]
1*2 2277 [ 2275, 2281] 11.6 [ 12.4, 11.7] 446 [ 445, 446] 768 [ 768, 769] 374 [ 374, 374] 587 [ 586, 589] 53.0 [ 52.8, 53.2] 18.4 [ 18.3, 18.6]
4*1 1462 [ 1460, 1465] 31.4 [ 32.7, 30.0] 374 [ 374, 374] 392 [ 390, 395] 193 [ 193, 194] 345 [ 344, 346] 54.5 [ 54.4, 54.3] 42.9 [ 42.9, 43.0]
1*4 1201 [ 1193, 1212] 6.74 [ 7.49, 5.96] 234 [ 233, 234] 389 [ 388, 390] 190 [ 189, 190] 329 [ 322, 340] 27.9 [ 28.0, 27.4] 11.3 [ 11.3, 11.3]
6*1 1094 [ 1094, 1095] 38.8 [ 39.1, 38.5] 295 [ 295, 295] 261 [ 261, 262] 130 [ 130, 130] 247 [ 246, 247] 48.6 [ 48.7, 48.4] 44.6 [ 44.6, 44.6]
1*6 830 [ 822, 844] 4.81 [ 4.97, 4.85] 162 [ 162, 162] 262 [ 261, 263] 128 [ 127, 128] 233 [ 226, 244] 19.9 [ 20.5, 20.0] 9.85 [ 9.68,10.00]
12*1 741 [ 739, 742] 42.3 [ 42.1, 42.1] 210 [ 209, 210] 134 [ 134, 134] 68.0 [ 67.9, 68.0] 153 [ 152, 153] 55.2 [ 55.2, 55.2] 49.0 [ 48.8, 49.1]
24*1 668 [ 661, 672] 60.7 [ 60.0, 60.0] 172 [ 171, 173] 72.3 [ 72.0, 72.6] 38.6 [ 38.4, 38.7] 130 [ 128, 132] 94.3 [ 92.7, 95.6] 66.4 [ 65.2, 67.0]
1*12 459 [ 457, 460] 3.32 [ 3.41, 3.37] 91.2 [ 91.1, 91.2] 133 [ 133, 134] 66.7 [ 66.6, 66.7] 134 [ 133, 135] 11.6 [ 12.7, 11.1] 8.45 [ 8.39, 8.54]
48*1 601 [ 599, 602] 60.7 [ 62.7, 58.7] 153 [ 152, 155] 40.9 [ 40.8, 41.1] 23.7 [ 23.4, 24.0] 107 [ 106, 107] 96.2 [ 96.1, 96.3] 81.7 [ 81.2, 82.3]
2*12 287 [ 286, 288] 4.50 [ 4.37, 4.61] 63.9 [ 63.9, 64.0] 69.3 [ 69.2, 69.5] 36.9 [ 36.8, 37.0] 76.5 [ 76.0, 77.1] 10.3 [ 10.3, 10.5] 15.1 [ 15.1, 15.1]
1*24 279 [ 278, 282] 2.58 [ 2.64, 2.72] 57.3 [ 57.2, 57.5] 71.2 [ 70.6, 71.7] 38.2 [ 38.0, 38.4] 84.0 [ 82.8, 85.3] 8.43 [ 8.90, 8.50] 8.17 [ 8.12, 8.30]
4*12 228 [ 227, 231] 5.72 [ 5.86, 5.36] 58.0 [ 57.4, 59.1] 37.0 [ 37.0, 37.1] 21.2 [ 21.2, 21.3] 52.6 [ 52.3, 52.9] 8.92 [ 8.80, 9.05] 29.8 [ 29.5, 30.8]
2*24 215 [ 212, 218] 3.85 [ 3.55, 3.91] 47.6 [ 47.2, 48.3] 38.5 [ 38.4, 38.7] 22.2 [ 22.1, 22.4] 57.2 [ 56.4, 57.9] 7.25 [ 7.15, 6.79] 25.0 [ 24.6, 25.9]

6YGH (62,880 residues)

m ∗ nta
non-setupb ene prep/sumc listsd SC-SCe SC-pf p-p+corrg localh grad/lagri

[min,max] [min,max] [min,max] [min,max] [min,max] [min,max] [min,max] [min,max]
1*1 18042 [18032,18060] 163 [ 163, 161] 3538 [ 3537, 3538] 5979 [ 5976, 5981] 2890 [ 2886, 2899] 4730 [ 4720, 4741] 476 [ 483, 474] 149 [ 149, 148]
2*1 9893 [ 9887, 9901] 144 [ 145, 144] 2211 [ 2209, 2215] 3005 [ 3004, 3005] 1458 [ 1457, 1458] 2472 [ 2466, 2476] 306 [ 308, 304] 177 [ 176, 177]
1*2 9046 [ 9041, 9053] 67.8 [ 67.9, 67.7] 1842 [ 1841, 1842] 3003 [ 3001, 3005] 1450 [ 1450, 1450] 2293 [ 2289, 2298] 232 [ 234, 230] 84.7 [ 84.6, 84.9]
4*1 5781 [ 5779, 5785] 150 [ 149, 153] 1479 [ 1478, 1479] 1516 [ 1514, 1520] 742 [ 742, 742] 1350 [ 1349, 1353] 235 [ 238, 231] 187 [ 187, 187]
1*4 4802 [ 4793, 4815] 35.0 [ 35.2, 33.7] 960 [ 959, 961] 1527 [ 1521, 1539] 735 [ 734, 737] 1323 [ 1317, 1328] 120 [ 124, 115] 52.2 [ 52.5, 52.0]
6*1 4369 [ 4356, 4376] 155 [ 150, 156] 1191 [ 1190, 1191] 1015 [ 1014, 1017] 504 [ 503, 505] 977 [ 975, 978] 214 [ 211, 216] 192 [ 191, 192]
1*6 3292 [ 3270, 3303] 24.5 [ 25.0, 23.4] 667 [ 666, 667] 1020 [ 1017, 1024] 493 [ 492, 494] 923 [ 904, 936] 82.0 [ 82.3, 74.9] 41.1 [ 41.2, 41.2]
12*1 3032 [ 3025, 3047] 159 [ 159, 160] 886 [ 885, 887] 524 [ 523, 524] 269 [ 269, 269] 619 [ 617, 621] 235 [ 233, 242] 208 [ 207, 211]
24*1 2923 [ 2891, 2942] 242 [ 233, 247] 740 [ 738, 741] 291 [ 290, 292] 169 [ 166, 170] 525 [ 520, 528] 406 [ 399, 410] 385 [ 380, 388]
1*12 1805 [ 1803, 1808] 14.8 [ 14.9, 14.2] 371 [ 371, 372] 520 [ 516, 521] 257 [ 256, 257] 528 [ 524, 530] 45.6 [ 49.7, 44.9] 32.7 [ 33.0, 32.3]
48*1 2594 [ 2567, 2621] 372 [ 379, 364] 633 [ 626, 639] 157 [ 155, 159] 95.8 [ 95.4, 96.2] 381 [ 373, 390] 387 [ 380, 394] 418 [ 406, 430]
2*12 1150 [ 1149, 1151] 21.0 [ 21.3, 20.9] 259 [ 259, 259] 271 [ 270, 271] 159 [ 159, 159] 300 [ 299, 300] 45.0 [ 46.1, 44.2] 54.8 [ 54.6, 55.1]
1*24 1128 [ 1124, 1131] 12.0 [ 12.3, 12.1] 226 [ 226, 226] 280 [ 278, 281] 164 [ 164, 165] 346 [ 345, 348] 32.3 [ 32.3, 32.9] 31.1 [ 31.2, 31.4]
4*12 895 [ 890, 902] 22.6 [ 23.8, 21.1] 220 [ 218, 222] 146 [ 146, 147] 101 [ 101, 101] 210 [ 210, 211] 38.1 [ 38.6, 37.6] 103 [ 100, 106]
2*24 872 [ 866, 877] 17.4 [ 17.7, 14.2] 184 [ 183, 184] 156 [ 152, 161] 106 [ 105, 108] 246 [ 245, 247] 26.4 [ 28.6, 26.6] 89.5 [ 89.0, 89.5]

5Y6P (153,243 residues)

m ∗ nta
non-setupb ene prep/sumc listsd SC-SCe SC-pf p-p+corrg localh grad/lagri

[min,max] [min,max] [min,max] [min,max] [min,max] [min,max] [min,max] [min,max]
1*1 53979 [53843,54091] 398 [ 396, 381] 10922 [10914,10934] 18019 [17994,18031] 8786 [ 8751, 8809] 14017 [13958,14100] 1166 [ 1161, 1159] 374 [ 372, 377]
2*1 29623 [29604,29657] 363 [ 366, 366] 7105 [ 7100, 7112] 9030 [ 9025, 9040] 4404 [ 4401, 4410] 7211 [ 7200, 7219] 752 [ 756, 753] 453 [ 453, 453]
1*2 27153 [26936,27588] 179 [ 184, 177] 5656 [ 5653, 5658] 9225 [ 9011, 9650] 4403 [ 4397, 4407] 6722 [ 6719, 6725] 573 [ 575, 574] 212 [ 212, 213]
4*1 17209 [17193,17232] 384 [ 379, 397] 4833 [ 4831, 4836] 4540 [ 4537, 4545] 2235 [ 2235, 2235] 3871 [ 3868, 3874] 571 [ 570, 568] 468 [ 467, 468]
1*4 14239 [14189,14271] 92.0 [ 96.8, 87.2] 2950 [ 2947, 2952] 4601 [ 4586, 4623] 2217 [ 2214, 2219] 3837 [ 3799, 3858] 291 [ 296, 282] 129 [ 129, 128]
6*1 12974 [12901,13111] 457 [ 388, 590] 3880 [ 3878, 3885] 3049 [ 3047, 3051] 1514 [ 1513, 1516] 2768 [ 2767, 2768] 518 [ 519, 515] 475 [ 476, 475]
1*6 9624 [ 9531, 9726] 63.9 [ 65.7, 56.8] 2040 [ 2037, 2045] 3048 [ 3030, 3063] 1482 [ 1480, 1484] 2587 [ 2514, 2675] 200 [ 199, 199] 101 [ 102, 101]
12*1 8893 [ 8880, 8912] 393 [ 390, 403] 2825 [ 2822, 2830] 1568 [ 1567, 1569] 802 [ 801, 804] 1702 [ 1699, 1705] 587 [ 589, 584] 678 [ 673, 681]
24*1 8176 [ 8085, 8221] 570 [ 556, 574] 2311 [ 2306, 2314] 875 [ 872, 877] 498 [ 494, 503] 1383 [ 1367, 1394] 978 [ 956, 988] 1158 [ 1133, 1169]
1*12 5268 [ 5243, 5292] 39.0 [ 41.0, 37.0] 1136 [ 1135, 1137] 1560 [ 1556, 1566] 781 [ 781, 781] 1473 [ 1442, 1500] 113 [ 122, 107] 76.6 [ 77.1, 76.3]
2*12 3355 [ 3342, 3378] 51.6 [ 52.8, 48.6] 827 [ 827, 827] 822 [ 806, 849] 461 [ 459, 463] 834 [ 834, 835] 121 [ 125, 116] 138 [ 138, 138]
1*24 3215 [ 3202, 3222] 41.2 [ 41.3, 41.3] 688 [ 687, 688] 834 [ 824, 844] 476 [ 473, 478] 933 [ 929, 938] 86.4 [ 87.3, 75.9] 71.3 [ 71.3, 72.7]
4*12 2535 [ 2507, 2581] 79.8 [ 63.3,112.1] 701 [ 699, 703] 430 [ 429, 430] 280 [ 279, 280] 568 [ 566, 571] 106 [ 104, 107] 249 [ 246, 255]
2*24 2385 [ 2379, 2390] 54.9 [ 53.1, 53.3] 570 [ 570, 570] 443 [ 441, 446] 297 [ 292, 300] 627 [ 624, 629] 72.6 [ 77.4, 69.8] 213 [ 214, 214]
48*1 7015 [ 7015, 7015] 842 [ 842, 842] 1899 [ 1899, 1899] 451 [ 451, 451] 264 [ 264, 264] 987 [ 987, 987] 974 [ 974, 974] 1223 [ 1223, 1223]

a
m ∗ nt in the first column stands for m FG (MPI) processes each split into nt OpenMP threads.

bTotal non-setup time.
cThe time spent on preparation for energy and energy-gradient calculations (which include putting the particles into the simulation
box, coordinate and energy-term weight broadcast to slave processes, and zeroing the gradient components) and the reduction of energy
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contributions from different processes.
dThe time for the construction of the interaction lists.
eThe time for the calculation of the USCjSCj

contributions to energy and energy gradient.
fThe time for the calculation of the USCipj contributions to energy and energy gradient.
gThe time for the calculation of the Upipj and U

(3)
corr contributions to energy and energy gradient.

hThe time for the calculations local (Ubond, Ub, Utor and Urot) contributions to energy and energy gradient.
iThe time for gradient-component summation and transformation and calculating accelerations from the energy gradient.

5

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 1

 10

 100

 1000

 10000

 100000

109 263 729 1458 3143 6286 15200 62880 153243

ti
m

e
 [

s
]

number of residues

1*1
2*1
2*1
4*1
1*4

1*12
12*1
2*12
1*24
4*12
2*24

Figure S1: Dependence of the non-setup time for 10,000 steps of single-trajectory canonical
MD simulations on protein size for various total number of cores and their partition between
MPI processes and OpenMP threads.
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Figure S2: Dependence of the numbers of long-range SC-SC, SC-p, and p-p interactions on
the number of residues without cut-off and with the 25 Å cut-off.
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Details of the simulations and data analysis of the 2JOF miniprotein

The variant of the tryptophan cage studied by Lindorff-Larsen et al.1 (PDB:2JOF) was
simulated with the force-matched variant of the scale-consistent UNRES force field2, which
was calibrated with the regular tryptophan cage (PDB:1L2Y). First, the protocol of ab initio
prediction of protein structures3,4, which is based on extensive MREMD simulations, was
run to determine if the force field folds this protein. A production MREMD run 12 four-
plexed trajectories at 12 temperatures ranging from 260 K to 370 K (48 trajectories total)
was carried out for 20,000,000 4.89 fs steps, as in Ref. 4. For this small protein, the duration
of the run was sufficient to achieve convergence. The structure closest to the mean of the
most populated cluster had Cα-RMSD = 2.73 Å from the experimental structure (Figure
S3). Consequently, the force field can be considered to be good for studying the folding of
2JOF.

Figure S3: Superposition of the structure closest to the mean structure of the lowest-free-
energy cluster of the variant of tryptophan cage obtained in MREMD simulations (gray
Cα-trace) on the experimental 2JOF structure (ribbon colored blue to red from the N- to
the C-terminus). The Cα-RMSD is 2.73 Å.

To compare the UNRES and all-atom folding/unfolding times, we subsequently ran 4
series of simulations, 24 canonical Langevin-dynamics trajectories each, at temperatures
268 K, 273 K, 278 K, and 288 K, respectively, to find the temperature at which the ratio
of the folding to unfolding time was about the same as that in Ref. 1. Water viscosity was
scaled by a factor of 0.01, as in our earlier work5. Each trajectory was started from a fully
extended conformation. We took the same time step of 2 fs as in Ref. 1 and the total number
of steps was 400,000,000 (0.8 µs), which amounts to the total simulation time of 19.2 µs for
each series of simulations (each of the four temperatures). Snapshots were recorded every
1,000 MD steps (2 ps).

To find the folding and unfolding times, we carried out the same analysis as in Ref. 1
except that we used the RMSD from the experimental structure and not the fraction of
the native contacts. First, the RMSD time series were smoothed by computing the moving
averages with period of 100 ps (50 snapshots). Then the smoothed RMSD was analyzed
starting from the first to the last point. If the initial RMSD was below the “folded” threshold,
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Table S2: Mean folding (〈τf 〉) and unfolding (〈τu〉) times and their ratios of the 2JOF
miniprotein obtained in canonical simulations at four temperatures.

T[K] 〈τf 〉[µs] 〈τu〉 [µs] 〈τf 〉/〈τu〉
268 0.0192 0.00797 2.4
273 0.0178 0.00446 4.0
278 0.0283 0.00326 8.7
288 0.0428 0.00143 29.9

set at 2.8 Å, the point was flagged ‘1’ and this flag continued until the RMSD increased to
more than the “unfolded” threshold, set at 4.2 Å, this point being flagged ‘0’. The flag ‘0’
continued until the RMSD decreased below 2.8 Å. If the first RMSD was above 2.8 Å, its
flag was set at 0. Then the same analysis was carried out from the last to the first RMSD,
yielding the second set of flags. At each point, the final flag was computed as an arithmetic
average of the forward and the backward flag. A final flag of 0 indicated an unfolded, a flag
of 1 a folded, and a flag of 1/2 a transition structure. Sample plots of moving averages of the
RMSD for all trajectories at T =273 K, in which the “folded”, “unfolded”, and “transition”
sections are colored differently are shown in Figure S4. It can be seen that the protein
repeatedly folded and unfolded in all trajectories.

Subsequently, the unfolding (τu) and folding times (τf ) were as the periods of residence in
the folded and unfolded state, respectively. The distributions of these time for T =273 K are
shown in Figure S5. It can be seen that the distributions do have dominant maxima but are
not unimodal, which suggests heterogeneous folding and unfolding kinetics. The distribution
of τf is shifted to the right with respect to that of τu. The distributions of the folding and
unfolding times at the three remaining temperatures exhibit the same feature. The mean
values of the folding and unfolding times are and their ratios at the four temperatures
considered are summarized in Table S2.

It can be seen from the Table that the 〈τu〉 (which is the residence time of the system
in the folded state) steadily decreases with temperature, while 〈τf 〉 (which is the residence
time of the system in the unfolded state) increases with temperature except for a small drop
from 268 K to 273 K. This behavior is understandable, because the increase of temperature
results in reducing the probability of the folded state. At T = 273 K, the ratio of the mean
folding and unfolding times is about 4.0, which is close to the ratio of 14/3 = 4.7 found in
the all-atom simulations found in Ref. 1. Consequently, we selected the values obtained in
simulations carried out at T = 273 K to compare the UNRES and all-atom folding/unfolding
times.
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Figure S4: Plots of the moving-average-smoothed Cα-RMSD of the simulated structures of the variant of the 2JOF variant of
the tryptophan cage from the experimental 2JOF structure in simulation time simulated at T = 273 K. The red, purple, and
green sections of the plots correspond to the unfolded, transition, and folded structures of the miniprotein and the horizontal
dashed lines have been drawn at the “folded” (2.8 Å) and “unfolded” (4.2 Å) RMSD threshold. The RMSD cut-off values are
shown as dashed lines.
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Figure S5: Histograms of the distributions of the unfolding and folding times of the 2JOF
variant of the tryptophan cage obtained in simulations run at T = 273 K.
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C. Czaplewski, P. Krupa, and M. Mozolewska, in Practical Aspects of Computational

Chemistry V, edited by M. S. Leszczynski (Springer, 2021), chap. 2, pp. 31–69.
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