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Piotr Chudoba 1, Jarosław Przewłócki 1, Piotr Samól 1,* and Lesław Zabuski 2
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Abstract: The aim of the paper is to propose new quantitative criteria for selecting the optimal
method of securing and repairing a historical object, which take into account Structural, Conservation
and Architectural aspects (the S–C–A method). Construction works on cultural heritage sites tend
to be challenging and require an interdisciplinary approach. Therefore, they are strictly related
to the philosophy of sustainable development which seeks adequate proportions between factors
indicated on the natural and social environment. Optimization of several systems stabilizing retaining
structure that are a historic object was considered in the paper. Appropriate formulas for scores
meeting additional conservation and aesthetic requirements were proposed. The method is used
in the stabilization of the brick retaining wall, a part of the Wisłoujście Fortress located in Gdańsk,
Poland. In order to compute the displacement of the wall and its stability, numerical analysis was
performed by the two-dimensional explicit Finite Difference Method (using the FLAC2D software).
The algorithm proposed could be beneficial to the protection of cultural heritage since it could also be
applied to other structures, such as roof trusses, masonry walls, pillars, etc.

Keywords: multiple-criteria decision-making; optimization; masonry; retaining wall; heritage
protection; stabilizing systems; decision-support system

1. Introduction

Just a few years ago, cultural heritage was out of scope in documents and publications focused on
sustainable development. In the famous Burtlandt report [1], architectural and cultural heritage are
mentioned only twice—always in the context of threats for the whole human environment. Until the
late 1990s, most scientists avoided introducing cultural heritage in the discussion about sustainability,
despite its importance for societies. A significant role in changing this situation was played by
UNESCO (United Nations Educational, Scientific and Cultural Organization), which organized several
international conferences (e.g., in Stockholm in 1998; in Hangzhou in 2013) about the interactions
between sustainability and cultural heritage. They allowed incorporation of heritage as an immanent
component of social and cultural aspects in the broader concept of sustainable development [2–4].
Therefore, the protection of monuments in its economic and social elements might be treated as an
essential issue of contemporary modernization processes.

The main concern of civil engineers is to design a safe and cost-effective structure. It can be
achieved through an optimization method, which should be an inherent part of all engineering practices.
Optimization can be defined as a decision-making process aiming to achieve the best measurable
performance under given constraints. In limit state design, two basic requirements, ultimate limit state
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(ULS) and serviceability limit state (SLS), must be checked. Structural optimization is the oldest and best
known approach. It can take the various forms of sizing, shape, topology optimization, etc. Some issues
pertaining to structural optimization used in geotechnical engineering are described, for example,
in [5,6]. There are also papers referring to optimal design of slope-stabilizing systems, i.e., the subject of
a paper by Yang et al. [7] proposed the optimal design of anchor cables (a reasonable position and length)
for slope reinforcement; Hosseinian and Seifabad [8] carried out optimization considering the distance
between piles in supporting structure; Hajiazizi and Mazaheri [9] took into account the length of piles;
Yazdanpanah et al. [10] presented a method of optimizing reinforced layers in slope stabilization design.
Usually, costs are a further factor taken into account in the design; economic optimization is most
commonly used to estimate them. Several more or less advanced economic optimization methods have
been developed and applied to geotechnical problems. Economic optimization procedures for the design
of spread footing have been proposed in [11,12]. In the latter, which—like the current paper—focuses
on a reconstruction of retaining wall, a comparative analysis of various optimization methods has
been conducted. Wang [13] and Zhang et al. [14], for example, developed a design approach that
integrates economic design optimization with reliability-based methodologies. This approach allows
for taking geotechnical uncertainties into account. There are also many construction planning problems
that require optimizing construction time, quality or sustainability. A review of recent construction
multi-objective optimization research is given in [15]. Time–cost optimization of construction projects
scheduling, especially important for lengthy and costly projects, is presented in [16]. Chen et al. [17]
developed an effective and efficient optimization algorithm of construction time and applied it to a
case study involving the construction of a secant pile wall. Yang et al. [18] proposed the simulation
optimization framework (taking account uncertainties), which allows for maintenance planning for
deteriorating bridges.

Protection of historical buildings, especially those at risk of construction failure, involves several
stakeholders, including structural engineers, heritage conservation officers, council architects and
various other state or local government officials. At the initial stage of a restoration project,
numerous consultations with these authorities take place. Conservation officers’ responsibility
is to ensure that conservation values, such as authenticity of the building, are preserved. On the other
hand, while architects manage the whole design process and stress the importance of its aesthetic
qualities, civil engineers focus on the safety of the structure to prevent its failure. Due to different,
and at times conflicting, aims of those involved, differences of opinion may emerge over the methods
of saving, repairing and strengthening the structure, which makes repair works to damaged historical
buildings a challenge. Consequently, the choosing of the optimal method of the repairing the historical
objects needs the approach which provides minimal disturbance to the original structure. The methods
of strengthening historical monuments are usually expensive and difficult to implement. Due to the
historical value of the object, issues relating to costs often become of secondary importance. In these
cases, economic optimization methods cannot be utilized and selecting the optimal intervention
methods to protect such facilities requires a non-standard approach.

A method of choosing the optimal solution for repairing historic construction is proposed in
this paper. This method has been applied to stabilize a historical retaining wall as a special case of
masonry structure. The authors narrate the history of the wall, based on historical, archaeological and
architectural evidence, which allowed them to establish the most probable explanation for construction
failure. Consequently, they propose and discuss several methods that could be applied to repair it.
The authors also consider the consequences of those with respect to conservative values, aesthetics of
the wall and the safety of its structure. In fact, it is an optimization procedure but under additional
conservation and aesthetic constrains. Because the retaining wall is built of brick and earthwork,
its reparation would involve intervention in both the brick and earth parts. This means that any
reinforcement of the wall beyond its current outline would necessitate archaeological excavations in
the areas of reinforcement. This choice requires profound knowledge of the properties of the historical
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wall and its foundations, as well as expertise in the methods of repairing and strengthening retaining
structures, slope stabilization methods and in computational analysis.

Interesting outlines of the construction of dry-stone retaining walls and the history of their design,
including stability analysis, are given in [19–22]. Reviews of methods applicable to the study of masonry
historical constructions are presented in [23–25]. Several reviews of analytical methods employed in
masonry are presented in [26–28] and the applicability of different numerical techniques to the analysis
of such structures is discussed, for example, by Lourenço et al. [29]. Various aspects of the history of
foundation engineering, with particular focus on its development, techniques applied, materials used
and analysis methods, are described in [20,30,31]. Several examples of historical foundations, as well as
past and contemporary preservation techniques, are also presented in the latter.

Buildings set on embankments pose a particular challenge and their structure should be
adequately protected. This is usually done by strengthening their foundations or the underlying
subsoil. Reinforced soil techniques are effective in strengthening historical buildings. There are
several methods used to protect slopes, such as retaining structures or soil stabilization techniques.
Some recommendations as to how they could be applied to historic retaining walls are given in [32,33].
The application of ground anchors is reviewed, for example, in [34–36]. The possible uses of relieving
shelves are outlined, among others, in [37,38] and those of CFA (continuous flight augering) piling
in [39]. The functioning of buttresses is reviewed in [40], while the utility of widening the wall base is
considered, for instance, in [41,42]. The applications of nailing are summarized in [35,43,44].

The aim of this paper is to propose a new quantitative criterion for selecting the optimal method
of securing and repairing a wall, which takes into account proper structural (technical), conservation
and aesthetic conditions. The analyses included here provide an innovative, never-before-used system
of assessments (the S–C–A method: Structure–Conservation–Architecture). Notably, this new method
may be implemented only as a result of an interdisciplinary analysis of the historical object, in which
specialists from different fields of science must cooperate. This approach can be applied to some other
cases and it should bring benefits to protect the authenticity of historical structures. The proposed
method was applied to the retaining wall in one of the most remarkable examples of historic military
engineering in the country and the entire Baltic Sea Region— the Wisłoujście Fortress in Gdańsk,
Poland. Several methods of structure stabilization were considered. For each of them, in order to
compute to determine the displacement of the wall and its stability, numerical analysis was carried out
by the two-dimensional explicit Finite Difference Method, using the FLAC2D software [45].

2. The Structure–Conservation–Architecture Methodology

The S–C–A (Structure–Conservation–Architecture) methodology has been developed by the
authors in order to determine the optimal technology to repair historic buildings. The idea of comparing
factors from different fields of knowledge (engineering, architecture, conservation) was based on the
theory of sustainable development that was invented for keeping the balance between economic,
social (including cultural) and environmental costs of “progress”. It must be mentioned that current
literature about cultural heritage in the context of sustainability is focused on landscape values, transport
or touristic traffic issues [46], underestimating the relations between economic pressure and preserving
the authenticity of the monument. Therefore, the presented new S-C-A method is focused on preparing
a list of proposed technologies and evaluating the influence on the authentic substance, structure and
aesthetics of the monument. Comparing such different fields of heritage protection is possible thanks to
implementation of numerical factors, which allows evaluation of the grade of intervention in historical
substance of historic objects and their neighborhood. Although numerical evaluation could never
fully replace interdisciplinary analysis, it might be helpful for the decision makers (e.g., officials in
heritage office) in choosing the optimal technology in relatively straightforward cases.

The final evaluation (Ee) of each method assessed is determined by the formula:

Ee = mr ×ms ×mc ×ma (1)
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where:

mr—risk factor;
ms—structural score;
mc—conservation assessment;
ma—architectural score.

Risk factor (mr) depends on geotechnical and hydrological conditions, quality of drilling machines,
qualities and experience of the drill operators and reliability of the applied reinforcement technology.
Its maximum value is 1.0. In order to save space, the risk evaluation has been skipped in this case
(in the paper).

The structural score (ms) must be assigned to a failure mode. Generally, depending on the structural
element, different mechanisms of destruction can take place. However, the most important is the
critical one. In the case considered, the wall deflection was assumed as the critical one. The structural
score is calculated by the formula:

ms = (−0.1u + 1.5) (2)

where: ms—structural score, represents effectiveness of stabilization methods compared to displacement;
u—displacement (cm).

The structural score (ms) was based on the Polish Standards [47], which rate the effectiveness of a
given method on a scale from 0 to 1; value ms = 1 corresponds to full safety. Normal wall deflection
should be no larger than 0.6 cm/m, which means that umax = 5.0 cm for the entire height of the wall.
It was assumed that this value corresponds to 100% safety (ms = 1). The current wall deflection
(about 15 cm) corresponds to the emergency condition, i.e., 0% safety (ms = 0).

The conservation assessment (mc) is defined as the preservation degree of the authenticity of
monuments by the following formula:

mc =
(
1−

Vwd
Vw

)
×

(
1−

Vsd
Vs

)
(3)

where:

Vwd —volume of disturbed authentic historic wall;
Vw —volume of authentic historic wall;
Vsd—volume of disturbed authentic soil covering the wall;
Vs—volume of authentic soil covering the wall in impact area.

The preservation degree of the authenticity of monuments is determined by the average of two
values, in line with Formula (3). The first value (Vwd/Vw) is a ratio of volume Vwd of disturbed authentic
historic wall altered by the application of a given technology (e.g., borehole) to the total volume Vw of
authentic historic wall. The second (Vsd/Vs) is the ratio of the volume of disturbed authentic soil
covering the wall Vsd by applied technology or archeological excavation to the volume of authentic
soil Vs. Because the reversibility of the materials is almost always contrary to the protection of the
historical substance (instead of the shape), the authors decided that the spatial indicators illustrating
the transformation of the original monuments should be an adequate method of describing the scale of
changes. Moreover, they might be easily adopted in the proposed formula.

The architectural (ma) score is based on the degree of the covered surface by the new designed
structural solution to the total wall surface described by the formula:

ma =
(
1−

Ad
At

)
(4)

where:

Ad—covered surface of the wall or/and its neighboring area;
At—total surface area of the wall above the ground.
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The surface covered by the new designed structural solution is determined by the scale of the
impact on the area around the monument, in line with Formula (4). The value (Ad/At) is a ratio of
the covered surface area Ad of the wall (or its neighboring area) altered by the application of a given
technology (e.g., scaffolding) to the total surface area At of the wall above the ground.

The authors decided to scope their research to a single case study because they wanted to build
a comparable evidence base of popular repairing techniques. That is the reason why the authors
avoided analyzing the repairs in different monuments, which always was based on individual studies.
Although such a strategy would have been preferable in most heritage studies, it does not allow for
testing the S–C–A method. Therefore, the methodology described above was applied in the evaluation
of the repair technique of the retaining wall in the Wisłoujście Fortress.

3. Research Object

The Wisłoujście Fortress (Figure 1) is an example of well-preserved fortification and hydrotechnical
engineering from the Middle Ages and early Modern Era. The President of the Republic of Poland
decided in 2018 to award this monument the highest level of protection by including it on the Polish
Heritage List as a “Historic Monument” [48].
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ground, the building mentioned was covered by a steep roof reaching over the curtain wall. This was 
probably the reason why this construction was demolished in early 19th century, either during the 
Napoleonic Wars, when the fortress was besieged twice in 1807 and 1813, or shortly after. The 
northern part of the demolished building was turned into the retaining wall, although it had never 
been designed for that purpose (Figure 2). In the second half of the 19th century, when military 
authorities decided to strengthen the structure of the Fortress, an external layer of bricks was added 
to the wall. It also became necessary to build a buttress of the wall which was situated by the west 
side of the demolished building. The next alterations or works were not conducted in the area of the 

Figure 1. The aerial photo of the Wisłoujście Fortress in Gdańsk, Poland (2019).

The retaining wall—the main subject of this paper—was primarily built as a part of another
structure, the lieutenant’s quarter, used later as an auxiliary building [49]. The ground-floor building,
erected on a rectangular plan, was situated by the northern curtain wall of the Fort Carré in the first
half of 17th century.

Unlike the main barracks, which were located in the eastern wall of the fort and covered by
ground, the building mentioned was covered by a steep roof reaching over the curtain wall. This was
probably the reason why this construction was demolished in early 19th century, either during the
Napoleonic Wars, when the fortress was besieged twice in 1807 and 1813, or shortly after. The northern
part of the demolished building was turned into the retaining wall, although it had never been designed
for that purpose (Figure 2). In the second half of the 19th century, when military authorities decided
to strengthen the structure of the Fortress, an external layer of bricks was added to the wall. It also
became necessary to build a buttress of the wall which was situated by the west side of the demolished
building. The next alterations or works were not conducted in the area of the retaining wall until
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the removal of neglected greenery in the 1990s. It is likely that the use of heavy machines made it
necessary for the deflected wall to be subsequently supported by two wooden buttresses.
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Figure 2. Sections through the auxiliary building and the retaining wall in the Wisłoujście Fortress.
The schemes of transformations.

The alterations to the wall described above contributed to its current state of deformation.
It is evident that no basic stability requirements for such wall—neither overturning about its toe nor
sliding along its base—are met (Figure 3C). However, after demolition of the auxiliary building at the
beginning of the 19th century, the retaining wall did not collapse. The actual stability is a result of
the combination of the following: (1) the spatial rigidity of the wall’s structure due to its irregular
shape (Figure 1), (2) adding of the buttress which supported the wall and (3) the real active pressure
decreased due to the wall deformation that had already occurred in the past.
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Figure 3. The retaining wall after its repairs from the second half of the 19th century: (A). The interface
between the original wall and the 19th century siding layer, (B). Current geometry of the wall,
(C). Scheme of water circulation in the wall.

The impact of greenery might be considered as another hypothetical reason for the deflection of
the wall. There were wild bushes growing on top of the curtain wall, which might have caused some
structural failure [50,51]. Although the whole construction was kept in good condition until the 1930s,
the greenery was not pruned after the Second World War. In any case, the excavations in 2016 did not
confirm whether the roots could have harmed the retaining wall.

Because the wall did, in fact, resist earth pressure for about 130 years, numerous vertical cracks
have appeared on the surface of the wall, approximately within 0.5–2.3 m from each other (Figure 4).
There is also surface freeze–thaw cycle damage visible on the wall, which could, to an untrained
eye, look like cracks. Since the second half of the 19th century, two significant series of repairs have
been carried out. The first was the addition of a 25 cm-thick brick siding layer and the second one
was a buttress. The new facing (Figure 3A,B and Figure 5) was added without re-walling, which,
paradoxically, led to deterioration of masonry over time: a crevice that developed between the new
and old walls collected water (Figure 4). At low temperatures, the water froze, bursting the wall and
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causing bulges in its upper part (150 cm from the top of the wall), which increased its deviation from
the vertical (see Figure 3). In 2016, the deviation from plumb amounted to approximately 15 cm.
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In conclusion, the primary reason for structural failure of the wall is associated with its structural
characteristics (Figure 4). However, some cracks observed nowadays may have developed accidentally,
due to pressure increase during the removal of greenery. Finally, the retaining wall had lost its stability
in the past and had to be strengthened by the temporary wooden buttress (Figure 4A). Therefore,
it is impossible to confirm whether the inclination has stopped or it is still increasing.
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4. Stabilization Methods

Five different methods of stabilization have been considered and are briefly discussed below.

4.1. Natural State

No intervention (Figure 5a); the condition and appearance of the wall will not change. A measured
and calculated deflection of 15.0 cm means that there is a high probability of a construction disaster.

4.2. Relieving Shelf

The relieving shelf is a slab 1.8 m long and 0.3 m thick, inserted 2.0 m below the ground
surface. The shelf is anchored to the wall (Figure 5b) and reduces soil pressure. The reinforcement
is laid in a previously prepared excavation, nested in the wall and then poured over with concrete.
Finally, the excavation is filled up with soil. Making a groove in the wall destroys the structure of the
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wall on the invisible side and requires digging a ditch in the rampart. Furthermore, archaeological
excavations should be carried out before making the shelf. After the works have been completed,
the alterations will be invisible. The technology is simple, easy to apply and inexpensive. The only
technical difficulty is connecting the relieving shelf to the wall.

4.3. Passive Anchors (Nails)

Installation of passive anchors requires drilling through the wall (Figure 5c). Each borehole is
then filled with a cement paste. The anchor itself, in the form of a steel bar with a diameter of 6 cm and
a length of 3.6 m, is cemented inside the hole. The hole has a diameter of 10 cm. The spacing between
the anchors is 3.0 m. Drilling disturbs the original structure of the wall, leaves the head in its outer face
and changes the structure of unexamined (not yet excavated) soil, which might have archeological
value. The effect of anchoring on the appearance of the wall will be minimized by masking the anchors
under a siding layer or by using eight masking plates. Adding an inappropriate, disproportionate or
aesthetically unpleasant feature may affect the visual assessment. Due to the control of the anchor
installation, this method is very safe and effective.

4.4. CFA Piles

This method involves making a palisade of reinforced concrete piles approximately 1.5 m behind
the wall (Figure 5d). The palisade decreases the soil pressure on the structure. Piles with a diameter of
0.40 m and a length of 7.0 m are spaced every 0.50 m. The piles themselves do not alter the structure
of the wall but the insertion procedure disturbs the soil by drilling, stirring and pulling it to the
surface when the drill bit is removed. Furthermore, if the drill bit encounters an object larger than its
diameter, the object will be drilled through or pushed aside. This technology can cause an additional
bulging of the wall resulting from the operation of the drill and the weight of the drilling machine.
For these reasons, a temporary support of the wall should be put in place for the duration of the drilling.
The piles will not be visible. There is a risk of damaging the wall during the installation of the piles.

4.5. Jet Grouting

This method is about reinforcing soil under the existing foundation of the wall by injection of
cement paste at a very high pressure. The dimensions of the reinforced foundation are 0.80 × 2.30 m
(Figure 5e). This technology does not damage the original surface of the wall as it affects only the
soil under the wall foundation. In order to conduct archaeological excavations safely, it would
be necessary to dig up the soil along successive sections of the wall, on its both sides. This is,
however, hardly practicable as it involves extensive intervention in the ramparts, which remain under
archaeological protection. The entire procedure is, therefore, costly. For these reasons, it was assumed
that the excavations would be carried out in front of and under the wall (see Figure 5e). The changes
will be invisible.

4.6. Buttress

The buttress supporting the wall has the following dimensions: 0.65 m × 0.45 m × 3.0 m
(thickness ×width × height); the buttress reaches 1.1 m deep into the ground. It is the oldest reinforcement
method applied to retaining walls and it involves making a brick buttress, which counteracts both soil
pressure and tilting of the wall (Figure 5f). Seven buttresses (one already exists) supporting the wall
will affect its original structure over the surface area. The soil down to the buttress foundation needs
to be examined so that excavations can be performed before bricklaying. The excavation for each of
the buttresses will have a depth of 1.0 m and a surface area of 1.5 × 1.5 m. The new foundations will
have dimensions of 0.5 × 0.65 × 0.45 m. Technology makes it possible to determine the dimensions of
buttresses that would be sufficient to prevent the wall from further tilting.
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5. Numerical Analysis

The purpose of the numerical analysis was to determine the effectiveness of the selected methods
in strengthening and stabilizing the wall. The analysis was performed by the two-dimensional explicit
Finite Difference Method (FD), using the FLAC2D software [45]. This method is an accurate and
versatile approach to the analysis of both stability and displacement of retaining walls. It allows
for calculating the field of displacement both in the soil mass and in the engineering structures,
which are considered as appropriate for the stabilization and strengthening of the wall. Its stability
was assessed based on the safety factor F, which is calculated using strength reduction technique
fundamentals. The additional advantage of the proposed method is that it makes no assumptions about
the failure mechanism—especially for simple geometry. In contrast to the traditional “limit equilibrium”
analysis, this method provides a full solution to the coupled stress/displacement, equilibrium and
constitutive equations. The calculations were based on the so-called “strength reduction technique” [52].
Geotechnical studies [53] have shown that the groundwater level is currently 2.0 meters below the base
of the wall foundation. The substratum is composed mainly of fine and medium sand (Figure 6A),
and the earthwork that loads the retaining wall consists of fine sand and brick debris. The soil density
index in the rampart body (ID) is 0.2. Table 1 presents the parameters of soil layers in the calculation
model. The diversity of soils in the Ia-Id layers results from their different degrees of compaction,
ranging from 0.30 for the layer Ia to 0.70 for the layer Id. On the basis of laboratory tests, the average
compressive strength of old bricks was determined to be equal to 15.8 MPa, mortar equal to 0.75 MPa
and new ones (from external wall)—equal to 34.1 MPa and 19.3 MPa [52].
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First, the current original state of the wall was examined by the “back analysis” method,
i.e., the variant without wall stabilizing measures. The aim was to determine the values of strength
parameters (cohesion and angle of internal friction of the soil constituting the earthwork that puts
pressure against the wall), for which the measured and calculated displacements of the wall crown
would be the same. It means that, by contrast to other parameters determined in the tests, these two
strength parameters (i.e., cohesion and angle of friction) are found at the base of calculations using a
“trial and error” approach and FLAC2D code. A numerical model and displacement vectors are shown
in Figure 6. Calculated maximum displacement (u) of the wall’s crown was equal to 15.21 cm.

The values of wall crown displacements were obtained by numerical calculations in all the cases,
which made it possible to identify the methods meeting the criterion umax = 5 cm. Table 2 provides the
maximum calculated displacement values for the stabilization methods assessed in the analysis.
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Table 1. The parameters of soils and construction materials derived from ref. [PN-81/B-03020].

Soil, Material Unit Weight
(kN/m3)

Shear Elasticity
Modulus G (MPa)

Bulk Elasticity
Modulus K (MPa)

Cohesion
c (kPa)

Angle of
Friction (◦)

Brick wall 18.0 192.3 416.7 0 33
Embankment 18.0 98.0 21.25 0 25

Soil in the earthwork ID = 0.20 18.0 19.23 41.67 0.31 26
Layer Ia (fine and medium sand),

ID = 0.30 (*) 18.0 15.38 33.33 0 29

Layer Ib (fine and medium sand),
ID = 0.40 18.5 23.85 44.17 0 30

Layer Ic (fine and medium sand),
ID = 0.50 19.0 20.38 51.67 0 30.5

Layer Id (fine and medium sand),
ID = 0.60 19.5 28.85 62.5 0 31

Layer Ie (fine and medium sand),
ID = 0.70 20.0 32.7 70.8 0 31.5

Buttress (brick) 18.0 102.2 222.2 667 21.8

(*) ID means soil density index.

Table 2. Maximum displacement for the wall stabilization methods analyzed.

Lp. State umax (cm)

0 Natural state 15.21
1 Relieving shelf 3.16
2 Passive anchors 1.27
3 CFA piles 5.28
4 Jet grouting 2.42
5 Buttresses 0.76

On the basis of the results summarized in Table 2, the considered stabilization options can be
ranked. The diagrams (models) of particular stabilization methods are also presented, including the
current (natural) state of the wall.

It should be noted that no experimental verification of the calculation results regarding the
influence of each stabilization method is currently possible; no stabilization works were completed
so far. Nevertheless, given the carefully determined parameters of the soil and the wall materials in
combination with the characteristics of the advanced numerical tool that is the FLAC2D algorithm,
the calculation results in all variants are reliable and represent both physical qualities and behavior
of the object accurately. The fields of stress and displacement express, precisely, the influence of all
stabilization measures and methods. As it can be seen in Table 2, buttress support turned out to be
the most effective stabilization countermeasure. In all stabilization cases, the maximum displacement
is significantly lower (in the case of buttresses, by even more than 20 times) in comparison with the
displacement of the original wall. It proves the high potential effectiveness of any stabilization method.

The relationship between the calculated displacement of the wall’s crown and the structural score
calculated by (Formula (2)) is presented graphically in Figure 7.

It is seen in Figure 7 that the calculated displacement of the wall’s crown in the case of the relieving
shelf is 3.16 cm and corresponds to 18.4% above the required level of safety, whereas the displacement
of the wall’s crown for buttress is 0.76 cm and corresponds to 42.2% above the required level of security
and so on.
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6. Evaluation of the S–C–A Method

The partial and final results of the S–C–A methodology are summarized in Table 3. There are also
relevant volume or area values included here, appearing in Formulas (3) and (4), as well as particular,
individual assessments. The presented data allow comparing the results which were achieved for three
different fields of heritage protection: structural, conservational and aesthetical.

Table 3. Comparison of the impact of conservational, architectural and structural conditions on the
assessment of the wall stabilization technology.

u Vwd Vw Vsd Vs Ad At mc ma mr ms Ee
(cm) (m3) (m3) (m3) (m3) (m2) (m2) (-) (-) (-) (-) (-)

1. Natural state 15.00 0.00 95.53 0.00 311.25 0.00 84.5 1.000 1.000 1.0 0.000 0.000
2. Relieving shelf 3.16 1.91 95.53 123.71 311.25 0.00 84.5 0.590 1.000 1.0 1.184 0.699
3. Passive anchors 1.27 0.06 95.53 82.80 311.25 0.09 84.5 0.733 0.999 1.0 1.373 1.006

4. CFA piles 5.28 0.00 95.53 21.99 311.25 0.00 84.5 0.929 1.000 1.0 0.972 0.903
5. Jet grouting 2.42 0.00 95.53 95.98 311.25 0.00 84.5 0.692 1.000 1.0 1.258 0.870

6. Buttress 0.76 0.00 95.53 13.50 311.25 14.6 84.5 0.957 0.828 1.0 1.424 1.128

According to the structural aspect (ms), it is proved that the best methods of repairing historical
wall are buttress, passive anchors and jet grouting. However, some of them may cause too much
integration in the authenticity of the monument, which degrades its heritage value. In spite of
the constructional advantages, jet grouting and relieving shelf are the least acceptable methods of
stabilization because of the scale of integration in the historical substance of the wall (see Table 3).
It impacts the final evaluation (Ee). It is worth noting that buttresses achieved relatively the worst
score in the ranking of aesthetic values (ma) but were the mostly accepted method of strengthening
the historic construction in previous eras. What is more, a similar structure was erected for the
analyzed wall in the 19th century and its impact on the authenticity of the monument was very limited.
On the other hand, minimizing the space between new buttresses may cause deterioration of the
aesthetical factor.

The S–C–A method allows for understanding how different modes of repairing the historic
construction may influence its protection. Consequently, there is no one proper method of strengthening
the wall because each of them devastate some part of it. Comparison of each partial score shows that
the optimal method is strengthening the wall with buttresses, but passive anchors are acceptable as well.
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The highest ranking achieved by this method resulted, for the most part, from its high structural (ms)
and conservation (mc) score, due to the most favorable ratio of the volume of disturbed soil (Vsd) to the
volume of the authentic soil (Vw) covering the wall. The second and fourth column of Table 3 represent
the values of the altered surface area of the wall and the volume of soil to be excavated for each of the
assessed methods. The conservational, structural and, particularly, architectural assessments presented
in the eighth, ninth and eleventh column of the table are objective. Subsequent columns show the
results of calculations assuming different values of impact factors representing the relative importance
ascribed to the conservational, structural and architectural aspects.

It seems that the highest value of the risk factor mr corresponds to the relieving shelf and the
lowest mr corresponds to jet grouting. However, this factor should be evaluated on the basis of more
precise research, which is not the subject of this paper. In the following calculations, the risk factor
mr = 1.0 is assumed.

Some disadvantages of certain technologies should be mentioned as well. In the case of CFA piles,
a problem may arise from the limited access of the drilling machine, whose weight, depending on the
model, ranges between 8 and 20 t. It is therefore necessary to check and secure the route of the machine
to the working zone and to evaluate the wall conditions during its operation. Additional pressure on
the soil resulting from drilling is another difficulty associated with the use of CFA piles. A disadvantage
of jet grouting is the risk of collapse of the grouted zone, caused by a low strength of the mixture
of organic soil and cement mass. It is vital to use appropriate pressure and density of the injected
mixture; incorrect selection of these quantities may result in the formation of voids. Furthermore,
a large amount of liquid spoil created during jet grouting has a negative impact on the quality and
aesthetics of the construction site. Finally, the relatively large spacing (3 m) of buttresses can be an
issue: the zones between them lack any stabilizing element, so the wall sections between the buttresses
may still become unstable.

7. Conclusions

The authenticity of historical buildings is thought to be so precious because when once destroyed,
they will never be reconstructed. Thus, material heritage could be treated as a non-renewable resource.
Finding the right balance between keeping monuments intact and present necessities is, however,
an open question. Seeking the proportions between factors determined by different fields of science
makes the S–C–A method resemble the theory of sustainable development. Legal framework requires
an administrative act—a decision by conservation officers who must take into account conservational,
architectural and structural factors. Sometimes, the authorities seek help from experts, but in the
end, the decision is theirs, and as a consequence, the outcomes vary due to differences in the officers’
knowledge and experience. Therefore, the proposed method might be applied to improve the
relations between stakeholders involved in repairing the historical structures (engineers, architects and
conservation officers). It would help not only in the communication process but also in preselecting
the best solutions. Although the authors are aware of the significance of personal expertise, there is
a need for a more verifiable approach, an evidence-based method for evaluation of interventions in
historical structures.

That is the reason why this paper’s focus is on the retaining wall instead of the entire Fort
Carré or group of different monuments. As the authors proved, the wall is representative of the
practical problems that typically arise with monument conservation. Even though the different
methods of stabilizing walls could be ranked (Table 3), selection of the most appropriate one might be
challenging. This is mainly because the final conservation assessment and, above all, the architectural
(aesthetic) assessment are, to some degree, subjective, even if quantified (mc; ma). In contrast
to the strictly objective structural assessment—based on the displacement criterion—they rely on
non-measurable criteria, such as the quality of expertise and experience of the actors involved.
In addition, certain solutions may encounter resistance from a conservation officer, who may have
limited knowledge of engineering technologies. Nevertheless, the approach proposed in this paper may
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serve—at least in some cases—as an auxiliary tool in decision-making. Optimization of stabilization
systems in the protection of cultural heritage must meet additional requirements, such as conservation
and/or aesthetic (architectural) ones. Before they are used in the optimization procedure, they should
be subjected to a quantitative, possibly objective, assessment. The issues pertaining to the costs of
renovation of historical buildings are of secondary importance. In these cases, classic, i.e., structural or
economic, optimization needs to be significantly modified.

The proposed S–C–A method has been checked in the case of the retaining wall and, undoubtedly,
needs more complex tests in further research. This paper, however, aimed to present a new
proposition about the multi-criteria technique of selecting the solution of repairing basic monuments.
Although professional interdisciplinary research into historical buildings must be undertaken in all
instances of emergency engineering interventions before designing an actual solution could even
commence, the presented algorithm might be useful for engineers in choosing the best variant of repair,
and it helps in communication between different stakeholders.
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31. Przewłócki, J.; Dardzińska, I.; Świniański, J.; Przewłócki, I. Review of historical buildings’ foundations.
Géotechnique 2005, 55, 363–372. [CrossRef]

32. Hagerty, D.J.; Nofal, M.M. Design aids: Anchored bulkheads in sand. Can. Geotech. J. 1992, 29, 789–795.
[CrossRef]

33. Jones, C.J.F.P. The maintenance of old masonry retaining walls. In Proceedings of the Conference Retaining
Structures, Cambridge, UK, 20–23 July 1992; pp. 780–789.

34. Jeong, S.; Seo, D. Analysis of tieback walls using proposed P–y curves for coupled soil springs. Comput. Geotech.
2004, 31, 443–456. [CrossRef]

35. Juran, I.; Elias, V. Ground Anchors and Soil Nails in Retaining Structures. In Foundation Engineering Handbook;
Springer: Berlin/Heidelberg, Germany, 1991; pp. 868–906.

36. Simpson, B. Retaining structures: Displacement and design. Géotechnique 1992, 42, 541–576. [CrossRef]
37. Chauhan, V.B.; Dasaka, S.M. Performance of a Rigid Retaining Wall with Relief Shelves. J. Perform. Constr. Facil.

2018, 32, 04018021. [CrossRef]
38. Farouk, H. Retaining walls with relief shelves. Innov. Infrastruct. Solut. 2016, 1, 1–13. [CrossRef]
39. Leznicki, J.K.; Esrig, M.I.; Gaibrois, R.G. Loss of Ground during CFA Pile Installation in Inner Urban Areas.

J. Geotech. Eng. 1992, 118, 947–950. [CrossRef]
40. Ochsendorf, J.A.; Hernando, J.I.; Huerta, S. Collapse of Masonry Buttresses. J. Arch. Eng. 2004, 10, 88–97.

[CrossRef]
41. Briaud, J.-L.; Kim, N.-K. Beam-Column Method for Tieback Walls. J. Geotech. Geoenviron. Eng. 1998,

124, 67–79. [CrossRef]
42. Croce, P.; Flora, A.; Modoni, G. Jet Grouting: Technology. Design and Control; Taylor and Francis Group:

Oxfordshire, UK, 2014.
43. Gannon, J.A. Masonry retaining wall reconstruction and rock face stabilization using soil nails, masonry and

dowels. Geol. Soc. Lond. Eng. Geol. Spec. Publ. 1995, 10, 345–354. [CrossRef]

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0000222
http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0000421
http://dx.doi.org/10.1016/j.culher.2018.09.013
http://dx.doi.org/10.1680/geot.1975.25.3.433
http://dx.doi.org/10.1016/j.culher.2015.03.006
http://dx.doi.org/10.1002/pse.120
http://dx.doi.org/10.1007/s11831-010-9046-1
http://dx.doi.org/10.1016/S0141-0296(02)00033-0
http://dx.doi.org/10.1016/j.conbuildmat.2012.07.095
http://dx.doi.org/10.1016/j.engstruct.2010.10.010
http://dx.doi.org/10.1139/L07-097
http://dx.doi.org/10.1016/j.proeng.2016.08.575
http://dx.doi.org/10.1680/geot.2005.55.5.363
http://dx.doi.org/10.1139/t92-086
http://dx.doi.org/10.1016/j.compgeo.2004.05.003
http://dx.doi.org/10.1680/geot.1992.42.4.541
http://dx.doi.org/10.1061/(ASCE)CF.1943-5509.0001161
http://dx.doi.org/10.1007/s41062-016-0007-x
http://dx.doi.org/10.1061/(ASCE)0733-9410(1992)118:6(947)
http://dx.doi.org/10.1061/(ASCE)1076-0431(2004)10:3(88)
http://dx.doi.org/10.1061/(ASCE)1090-0241(1998)124:1(67)
http://dx.doi.org/10.1144/GSL.ENG.1995.010.01.30
http://mostwiedzy.pl


Sustainability 2020, 12, 8570 16 of 16

44. Kulczykowski, M.; Przewłócki, J.; Konarzewska, B. Application of Soil Nailing Technique for Protection and
Preservation Historical Buildings. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 22055. [CrossRef]

45. Itasca Consulting Group (Ed.) FLAC 4.0. User’s Manual; Itasca Consulting Group: Minneapolis, MN, USA, 2000.
46. Wang, S.; Jiang, Y.; Xu, Y.; Zhang, L.; Li, X.; Zhu, L. Sustainability of Historical Heritage: The Conservation of

the Xi’an City Wall. Sustainability 2019, 11, 740. [CrossRef]
47. Polish Committee for Standardization. PN-81/B-03020, Construction Soil—Shallow Foundations—Static

Calculations and Design; Polish Committee for Standardization: Warsaw, Poland, 1981. (In Polish)
48. Act No. 1008 of the President of Poland from 20 April 2018. Available online: https://dziennikustaw.gov.pl/

D2018000100801.pdf (accessed on 25 May 2018).
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