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Abstract: Satellite imaging systems have known limita-
tions regarding their spatial and temporal resolution. The
approaches based on subpixel mapping of the Earth’s en-5
vironment, which rely on combining the data retrieved
from sensors of higher temporal and lower spatial reso-
lution with the data characterized by lower temporal but
higher spatial resolution, are of considerable interest. The
paper presents the downscaling process of the land sur-10
face temperature (LST) derived from low resolution im-
agery acquired by the Advanced Very High Resolution Ra-
diometer (AVHRR), using the inverse technique. The effec-
tive emissivity derived from another data source is used
as a quantity describing thermal properties of the terrain15
in higher resolution, and allows the downsampling of low
spatial resolution LST images. The authors propose an op-
timized downscaling method formulated as the inverse
problem and show that the proposed approach yields bet-
ter results than the use of other downsampling methods.20
The proposed method aims to find estimation of high spa-
tial resolution LST data by minimizing the global error of
the downscaling. In particular, for the investigated region
of the Gulf of Gdańsk, the RMSE between the AVHRR im-
age downscaled by the proposed method and the Landsat25
8 LST reference image was 2.255∘C with correlation coeffi-
cient R equal to 0.828 and Bias = 0.557∘C. For comparison,
using the PBIM method, it was obtained RMSE = 2.832∘C,
R = 0.775 and Bias = 0.997∘C for the same satellite scene.
It also has been shown that the obtained results are also30
good in local scale and can be used for areasmuch smaller
than the entire satellite imagery scene, depicting diverse
biophysical conditions. Specifically, for the analyzed set
of small sub-datasets of the whole scene, the obtained
RSME between the downscaled and reference image was35
smaller, by approx. 0.53∘C on average, in the case of ap-
plying the proposed method than in the case of using the
PBIM method.

Keywords: inverse problem, LST, Landsat, AVHRR, down-
scaling, multi-resolution, Tikhonov regularization, Gulf of 40
Gdańsk

1 Introduction
Remote multispectral sensing is an important tool for en-
vironment monitoring that has several applications in in-
dustry and science. Particularly, satellite thermal-infrared 45
observations (TIR) are of high importance as they allow
for observing and analyzing several physical and other
phenomena that take place in the Earth’s environment,
namely air-soil heat fluxes, atmospheric processes and
vegetation changes, radiation processes, evapotranspira- 50
tion and other phenomena in global, regional and local
scales.

When taking the data quality and its applications into
account, several criteria can be considered, such as spa-
tial resolution, time resolution (the revisit time), data accu- 55
racy, spectral resolution, etc. Due to technical constraints,
it may be said that each Earth observation satellite sys-
tem is a kind of a compromise between several criteria
mentioned above. In order to reduce the drawbacks of low
quality of a particular sensor in one aspect, other sensors 60
can fill the gap in another aspect in order to provide the
most comprehensive overviewon theEarth’s environment.
Thus, low spatial resolution meteorological satellites pro-
vide global information on the state of the atmosphere and
are characterized by a relatively short revisit time. Others, 65
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such as LANDSAT or Sentinel-2, are used mainly for high
resolution land monitoring. Since the spatial and tempo-
ral resolution of TIR imaging systems are negatively cor-
related, an approach based on subpixel mapping of the
Earth’s environment is of high interest.5

Subpixel mapping relies on combining the data re-
trieved from sensors at different spatial and time reso-
lution in order to generate products which would com-
bine the advantages of products that they have been gen-
erated from. The retrieved datasets are a combination of10
high spatial resolution imagery with datasets character-
ized by lower spatial resolution but being more frequently
registered. The combination of both sources yields a new
quality in observation products because the data is fre-
quently delivered and has higher spatial resolution. As a15
consequence, this enables the potential use of low res-
olution thermal datasets in observing phenomena at a
higher scale, such as microclimate studies, human activi-
ties monitoring, urban heat island effects observations [1],
urban and peri-urban areas canopy characterization or lo-20
cal water containers quality monitoring [2, 3]. Moreover, it
enables for better understanding of and identifying pro-
cesses of urban and sub-urban heat balance and better
characterization of urban microclimate changes [4].

Despite the long history of available LST generated25
from space-borne observations, recent activities aiming to
remove barriers related to low resolution observations are
of considerable interest. There are several approaches in
the literature that aim to construct synergistic methods ex-
ploiting information from time- and spatial- multiresolu-30
tion datasets in order to retrieve the sub-scale spatial in-
formation about an observed area. For instance, Kustas
et al. [5] proposed a coarse resolution temperature disag-
gregation method based on vegetation indices and sur-
face radiometric temperature validated by a sensing-based35
energy balance model over US Southern Great Planes. G.
Yang [6] proposed amethodof imagery downscalingbased
on endmember function remote sensing indices calculated
from the reflectivity data of ASTERVNIR/SWIRwavebands
and land cover types database, processed with the ge-40
netic algorithm and self-organizing feature map artificial
neural network (GA-SOFM-ANN) for heterogeneous area
of Changping District, located on the northeast of Beijing
City, China. Many approaches are also focused on urban
areaLSTdownscaling likeM. Stathopoulou [7],who sharp-45
ened AVHRR thermal images and derived daily LST of 250-
m spatial resolution for four cities in Greece, or Mitraka
et al. [8], who focused on urban and suburban areas of
Heraklion, Greece. Also, Bechtel et al. [9] downscaled SE-
VIRI data by a factor of two for monitoring UHI in Ham-50
burg, Germany, while Keramitsoglou et al. [10] tested dif-

ferent regression algorithms for the same purpose over the
area of Athens, Greece. Other approaches rely on estimat-
ing high resolution features directly by models that have
been trained on, or calibrated to training datasets [11–14], 55
or on utilizing soft-classification procedures to estimate
the degree of membership of each pixel with respect to
each of the end-member classes. Methods that rely on us-
ing artificial neural networks [15], fuzzy classifiers [16–18],
or Adaptive Subpixel Mapping Based on a Multiagent Sys- 60
tem [19] can be also found in the literature.

The approach [13] that uses a linear mixture model
based on the assumption that the spectral response xk of
a pixel k is a linear weighted sum of spectral responses of
its component classes expressed by:

xk = M · f + e, (1)

whereM is a q by cmatrix in which q represents the num-
ber of wavebands and c the number of classes, the term f
represents a vector, of length c, that expresses the propor-
tional coverage of the classes in the area represented by a 65
pixel, and e is a term that represents the vector of errors,
is to some extent most similar to our methodology. The
columns of the matrix M are end-member spectra, essen-
tially the characteristic spectral responses of the classes.

However, in our study we do not use a set of spectral 70
responses for high resolution pixels, but instead we uti-
lize a sub-sampling kernel retrieved from a high resolu-
tion scene that describes quasi-stable radiometric proper-
ties of the land surface, namely, the effective emissivity de-
rived from the land cover map type and vegetation index 75
in the form of fractional vegetation cover (FVC). In particu-
lar,weassume that estimationof LSThigh resolution value
should be donewith taking into account the local effective
emissivity high resolution value, but not necessarily with
an assumption of the global linear dependency between 80
emissivity and LST like in the PBIM method [20] (subsec-
tion 2.2), as suggested by Jiang and Islam [21, 22]. Instead,
we introduce and estimate a vector of weights that permits
more flexible, and adjusted to local conditions, modeling
of dependency between emissivity and LST. This vector of 85
weights is estimated by the so-called inverse downscaling
process using the inverse problem approach and utilizing
the Tikhonov regularization method.

The proposed algorithm generates a land surface tem-
perature product characterized by high spatial resolution 90
(≈ 100 m) derived from AVHRR imagery, thus having in-
creased revisit frequency. The proposed approach relies
on finding an optimal dataset that minimizes differences
between the generated downscaled product and original
low resolution scene (≈ 1.1 km at nadir). The validation of 95
the process is based on comparing the generated down-
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scaled product 100 m high resolution image to Landsat
8 TIRS 100 m LST products registered at the same time.
The proposed approach can be applied operationally since
the inverse problem approach finds an optimal solution to
the problem, in the sense of the mean-square error (MSE).5
However, operational application of the method requires
the prior, detailed analysis of its performance applied on
specific region and data, therefore, The proposed algo-
rithms of downscaling were tested and verified for the
coastal zone of the Gulf of Gdańsk, Southern Baltic, area10
of Europe.

Placing the proposed approach in the context of the
existing solutions of the mentioned problem, it may be
noted that most of the downscaling techniques used uti-
lize a quasi-optimal assumption of dependence between15
the high resolution kernel (i.e. effective emissivity) and
land surface temperature. This dependence is usually
computed on the basis of radiative transfer models, is de-
termined empirically or calculated with the use of neural
networks [23] or fuzzy logic computing schemes. Because20
of the issues mentioned above, most of the approaches
presented in the literature are not self-adaptive because
they require additional information retrieved from exter-
nalmodels.What ismore, regarding the approaches based
on soft computing techniques, like neural networks or25
fuzzy logic, a computational model used in such cases
to calculate the given quantity for fine scale pixels in the
course of the downscaling process, is to large extent arbi-
trary and may not correspond to the physics of the under-
lying phenomena.30

The advantage of the proposed method over the exist-
ing approaches is that it finds an optimal solution to the
stated problem. In order to present the advantages of the
proposed approach, we have compared the obtained re-
sults with those achieved using one of the most popular35
methods - namely the PBIM.

2 Problem formulation and solution
concept

2.1 Downscaling theory

Downscaling is the process of converting a set of spatial40
information (e.g. 2- or 3-dimensional) from a low to a high
resolution. In the context of LST estimation based on satel-
lite imagery, downscaling refers to estimation of LST val-
ueswithin the sub-pixel area. Inpractice, in order todown-
scale a satellite image, thus improving its spatial resolu-45
tion, the approach ofmerging at least two datasets is used;

a low resolution image is merged to a high resolution im-
age (from the same or different sensor), or a low resolu-
tion image obtains spatial details of a high resolution im-
age [24, 25]. 50

According to the downscaling principles, the pro-
posed approach assumes to retain radiometric character-
istics of input images and aims to minimize the error. Let
us assume two input data sources - such that both sources
represent acquisition over the same area, and that a phys- 55
ical quantity they measure is comparable, i.e. they mea-
sure the samequantity in the sameunits (energy, radiance,
temperature, etc.). Another point in the methodology is
the definition of relation between twodata sources that en-
ables transformation from one source domain to another. 60
Both sources have different but spatially constant resolu-
tion (Fig. 1).

Figure 1: Diagram representing the relation between the spatial dis-
tribution of measured quantity in high resolution and low resolution

Let us assume that for a given flat area, correspond-
ing to a pixel in coarser resolution, the value of measured
quantity is the weighted average of this quantity for all
subareas corresponding to pixels in finer resolution con-
tained by the coarse resolution pixel area. It is mathemat-
ically expressed as:

Tlow =
N∑︁
n=1

T(n)high
s(n)
S (2)

where

S =
N∑︁
n=1

s(n) (3)

where
Tlow - is the value of the pixel in coarse resolution,
T(n)high - is the value of then-th pixel in high resolution image 65
belonging to the mentioned high pixel resolution area,
s(n) - is the area of the given pixel in high resolution,
S - is the area of a single pixel in coarse resolution,
N - is the number of pixels in high resolution imagery that

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


4 | Andrzej Chybicki and Zbigniew Łubniewski

are contained in the corresponding pixel of low resolution
image.

In general, N depends on the ratio of data sources’
spatial resolution taken under consideration andmay also
depend on the number of high resolution pixels being ex-5
cluded from the analysis for a given low resolution pixel
due to cloud presence and other limitations.

The dependency mentioned above enables transfor-
mation between the high and low scale. However, as the
transformation of pixel values from the high to low scale10
results in the loss of information, the reverse transforma-
tion is obviously ambiguous. The estimation of pixel val-
ues of high resolution having given pixel values of low res-
olution requires some additional, local, high scaled infor-
mation about characteristics of the specific area that influ-15
ences the pixel values Tlow and Thigh, i.e. some indepen-
dently measured quantity Q usually derived from satellite
imagery or auxiliary database as well. The influence of Q
on T ought to be stable, whichmeans that the dependence
betweenQ and PV should be the same for the entire inves-20
tigated area. Also, Q values should be stable in time (to a
higher degree than the quantity expressed by PV), which
makes it easier to collect them (i.e. lower satellite revisit
time is needed). In the case of LST as T, the surface ther-
mal properties expressed by its vegetation index or effec-25
tive emissivity may be used as Q [26]. The latter was uti-
lized by the authors in the current study. One of the main
assumptions applied is that the generalization of the rule
connecting the local emissivity and LST value must be al-
lowed with respect to at least a single scene of low resolu-30
tion imagery.

The way of utilizing the high resolution information
on thermal properties of the land for downscaling the LST
image is described in the next subsections.

2.2 PBIM method35

Having defined the concept of downscaling, let us focus
on the particular method of downscaling to be optimized.
Since the objective of the study is to present the optimized
downscaling AVHRR LST method in view of its applica-
bility in coastal zone LST estimation, we have taken un-40
der closer analysis the PBIM (Pixel Block Intensity Modu-
lation) downscaling process, described in the next subsec-
tion, and proposed a way of its optimization.

PBIM is proposed for downscaling thermal products to
higher resolutionusing thehigh resolution transformation
kernel. The general form of the PBIMmethod is expressed

as:

Thigh =
Tlowϵhigh
ϵhigh→mean

, (4)

where Tlow - is the pixel value of the image in low
resolution, ϵhigh - is the high effective emissivity pixel 45
value, ϵhigh→mean - is the high effective emissivity value
averaged for a current low resolution pixel area, Thigh - is
the resulted current pixel value of high resolution down-
scaled image. It should be noted that according to formula
(4), the strict linear relation between ϵ and T is assumed. 50

The appropriate definition of the used high resolution
data source, referred to here as ϵ, is the most important
issue in the utilized downscaling method. The better the
description of local properties of the area the image of
which is to be downscaled, the smaller the obtained er- 55
ror of transformation. The effective emissivity composite
product values calculatedbasedon several high resolution
images were utilized as the HRK [27].

The PBIM allows for merging multiresolution 2D
datasets retrieved fromsensors.Note that in this approach, 60
the simulated high resolution image retains the radiomet-
ric characteristics and spatial distribution of the original
low resolution image. In particular, the average of the
simulated high-resolution sub-pixel values is equal to the
pixel value of the original low resolution image. 65

The PBIM method can be applied to any satellite im-
agery derived products - from a relatively low level, where
pixel values are spectral bands of the images, to higher lev-
els like LST or SST products.

Note also that in this approach to re-scaling of ther- 70
mal products it is important that spatial data considered
for processingmust represent relatively flat areas, thus the
low scale canbe expressed as a simple aerial average of the
LSTs at the high scale [28]. Also, the re-scaling methods
have limitations for areas with high surface type diversity, 75
which particularly refers to wetlands, water containers sit-
uated among subpixel areas.Water surfaces have different
emissivity and heat capacity properties and thus they sig-
nificantly influence the model [29].

2.3 Proposed method of PBIM optimization 80

In the presented approach, as in the PBIM method, the
ϵhigh also plays a principal role, as it describes high res-
olution properties of an area corresponding to LST image
to be downscaled. As mentioned, ϵhigh is computed based
on high resolution quasi-static data that describes thermal 85
properties of an area. The choice onwhat should be the ba-
sis for the construction of ϵhigh used for defining the rescal-
ing transformation is somewhat arbitrary. The general rule
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is that it should possibly describe the thermal properties
of the surface in the best possible way - particularly the
surface’s susceptibility to absorb heat from shortwave ra-
diation if the aim is to downscale day-time LST [30]. Also,
what has been introduced in subsection 2.1, ϵhigh is consid-5
ered to be quasi-static andmuch easier to be retrieved than
data to be downscaled [31]. Note also that images used to
construct composite datamust be registered in similar veg-
etation and weather conditions [32]. In our approach, we
have taken under consideration the summer period of the10
years of 2013 and 2014. The FVC and subsequently the ef-
fective emissivity ϵ have been calculated on the basis of
the normalized differential vegetation index (NDVI) using
the formulae (20) and (21) from subsection 3.2.

What is more, as mentioned in the previous section,15
the PBIM method relies on a relatively simple assumption
thatThigh depends linearly on the respective values (eq. 4).
It can be observed that this is not always the case [33].
For instance, Fig. 2 presents the plot of effective emissiv-
ity from Landsat 8 OLI vs. corresponding values of LST20
from Landsat 8 TIRS for the investigated Pomerania re-
gion in Northern Poland (for details on data processing,
and specifically on effective emissivity and LST calculat-
ing from Landsat 8 imagery – see section 3). The content
of Fig. 2 is in general in line with the known observa-25
tions of the “triangle” character of the VI – LST depen-
dence. Fig. 2b shows the relation between effective emis-
sivity values, namely, the central values of particular small
ranges of effective emissivity, and LST values averaged for
groups of pixels corresponding to those effective emissiv-30
ity small ranges (red points). It is able to be seen from the
figures that the relation between effective emissivity and
LST tends not to be linear. The line of fit (corresponding
to all data presented in Fig. 2a, not only to averaged data
from Fig. 2b) is shown in Fig. 2b by black dots. It is visible35
that it cannot be used as a satisfactory approximation of
ϵhigh – LST dependence.

To take into account the non-linear dependence be-
tween the biophysical properties of the surface in the LST
downsampling, the authors propose the following inverse
downscaling approach (DSopt). We assume that there ex-
ists a dependence between effective emissivity and LST ex-
pressed as

LSThigh = f (ϵhigh), (5)

where f (·) need not to be linear (and does not have to be
monotonic as well), and may be estimated for instance as
the red plot in Fig. 2. Combining (2) and (5), and naming

(a) (b)

Figure 2: LST/effective emissivity scatter plot for considered area
(a). Right picture (b) represents effective emissivity and LST de-
pendence for considered region: red plot vs. LST value represents
averaged for groups of pixels corresponding to small ranges of ef-
fective emissivity. Black plot is a linear approximation of effective
emissivity and LST dependence.

PV explicitly as LST, yields:

LSTlow =
N∑︁
n=1

f (ϵ(n)high)
sn
N (6)

for a given low scale pixel. The form of f (·) is generally
unknown for a given terrain, but assuming that it is sta-
ble for the entire scene and applying (6) to each low scale
pixel, we may express the problem as a system of linear
equations. For this purpose, let us calculate the histogram
[h1, h2, ..., hK] of ϵhigh (where hk, k = 1, ..., K is the per-
centage of high scale pixels whose ϵe� value belongs to
a given range) for each low scale pixel, using always the
same ϵe� minimum/maximum values and the same num-
ber of bars K. Then, if we express f (·) as a vector of values
(weights) [w1, w2, ..., wK] corresponding to the central val-
ues of ϵe� ranges used in calculating the histogram, and
assuming that the single pixel area sn is constant, we may
write (6) as

LSTlow m =
K∑︁
k=1

hmk · wk (7)

wherem is the number of a “coarse” pixel in a scene (m =
1, ..., M). The system ofM equations (7) may be also written
in a matrix form:

LSTlow = H · w (8)

and may be shown as a diagram – Fig. ??.
Referring to (7) and (8), each row in H matrix repre-

sents information on thermal properties of terrain within 40
a certain pixel of low resolution image (Fig. 3). Row values
of H represent histogram values calculated using a corre-
sponding set of N pixel values of ϵe� from high resolution
image (in reality, usually less than N pixel values is used
for a given coarse pixel, due to cloud presence or other 45
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Figure 3: Diagram of matrix equation representing dependence
between high and low resolution datasets

limitations in high scale data from which ϵhigh has been
derived). LSTlow is a column vector containing low reso-
lution image LST values and w is the vector of weights to
be found. Having two data sources (LST in a coarse scale
and ϵhigh in a fine scale) which fulfil the conditions stated5
above, for thewhole scene a set ofM equationswithK vari-
ables is obtained.

Finally, as wk values express the LST themselves, af-
ter finding them with use of the method described in the
next subsection, the LSThigh may be estimated directly as10
wk corresponding to a given ϵhigh value, or with the appli-
cation of some kind of interpolation of w values.

2.4 Finding an optimal solution

Now our task is to estimate w having given LSTlow and H.
Let us denote the observation vector LSTlow as y and the
searched vector of parametersw as x, and include the vec-
tor v of bias which is always present in a realmeasurement
situation:

y = H · x + v. (9)

Estimation of x having known H and measured y bi-
ased by unknown v is a typical linear inverse problem [34].
Unfortunately, in reality we usually have to take into ac-
count that the postulated model does not describe the re-
lation between x and y perfectly, e.g. it is linear only in
approximation, or the assumed values in H are not fully
correct, or the assumed number of independent variables
(the number of x elements) is not correct. Moreover, the K
and M values are not equal and thus H matrix is not in-
vertible. Thus, one of the possible ways to obtain the solu-
tion in such a situation is to estimate x in a sense of least
squares, i.e. by minimizing the ||Hx − b||2 where || · ||2 is

the Euclidean norm. Estimate x̂may be then calculated as:

x̂ = (HTH)−1HTy (10)

if theHTHmatrix is not singular. In such a case, a regular-
ization term is introduced to provide the existence of the
solution, changing (10) to:

x̂ = x0 +
(︁
HTH + Γ

)︁−1
(HT (y − Hx0)) (11)

where Γ is a suitably chosen Tikhonov matrix [35-38]
and x0 is the expected solution calculated from the PBIM 15
method. We used the simple form of Γ = λI, where I is the
identity matrix and the λ value was found using the near-
optimal parameter calculation of singular value decompo-
sition method proposed by O-Leary [34].

The solution x̂ is the optimal vector thatminimizes the 20
error of reconstruction of simulated high resolution image
based on low resolution AVHRR imagery and utilized HRK
that is stored in H matrix.

At the last step of the proposed approach, the image
is reconstructed to high resolution using optimal weights
stored in x̂. Reconstruction is performed from x̂ vector us-
ing local low resolution LST correction, denoted as DSopt:

T (i, j)high = x̂
(︀
H
(︀
ϵhigh (i, j)

)︀)︀ LST(˙̈i, j̈)low
LSTmean

, (12)

where:
- (˙̈i, j̈) denotes low resolution pixel coordinates that corre- 25
spond to high resolution (i, j) coordinates,
- ϵhigh - is the effective emissivity.

3 Experimental setup

3.1 The experiment scheme and data flow

In order to compare the results obtained using the pro- 30
posed approach with other existing solutions, we used
two basic types of datasets: AVHRR and Landsat 8, regis-
tered at possibly the same time. Then, we assumed that
AVHRR LST is a low spatial resolution (1.1 km) input data
that is downscaled to higher resolution (100 m) and we 35
treat Landsat 8 LST product as a kind of proxy validation
dataset.

In this case, the effective emissivity, as the static high
resolution data to be merged with low resolution image,
was retrieved from a composition of two Landsat 8 im- 40
ages registered on 2013-08-05 at 09:45:37 UTC (scene cen-
ter time) and on 2014-07-23 at 09:43:29 UTC (scene center
time). For both of the scenes, fractional conditions for the
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Figure 4: Overall diagram of data processing flow and verification

analyzed area are similar (middle of the summer) and re-
peatable. TheMetop-B/AVHRR3 imagerywas registered on
2013.08.05 on 9:10:26 UTC.

The overview diagram of processing and validation
strategy of the proposed approach is presented in Fig. 4.5
After creating the composite FVC high resolution image
from two Landsat 8 scenes, it was used along with the
AVHRR low resolution LST image as an input to our down-
scaling procedure. Also, for comparison of the results, the
PBIM downscaling was applied for the same data. At the10
end, a comparison of the down-scaling results, obtained
both by DSopt and PBIM with the high resolution Landsat
8 LST data, was performed.

It should be noted that for Landsat 8, in the climatic
zoneof the considered region several requirementsneed to15
be fulfilled to provide the appropriate analysis. The acqui-
sition should bemade under clean sky conditions in order
not to interfere with the values registered in thermal and
visible channels. The presence of clouds, aerosols, and di-
verse spatial distribution of water vapor content highly20
disturbs the process of acquisition. Also, note that Land-
sat 8 was launched in 2010 and together with a long revisit
time (16 days), it highly reduces the number of available
acquired imageries where all conditions stated above can
be met.25

We also performed accurate geometric calibration of
both data sources to provide a unified reference system
and cover the same areas of analysis. Data from both
sources were reprojected to UTM zone 34 projection where
the imageries cover area from 271872 to 434655 easting and30
6004014 to 6092171 northing based on WGS 84 ellipsoid.
The whole area covers 14,256 km2, in which land consists
of about 51% of the data. The height of the terrain is not

Figure 5: On the left: the map depicting the location of the area of
interest – the Gulf of Gdańsk, South Baltic, Poland (source: Google
Earth), on the right: LST maps calculated from both sensors – Land-
sat 8/TIRS (top-right) and MetopB/AVHRR3 (bottom-right). Blue pix-
els in the upper and the lower right images represent sea or cloud
areas that were masked out of the analysis.

moderately diverse as most of it is covered by flat areas
or small hills. Diverse vegetation conditions of the urban 35
areas of Gdańsk, Sopot and Gdynia municipality (Tricity),
and green areas (forests, farmlands) located nearby, cause
the NDVI to vary from approx. 0.12 to 0.67.

Fig. 5 presents the map of the location of the area of
interest: the land at the Gulf of Gdańsk, Southern Baltic 40
Sea in Poland, along with LST maps calculated using im-
ageries from both sensors – high resolution Landsat 8 and
low resolution MetopB/AVHRR.
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3.2 LST estimation

In the study, we selected MetOp-B/AVHRR3 imageries as
the source of low resolution data to be downscaled and
Landsat 8/TIRS LST as a validation dataset.

The set of NOAA and MetOp satellites utilizes the5
AVHRR radiation-detection moderate resolution remote
imager dedicated to land and atmosphere. Due to quite
a large number of currently operating NOAA and MetOp
satellites, the AVHRR sensor is characterized by a rela-
tively high time resolution (the revisit time for the respec-10
tive region is approx. 2-3 hours). Tab. 1 presents the char-
acteristics of AVHRR channels according to NOAA KLM
User’s Guide.

As it is known, LST estimation requires emissivity cor-
rection [39–42]. Therefore, during this process we calcu-
late the average emissivity for 4th and 5th AVHRR channel,
denoted as ϵAVHRR and the difference of these channels’
emissivity ∆ϵAVHRR. The calculation process was different
for several NDVI ranges. Namely, for NDVI < 0.2 the pixel
is considered to be bare soil, then:

ϵAVHRR = 0.98 − 0.42 * R1,
∆ϵAVHRR = 0.003 − 0.029 * R1, (13)

where R1 is AVHRR channel 1 reflectance.
Pixels with 0.2 < NDVI < 0.5 are considered to be partly

vegetated and the ϵAVHRR and ∆ϵAVHRR are calculated us-
ing the following formulae:

ϵAVHRR = 0.971 − 0.018 P, ∆ϵAVHRR = 0.006(1 − P),
(14)

where

P = (NDVI − 0.2)2

0.09 . (15)

ForNDVI > 0.5 pixel is considered to be full vegetation
and ϵAVHRR and ∆ϵAVHRR is fixed as:

ϵAVHRR = 0.93, ∆ϵAVHRR = 0. (16)

The validation dataset was retrieved from the Land-15
sat 8 satellite, which images the entire Earth every 16 days
in an 8-day offset from Landsat 7. Landsat 8 carries two
instruments: the Operational Land Imager (OLI) sensor
that includes refined heritage bands, alongwith three new
bands with respect to Landsat 7 [43]a deep blue band for20
coastal/aerosol studies, a shortwave infrared band for cir-
rus detection, and a Quality Assessment band. The Ther-
mal Infrared Sensor (TIRS) provides two thermal bands.
Both these sensors provide improved signal-to-noise ra-
diometric performance quantized over a 12-bit dynamic25

range. The improved signal to noise performance of Land-
sat 8 enables better characterization of the land cover state
and conditions. Products are delivered as 16-bit images
(scaled to 55,000 grey levels). Table 2 presents the char-
acteristics of Landsat 8 channels. 30

The LST from Landsat 8 imagery was calculated by
applying the split window technique algorithm that uses
two thermal bands located in the atmospheric window be-
tween 10 and 12 µm. Then, we applied radiometric calibra-
tion procedure for Landsat 8 data using metadata of the
provided imagery and used expansion of the Planck equa-
tion according to (17) for TIRS data. Spectral radiances
delivered in Landsat datasets were converted into satel-
lite brightness temperature using the following relation-
ship [44, 45]:

TBi =
K2

ln
(︁

K1
TOAi + 1

)︁ (17)

where:
K1 - band specific thermal conversion coefficient delivered
with Landsat 8 imagerymetadata files, namelyK1 = 774.89
for channel 10 and 440.89 for channel 11

[︁
W

m2 ster µm

]︁
,

K2 - band specific thermal conversion coefficient de- 35
livered with Landsat 8 imagery metadata files, namely
K2 = 1321.08 for channel 10 and 1201.14 for channel 11[︁

W
m2 ster µm

]︁
.

TOAi - top of the atmosphere spectral radiance
[︁

W
m2ster µm

]︁
registered for i-th thermal channel of Landsat 8 TIRS. 40

Landsat 8 LST emissivity correction, denoted as ϵTIRS,
was performed according to a procedure proposed by
Skokovic et al. [46], Shaouhua Zhao et al. [47], according
to the values presented in the Tab. 3, with use of the Corine
Land Cover database and FVC data, in order to distinguish 45
urban and non-urban area.

The split window technique (SWT), utilizing the ther-
mal channels of AVHRR3 and TIRS, has been used here
for LST calculation. This is a relatively simple and robust
method of retrieving LST estimation for large or regional
scale applications. Its main property is that it removes
atmospheric fluctuations, taking advantage of the fact
that radiation absorption differs in particular wavelengths
of electromagnetic spectra. Consequently, the TIRS and
AVHRR LST images were corrected pixel by pixel for emis-
sivity and water vapor content, according to Jimenez-
Munoz [48–51] with values of c0-c6 (Tab. 4) according to
the following formula:

LST = Ti + c1 ·
(︀
Ti − Tj

)︀
+ c2 ·

(︀
Ti − Tj

)︀2
+ c0 + (c3 + c4W)

(︀
1 − ϵ̂

)︀
+ (c5 + c6W)∆ϵ, (18)
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Table 1: Characteristics of AVHRR spectral channels

Channel
Number

Resolution
at Nadir

Wavelength (µm) Typical Use

1 1.09 km 0.58 - 0.68 Daytime cloud and surface mapping
2 1.09 km 0.725 - 1.00 Land-water boundaries
3A 1.09 km 1.58 - 1.64 Snow and ice detection

3B 1.09 km 3.55 - 3.93
Night cloud mapping, sea and land surface

temperature
4 1.09 km 10.30 - 11.30

Night cloud mapping, sea and land surface
temperature

5 1.09 km 11.50 - 12.50 Sea and land surface temperature
REVISIT TIME: 8 per day

Table 2: Characteristics of Landsat 8 spectral channels

Channel
Number Resolution at Nadir Wavelength (µm) Description/Typical Use

1 30 m 0.43 - 0.45 Coastal aerosol
2 30 m 0.45 - 0.51 Visible - blue
3 30 m 0.53 - 0.59 Visible green
4 30 m 0.64 - 0.67 Visible - red
5 30 m 0.85 - 0.88 Near infrared (NIR)
6 30 m 1.57 - 1.65 SWIR 1
7 30 m 2.11 - 2.29 SWIR 2
8 30 m 0.50 - 0.68 Panchromatic visible
9 30 m 1.36 - 1.38 Cirrus detection

10 100 m 10.60 - 11.19
Night cloud mapping, sea and land

surface temperature
11 100 m 11.50 - 12.51 Sea and land surface temperature

REVISIT TIME: 16 days

Table 3: Emissivity values for urban and non-urban areas for TIR bands

Emissivity Band 10 Band 11

Land surface emissivity of urban area 0.971 0.977
Land surface emissivity of non -

urban area
0.987 0.989

whereW is a water vapor content retrieved from an exter-
nal database [50–54], Ti and Tj are thermal channels of
AVHRR (i = 4 and j = 5) and TIRS (i = 10 and j = 11) re-
spectively, ϵ̂ is the average emissivity for thermal channels
of AVHRR3 and TIRS, respectively (ϵAVHRR and ϵTIRS) and5
∆ϵ is the emissivity difference between the thermal chan-
nels of AVHRR3 and TIRS.

With the above consideration in mind, in our method-
ology we proposed the following approach:
– we applied the split window technique for10

MetopB/AVHRR3 and for Landsat 8 TIRS,

– in both algorithms we used the surface emissivity and
water vapor content correction approach.

Effective emissivity ϵ computation was based on high res-
olution NDVI data over the respective region. The maxi-
mum NDVI (NDVImax) and the minimum NDVI (NDVImin)
values for the study areawere determined, whichwere fur-
ther used for computing the fractional vegetation cover
(FVC) [57, 58]:

FVC =
(︂

NDVI − NDVImin
NDVImax − NDVImin

)︂2
(19)
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Table 4: Effective wavelengths for thermal channels used in SW technique and equation coeflcients applied for LST estimation procedure
for AVHRR and OLI

Platform/ sensor λi-λj c0 c1 c2 c3 c4 c5 c6
[K] [-] [K−1] [K] [K cm2g−1] [K] [K cm2g−1]

METOP B/
AVHRR3

10.82-11.97 −0.045 1.733 0.307 44.3 0.61 −150 18.7
Landsat 8/

TIRS
10.8-12 −0.268 1.378 0.183 54.3-2.238 −129.2 16.4

and the effective emissivity ϵ as:

ϵ = 0.98 (1 − FVC) + 0.93 FVC. (20)

4 Results

4.1 Comparison of LST downscaling results
for the entire scene

In this subsection we present the results obtained using
the proposed optimized downscaling process of LST. We5
compared the results obtained by DSopt with the PBIM
method of downscaling in global (i.e. for the entire scene
Fig. 6, and using a more detailed analysis in Fig. 7) and
local scale (i.e. for the locations along the two selected
transect lines within the investigated land area, Fig. 8,10
9 and 10) using objective criteria, namely, the root mean
squared error (RMSE) and the Pearson correlation coeffi-
cient (R). Pixels representing either clouds or sea on any
of the imagesweremasked during the analysis so their val-
ues did not interfere with the overall process of error min-15
imization.

We compared the obtained downscaled high resolu-
tion image to LST calculated from Landsat 8 image ac-
quired on 13 August 2013. The RMSE between Landsat 8
LST and downscaled image using DSopt was 2.255∘C with20
correlation coefficient R equal to 0.828 and Bias = 0.557∘C.
It shows a significant improvement in comparison to the
PBIM method, where we obtained RMSE = 2.832∘C, R =
0.775 and Bias = 0.997∘C.

The analysis of spatial distribution images shows that25
the results obtained by DSopt algorithm better represent
thermal characteristics for the analyzed area and are vi-
sually closer to the original Landsat 8 LST image than the
image obtained using the PBIM method (Fig. 6). Specifi-
cally, it can be observed that the influence of local surface30
high resolution characteristics is reflected in DSopt rather
than local LST retrieved from AVHRR observations. What
is more, as in the PBIM, the LSTlow term is directly used in
the formula and strongly influences the obtained LSThigh

Figure 6: Comparison of downscaling results for the investigated
area: top-left: LST calculated from Landsat 8 image, top-right: LST
downscaled from AVHRR using PBIM method, bottom-right: LST
downscaled from AVHRR using DSopt method

value, it results in the appearance of coarse resolution arti- 35
facts in the downscaled product (Fig. 6b). This effect does
not occur in the DSopt result case. In Fig. 7 we presented
the scatter plot of this case.

4.2 Detailed analysis of the retrieved results

In many cases, for instance for small areas where we deal 40
with high diversity of surface conditions, obtaining the lo-
cal accurateness of the applied downscaling is even more
important. For this purpose, we took under consideration
two relatively small sub-areas defined as narrow strips of
land situated along selected “cross section” lines, in order 45
to verify how the algorithm manages with diverse hetero-
geneous conditions (Fig. 8).

The first line starts from the West, at point A located
at 53.9356∘N, 17.6832∘E, which is situated in the suburbs of
the Tricity area. Then, the line transects through the Tricity 50
Landscape Park and ends in the urban area of the Tricity
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Figure 7: The obtained downscaled to high resolution AVHRR LST
image and scatter plot (every 100th point) of Landsat 8 LST and
downscaled AVHRR LST (right) using DSopt. Red line in right image
represents “1:1” line. Correlation coeflcient and root mean squared
error (RMSE) were: R=0.828 and RMSE=2.255∘C, respectively.

Figure 8: Landsat LST image with marked two transect lines defining
the small subareas selected for detailed analysis of the downsam-
pling results. The first line (AB) starts from suburban areas of the
Tricity municipality (A), passes through a vegetated area of the Tric-
ity Landscape Park and ends in the Tricity municipal area near the
border between Gdańsk and Sopot (B). The second transect starts
from the suburban area of Gdynia (C), passes through forest areas
and ends in the center of Gdynia city (D).

municipality (Gdańsk-Oliva district) - point B (53.9309∘N
17.8077∘E). The length of the line is 6 km and it transects
through low as well as very high vegetated areas, so the
thermal conditions along this transect are significantly di-
versified.5

The second line starts from suburban area of Gdynia
(point C – 54.045 ∘N, 17.6513 ∘E), passes through forest ar-
eas and ends in the center of Gdynia city (point D – 53.9544
∘N, 17.6601 ∘E). The diversity of thermal conditions for the
area along the second transect is quite similar to that in10
the case of the first line.

Afterwards we performed analysis of the obtained re-
sults along selected transects from four datasets, namely:
– LST calculated from Landsat 8 TIRS dataset (valida-

tion dataset),15

Figure 9: Comparison of LST high resolution data with respect to
AB transect line: Landsat 8 LST, AVHRR LST downscaled by DSopt
method, AVHRR LST downscaled by PBIM method and AVHRR LST
downscaled by nearest neighbor technique

Figure 10: Comparison of LST high resolution data with respect
to CD transect line: Landsat 8, AVHRR DSopt downscaled by the
proposed method, AVHRR downscaled by the PBIM method (AVHRR
PBIM) and AVHRR resampled to LANDSAT 8 resolution using nearest
neighbor technique

– AVHRR LST image downscaled using the proposed
DSopt method,

– AVHRR LST image downscaled using the PBIM
method,

– AVHRR LST image downscaled transformed (resam- 20
pled) to high resolution by simple nearest neighbor
method.

Plotted LST high resolution values taken from particular
datasets along the AB and CD transect, respectively are
presented in Fig. 9 and 10. Tables 5 and 6 contain the com- 25
parison of the correlation coefficient and RMSE between
Landsat 8 LST and the results retrieved by different meth-
ods of AVHRRLST downscaling: DSopt proposed by the au-
thors, PBIM, and nearest neighbor for AB and CD transect,
respectively. 30

For this relatively small area, the above results show
that the optimizationmethodpresented inDSopt algorithm
yields significantly better results than other approaches.
Note that the aim of using the inverse problem algorithm
is to minimize the downscaling error in a global, i.e. the 35
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Table 5: Comparison of the results obtained by different downsampling methods for the subarea indicated by AB transect

Downsampling Correlation RMSE [∘C] BIAS [∘C]
method coeflcient R with with respect to with respect to

respect to Landsat 8 LST Landsat 8 LST Landsat 8 LST
DSopt 0.9334 2.0042 1.3529
PBIM 0.8207 2.6851 0.3939
Nearest neighbor 0.7544 2.8757 0.4034

Table 6: Comparison of the results obtained by different downsampling methods for the subarea indicated by CD transect

Downsampling method
Correlation coeflcient R
with respect to Landsat 8

LST

RMSE [∘C]
with respect to Landsat

8 LST

BIAS [∘C] with
respect to Landsat

8 LST
DSopt 0.842 2.3927 1.7932
PBIM 0.6038 2.5262 0.4812

Nearest neighbor 0.5101 2.659 0.4581

entire imagery scale, so results corresponding to local sub-
datasets do not always have to be better than when us-
ing other methods. However, this case shows that data ob-
tained by the DSopt fits the original Landsat 8 LST the best,
which serves here as a kind of proxy verification tool.5

As shown above, the obtained downscaled products
retain radiometric characteristics of original images for the
whole imagery, however, for subdatests the BIAS results
suggest that some deviation from this rule occurs. More-
over, the correlation coefficients and RMSE indicate that10
DSopt technique yields results closer to the original high-
resolution spatial pattern than the PBIM method. A more
detailed investigation of the selected transect cross sec-
tions of the analyzed area indicates that also for small sub-
datasets the usage of DSopt is justified as the RMSE error is15
reduced from 2.6851∘C for the PBIM case to 2.0042∘C for
AB transect and from 2.5262∘C to 1.5401∘C for CD transect.
The improvement of the proposed methodology is further
verified by correlation between downscaled products and
time-coincident Landsat 8 imagery. Specifically, the corre-20
lation coefficient increases from0.8207 to0.9212 in the case
of AB, and from0.6038 to 0.8953 in the case of CD transect.

4.3 Optimized downscaling for local scale

In the previous subsection, we have examined and eval-
uated the results of downscaling using the inverse tech-25
nique for the whole scene imagery and for particular tran-
sect sub-datasets. We have shown that the proposed op-
timization technique yields better results in comparison
with thedirect approach. In this section,wehave takenun-

der consideration three sub-datasets of the whole scene, 30
which differ between each other in terms of vegetation and
surface conditions, andwehaveverifiedhowour approach
functions in such cases. The cases taken under considera-
tion are as follows:

Case 1 - area covering nearly 300 km2 of Gdynia mu- 35
nicipality urban area and Tricity National Park bounded
by 53.7451∘N, 18.4904∘E (north-west) and 53.5237∘N,
18.6786∘E (south-east) limits. This area is rather unique
and is to large extent characterized by surface type het-
erogeneity typical for urban area. According to the Corine 40
Land Cover database, 51% of the mentioned area is ur-
ban, while 49% is non-urban, high vegetation area of the
Tricity National Park. The results obtained by PBIM and
DSopt methods for test case 1 are shown visually in Fig. 11.
The quantitative results on the obtained correlation coef- 45
ficient, the RMS error and the bias for this case are shown
in Table 7.

Case 2 - area of the Stężyca Lake which is a part
of the Pomeranian National Park that mainly comprise
vegetated areas (forests and grasslands), which consti- 50
tute 99% of the surface. The area is bounded by coor-
dinates: 53.5222∘N, 17.9436∘E (north-east) and 53.3807∘N,
18.3026∘E (south-west). The results obtained by PBIM and
DSopt methods for test case 2 are shown visually in Fig. 12.
The quantitative results on the obtained correlation coef- 55
ficient, the RMS error and the bias for this case are shown
in Table 8.

Case 3 - urban area of Gdańsk municipality, bounded
by 53.5281∘N, 18.5208∘E and 53.3891∘N, 19.1395∘E, that
mainly comprise urban areas (over 80% according to the 60
Corine Land Cover database). The results obtained by

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Optimized AVHRR land surface temperature downscaling method | 13

Figure 11: Scatterplot and visual presentation of the results re-
trieved by PBIM and DSopt methods for local sub-dataset test case 1

Figure 12: Scatterplot and visual presentation of the results re-
trieved by PBIM and DSopt methods for local sub-dataset test case 2

Figure 13: Scatterplot and visual presentation of the results re-
trieved by PBIM and DSopt methods for local sub-dataset test
case 3.

PBIM and DSopt methods for test case 3 are shown visually
in Fig. 13. The quantitative results on the obtained corre-
lation coefficient, the RMS error and the bias for this case
are shown in Table 9.

Tables 7-9 present analytical results obtained by the 5
proposed optimization approach, PBIM method and orig-
inal AVHRR3 data resampled using the nearest neighbor
technique (presented in the third row) for cases 1-3. The
second column of the tables represents the Pearson cor-
relation coefficient, while the third represents the RMSE 10
with respect to reference LST Landsat 8 OLI dataset. The
last column shows BIAS between reference dataset and a
result of downscaling products, in order to verify retention
of radiometric properties of the results.

The results presented in these cases show that DSopt 15
method yields results closest to Landsat 8/TIRS validation
dataset having overall lowest RMSE and highest correla-
tion coefficient among the methods presented. This can
be particularly observed for test case 1 (Tab. 7) when algo-
rithm finds minimized error solution for a heterogeneous 20
area, including high vegetation (low effective emissivity)
and urban areas (high effective emissivity), yielding RMSE
reduction up to 32% (for DSopt) and correlation increase
from 0.7659 (for PBIM) to 0.8866 (DSopt). As this trend is
also observed in cases 2 and 3 (Tab. 8 and Tab. 9, respec- 25
tively), it may be concluded that the increase of the pro-
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Table 7: Results of downscaling using PBIM and DSopt for local sub-dataset case 1

Downsampling method
Correlation coeflcient R
with respect to Landsat 8
LST

RMSE [∘C]
with respect to Landsat
8 LST

BIAS [∘C] with
respect to Landsat

8 LST
DSopt 0.8866 2.0513 0.5092
PBIM 0.7659 2.9984 0.7295
Nearest neighbor 0.7053 3.1898 0.7295

Table 8: Results of downscaling using PBIM and DSopt for local sub-dataset case 2

Downsampling method
Correlation coeflcient R
with respect to Landsat 8
LST

RMSE [∘C]
with respect to Landsat
8 LST

BIAS [∘C] with
respect to Landsat

8 LST
DSopt 0.6991 1.6796 0.3998
PBIM 0.5587 1.8755 0.1742
Nearest neighbor 0.4741 1.9937 0.1742

Table 9: Results of downscaling using PBIM and DSopt for local sub-dataset case 3

Downsampling method
Correlation coeflcient R
with respect to Landsat 8
LST

RMSE [∘C]
with respect to Landsat
8 LST

BIAS [∘C]
with respect to
Landsat 8 LST

DSopt 0.7204 2.7159 1.4712
PBIM 0.6473 3.1649 1.8911
Nearest neighbor 0.5956 3.2609 1.8911

posed downscaling method performance is visible for lo-
cal sub-datasets.

5 Conclusions
In the paper, the process of optimization of downscal-
ing thermal products based on low resolution (AVHRR)5
imagery using the inverse technique approach was pre-
sented. The authors proposed a data processing model
and method that transforms the downscaling process to
inverse problem. We used Tikhonov regularization when
finding an optimal solution to the defined problem and10
showed that our approach yields better results than the
other approach, i.e. the PBIM direct method.

Theproposedapproachaims tofindestimationof high
resolution imagery by minimizing the global error of the
downscaling process. Nevertheless, we showed by exam-15
ples that apart from global optimization, the obtained re-
sults are also very good in local scale and can be used for
relatively small areas –much smaller than the entire satel-
lite imagery scene, depicting diverse surface conditions.

It should be pointed out that applying the inverse 20
problem approach to the downscaling process is con-
strained by limitations and distortions. One of the main
known difficulties regarding the satellite imagery process-
ing in general is the appropriate atmospheric correction
for cloud and aerosol presence and the need to remove 25
the effects caused by atmospheric conditions. A standard
model application for cloudy days can significantly de-
crease its quality as clouds and aerosols absorb radiation,
thusmaking the precise effective emissivity and LST deter-
mination difficult to obtain. Hence, when the downscal- 30
ing process described in this paper aims to minimize the
global error and estimate the optimal weights vector, the
presence of pixels not representing precise land surface
conditions can perturb the entire result very strongly. In
this sense, direct methods are more resistant to that type 35
of effects.

Another aspect of the proposed methodology is the
regularizationparameter value. Inmany inverseproblems,
the estimation of the appropriate regularization parameter
value is of a crucial importance. In our case, the optimal 40
value was found by using near optimal parameter calcula-
tion methods based on singular value decomposition.
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The kernel of the whole transformation process is the
high resolution kernel matrix - it describes thermal prop-
erties of an area to be downscaled. The appropriate defini-
tion of HRK, its resolution as well as the kind of model de-
scribing the dependence of the LST on the quantity which5
is expressed by HRK values, determines the quality of the
retrieved results. In the presented approach, we used frac-
tional vegetation cover values to construct the HRK, but
in general the HRK may be constructed from any spatial
datasets that fulfill the conditions mentioned in section 2.10

The proposed methodology that utilizes the inverse
problem approach is a technique that can be applied to
optimize the downscaling process and it can also be used
in conjunction with other downscaling approaches and
methods. The method is particularly suitable for cases15
where local biophysical conditions significantly influence
the final characteristics of LST-VI relation. It is important
to notice that the proposedmethodology is self-adaptive in
termsof technical implementation. Themethod constructs
the high resolution kernel without human supervision,20
which means that applying it to regions with other cli-
matic and meteorological conditions should be relatively
straightforward. In particular, in caseswhere diverse vege-
tation conditions areas are analyzed,methods that find the
minimum error solution are of considerable interest and25
are usually able to generate radiometric LST product that
better depicts spatial distribution of LST.
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