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Abstract

The paper considers optimizing Model Predictive Control (MPC) for nonlinear plants

with output constraints under uncertainties. Although the MPC technology can handle

the constraints in the model by solving constraint model based optimization task, satisfy-

ing the plant output constraints under the model uncertainty still remains a challenge. The

paper proposes Robustly Feasible MPC (RFMPC), which achieves feasibility of the out-

puts in the controlled plant. The RFMPC which is applied to control quantity in Drinking

Water Distribution Systems (DWDS) is illustrated by application to the DWDS example.

In the simulation exercise, Genetic Algorithm is selected as the optimization solver and

the reduced search space methodology is applied in the implementation under MATLAB-

EPANET environment.

1 Introduction

Model Predictive Control has been an advanced

technology and widely used in process control in-

dustry due to its ability to control multivariable sys-

tems with the presence of constraints. MPC actually

belongs to a class of model based controller design

concepts. The basic idea of the MPC algorithm re-

mains unchanged regardless whatever kind of plant

models are considered. It determines the optimal

control actions by minimizing the user-defined ob-

jective function, or performance index. The current

control actions are determined on-line, at each con-

trol step, by solving a finite-horizon open loop op-

timization problem, using the current state of the

plant process as the initial state. However, only the

first part of the optimized control input sequence is

applied to the plant in the next time step. At the next

control step, the prediction horizon moves forward

and the same procedure repeats [2, 10].

Due to its operation on a receding horizon,

MPC is also referred as receding control horizon

or moving horizon optimal control. There are two

significant factors that determine how effective an

MPC is. The first factor is the accuracy of the

plant model since it is explicitly used to predict the

plant outputs. The second factor is how effective

optimization solvers are. Although with the best

plant models, MPC technology is still challenged

by the uncertainty existing in the system such as a

model structure error, a state estimation error, and

disturbances. Fulfilling constraints is essential in

many process plants for reason of safety, productiv-

ity, and environment protection. The controller out-
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puts, which are based on the plant model, may not

meet the plant output constraint due to the model-

reality mismatch. The mismatch is often caused

by the difference between predicted disturbance and

actual disturbance. Feasible control input may be-

come infeasible when they are applied to the plant if

there is no robustly feasible controller. The robust-

ness meeting of the output constraints or state con-

straints under system uncertainties is the main ob-

jective of the robustly feasible MPC. In this paper,

the optimizing RFMPC is considered. The robust

feasibility will be assessed by the robust output pre-

diction over the reduced horizon. Safety zones are

employed to tighten the output constraints in order

to achieve robustly feasible control input. The con-

trol method is applied to control quantity in DWDS.

2 Representation of RFMPC

The structure of the RFMPC [3] consists of sev-

eral units as illustrated in Fig.1.The MPC optimizer

solves the MPC optimization task to produce con-

trol inputs. In this task, the plant outputs are pre-

dicted basing on the nominal model of the plant. In

the nominal model, the disturbance inputs are repre-

sented by their predictions, while the internal model

uncertainties are represented by a selected scenario.

Before the control input is applied to the plant, its

robust feasibility is assessed by the “Constraint Vio-

lation Checking” unit. The feasibility assessment is

based on the robust output prediction that is gener-

ated by the “Robust Output Prediction” unit. Given

the control input, the corresponding robust output

predictions over the prediction horizon are a region

in the output space in which all the plant outputs

generated by the control input and all possible sce-

narios of the disturbance inputs are contained. The

input robust feasibility is checked by confronting

the output constraints with the robust output pre-

diction. If the control feasibility passed its assess-

ment, then the proposed control input is applied

to the plant. Otherwise, robust output prediction

is fed into the “Safety Zone Generator” unit. The

safety zones as such are used to tighten the out-

put constraints. The control actions produced by

the MPC optimizer under modified (tighten) output

constraints are expected to produce the real plant

outputs that satisfy the plant constraints although

they still may violate the modified constraints. Such

control actions and the corresponding safety zones

are called robustly feasible.

3 Robust Output Prediction (ROP)

Consider a continuous time plant, with the

piecewise constant inputs, where input-output dy-

namics is modelled by the following discrete time

systems:

{
x(t +1) = f (x(t),u(t),z(t))
y(t) = F(x(t),u(t))

with the initial conditions : x(to) = xo

(1)

where t is discrete time variable, u(t) and z(t)
are the control and distuarbance input respectively.

The disturbance input z(t) is not known, and only

bounds zmin and zmaxon its instantaneous values are

available, that is z(t) ∈ [zmin,zmax]

Given inputs u(t+k|t) for k ∈ [1,Hp], where Hp

is the prediction horizon, the plant output over Hp

can be predicted by using the plant model as:

⎧⎨⎩
x(t + k+1|t) =

f (x(t + k|t),u(t + k|t),z(t + k|t))
y(t + k|t) = F(x(t + k|t),u(t + k|t))

with the initial conditions : x(to) = xo

(2)

where z(t + k|t) denotes prediction of the distur-

bance input at t + k produced at the time instant t.

The vector of control inputs and outputs over

the prediction horizon are respectively defined as:

Û = [u(t|t) ... u(t +Hm−1|t)

u(t +Hm|t) · · · u(t +Hp−1|t)︸ ︷︷ ︸
f rom (t+Hm) to (t+Hp−1)

⎤⎥⎦
T

(3)

Ŷ = [ y(t +1|t) · · · y(t +Hp|t) ]T (4)

where u(t + i|t),y(t + i|t) are the control inputs and

model outputs at time t +k produced at time instant

t, and Hm,Hp are the input horizon and prediction
horizon respectively.

Given the x(t|t) and control inputs over the hori-

zon u(t + k|t), k = 0, ...,Hp − 1. Let y(t + k|t),
k = 1, ...,Hp be the corresponding plant outputs.
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Figure 1. Structure of Robustly Feasible MPC

The robust prediction of y(t + k|t) is composed of

two envelopes:

Y l
p = [yl

p(t +1|t) ...yl
p(t +Hp|t)]T (5)

Y u
p = [yu

p(t +1|t) ...yu
p(t +Hp|t)]T (6)

where yl
p(t + k|t) and yu

p(t + k|t) are the upper

and lower limits that robustly bound the plant out-

put at prediction time step k:

yl
p(t + k|t)≤ y(t)|t=t+k ≤ yu

p(t + k|t)
k = 1, ...,Hp

(7)

The least conservative bounding envelopes

yl
p(t + k|t) and yu

p(t + k|t) can be determined as:

yl
p(t + k|t) = min

z(t|t),z(t+1|t),..,z(t+k−1|t)
y(t + k|t)

= min
z(t|t),z(t+1|t),..,z(t+k−1|t)

F(x(t + k|t),u(t + k|t))
(8)

yu
p(t + k|t) = max

z(t|t),z(t+1|t),..,z(t+k−1|t)
y(t + k|t)

= max
z(t|t),z(t+1|t),..,z(t+k−1|t)

F(x(t + k|t),u(t + k|t))
(9)

where uncertainty at time t + k : z(t + k|t) ∈
[zmin, zmax] , ∀k ∈ 1 : Hp ; the states x(t + k|t)are

obtained from the state space equations (2) with

known initial condition x(t|t).
Generating yl

p(t + k|t) and yu
p(t + k|t) also pro-

duce plant state bounding envelopes xl
p(t + k|t) and

xu
p(t + k|t), for k = 1, ...,Hp.

Since the robust output prediction is calculated

over the horizon Hp, there are Hp optimization

problems to be solved to find Hp values of yl
p(t +

k|t) and yu
p(t + k|t). As k increases from 1 to Hp,

the optimization also increases the number of vari-

ables from 1 to Hp.

Indeed, when k =Hp, (8) and (9) have Hp vari-

ables z(t),z(2), ....,z(t + Hp − 1). The more vari-

ables the optimization has, the more computing

time the solvers require. As these computations are

carried out online, it is desired to reduce the time

computing as much as possible.

3.1 Stepwise Robust Output Prediction
(SWROP)

In the previous section, solving optimization

problems (8) and (9) give at least conservative so-

lution of robust output prediction (ROP). This ap-

proach is so called the exact optimization method.

In contrast to the exact optimization method, we

propose in this section an approximated optimiza-

tion method where its advantage is to reduce the

optimization process computing time.

Instead of solving the optimization task with

respect to k variables z(t|t) , z(t + 1|t) , . . . , z(t +
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k−1|t), one could approximate the least conserva-

tive robust output prediction (LCROP) by solving

the optimization tasks ((8) and (9) with respect to

only one variable z(t + k− 1|t) while z(t|t) , z(t +
1|t) , . . . , z(t + k− 2|t) are obtained from the opti-

mization in the previous time steps. In other words,

instead of simultaneous optimization with respect

to all disturbance inputs, a step by step optimiza-

tion is applied with respect to one disturbance input

at the time starting with xl
p(t + k|t) and xu

p(t + k|t).
Hence,

yl
p(t + k|t) = min

z(t+k−1|t)
y(t + k|t)

∣∣∣∣
z(t|t)=zmin(t|t),....,z(t+k−2|t)=zmin(t+k−2|t)

(10)

yu
p(t + k|t) = max

z(t+k−1|t)
y(t + k|t)

∣∣∣∣
z(t|t)=zmin(t|t),....,z(t+k−2|t)=zmin(t+k−2|t)

(11)

where zmin(t + i|t) and zmax(t + i|t) can be obtained by solving:

zmin(t + i−1|t) = arg min
z(t+i−1|t)

y(t + i|t)
∣∣∣∣
z(t|t)=zmin(t|t),....,z(t+k−2|t)=zmin(t+i−2|t)

∀i ∈ 1 : k (12)

and

zmax(t + i−1|t) =arg max
z(t+i−1|t)

y(t + i|t)
∣∣∣∣
z(t|t)=zmin(t|t),....,z(t+k−2|t)=zmin(t+i−2|t)

∀i ∈ 1 : k (13)

Figure 2. SWROP stays outside LCROP
Figure 3. SWROP lies entirely inside LCROP

The resulting bounding envelopes are more con-

servative but the computing time is vastly reduced.

Unfortunately, the expressions (10) and (11) gener-

ate the ROP only for some class of systems. The

paper objective is to apply RFMPC to DWDS and

there such a class has a clear interpretation, hence

can clearly be identified. In order to assess the ro-

bust feasibility by SWROP, one should ensure that

the LCROP entirely remains inside the SWROP as

described in Fig.2. Otherwise the real output may
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possibly violate the upper or lower constraint even

though the SWROP does not, as described in Fig 3.

In practice, there are some classes of the sys-

tem that have the characteristic as depicted in Fig.2

while some will have the characteristic of Fig.3.

Hence, in order to avoid the situation of having ro-

bustly infeasible control input, designers in practice

should take that into consideration of choosing the

appropriate method to calculate the robust output

prediction.

3.2 Reduced Robust Feasibility Horizon

So far the ROP has been considered over the

whole output prediction horizonHp set up for the

RFMPC. This has been done in order to secure the

existence of the robustly feasible safety zones at any

control time step. However, as computing of ROP

over Hp is computationally very demanding and this

may not meet the time constraints set up by on-

line computing requirements. We should consider

reducing this demand by shortening the ROP hori-

zon. Clearly the cost to be paid is an increased risk

of non existence of robustly feasible safety zones

at certain control time steps. As only the first con-

trol action out of a whole sequence determined by

the RFMPC is applied to the plant, we must secure

the robust feasibility over the first time step. This

is how far we can go with the reduction of the ROP

horizon from Hp to Hr. An attractive outcome of

the ROP horizon reduction is that the very attrac-

tive computing SWROP method may become ap-

plicable over the reduced horizon while may not be

applicable over the entire horizon. (see Fig.4)

Figure 4. Example of reduced robust feasibility

horizon to two time steps - Hr = 2

4 Safety Zone Generator

Using safety zones is not a new idea to meet

the system constraint under unknown factors. It is

widely used in engineering area, such as a conser-

vative design in many electrical devices. When the

input from the nominal model base MPC controller

is applied to the plant, due to the uncertainties of the

system, the output constraints may not be fulfilled

and their violations may be unacceptable at certain

time instants. If the violation occurs, it is impor-

tant to correct or modify the constraints that apply

to the nominal MPC. The safety zones generator is

the unit that modifies the output constraints via the

iterative scheme.

Figure 5. The output constraints modified by

safety zones

Consider over the prediction horizon, the

vectors of the lower and upper limits on the

plant output Y min = [ ymin · · · ymin ]T ; Y max =
[ ymax · · · ymax ]T and the vectors of the

safety zones σl = [ σl
1 · · · σl

Hp ]T , σu =

[ σu
1 · · · σu

Hp ]T for the lower and upper out-

put constraints, respectively where σl
i and σu

i are

non negative real numbers. The vectors Y min
s =

Y min +σl and Y max
s = Y max−σu are composed of

the lower and upper bounds of the modified output

constraints over Hp, respectively.

The “Safety Zones Generator” produces itera-

tively robustly feasible safety zones by using the

following relaxation algorithm [3]:

(i) Set x = [ σl σu ] = 0;

(ii) Solve MPC optimization task with modified

output constraintsHp
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(iii) A vector V composed of the output con-

straint violation over the prediction horizon is cal-

culated as:

V = [V1 · · ·V2Hp ]
T

�
[
(Y min−Y l

p)
T (Y u

p −Y max)T ]T

Define f (Vi) � max{0,Vi} and C(σl,σu) �
[ f (V1) · · · f (V2Hp) ]T

If

C(σl,σu) = 0 (14)

is satisfied then go to step (vi), Else go to step (iv);

(iv) Calculate the safety zone correc-

tions by using δ(k) = −νC(x(k)) where ν =
max([diag[∇C(0)]]−1) is called the relaxation gain

(v) x(k+1) = x(k) +δ(k), go to step (ii)

(vi) The robustly feasible safety zones have now

been found and the control inputs u(t|t) are applied

to the plant.

5 Optimizing Control of DWDS by
RFMPC

In the daily operation of water distribution sys-

tems, a period of water demand prediction ahead of

current time is usually needed to be the basis for

generating optimal pump actions so as to achieve

certain control objective, e.g. the least pumping

cost. Since too long or infinitive time horizon de-

mand prediction is not accurate or unavailable, a

relatively short prediction horizon is more realistic,

and this is applied in a receding horizon manner,

which forms the key idea of MPC technique. The

corresponding optimization that reflects the control

strategy is solved under the RFMPC structure and

only the first part of the control input is applied. In

this section, the formulation of the optimizing con-

trol problem and the simulation environment imple-

mentation by MATLAB – EPANET are presented.

The Genetic Algorithm is selected as the optimiza-

tion solver and the reduced search space methodol-

ogy that has been used in the implementation will

also be explained.

5.1 Formulation of the Optimizing Control
Problem

The main goal of DWDS is to supply water to

customers and satisfy their quantity and quality de-

mand. There are two major aspects in the control

of DWDS: quantity and quality. The quality control

deals with water quality parameters. Having disal-

lowed the concentration of the chemical parameter,

for instance chlorine, cause serious heath dangers.

Maintaining concentrations of the water quality pa-

rameters within the prescribed limits throughout the

network is a major objective. When the quantity

control is considered, the objective is to minimize

the electrical energy cost of pumping, while sat-

isfying consumer water demand and physical con-

straints such as pressure at nodes or reservoir levels,

by producing optimized control input such as opti-

mized pump speeds and valve control schedules [5].

The uncertainty is in the demand and structure and

parameters of DWDS model. In this paper, only

the quantity control aspect is considered by apply-

ing RFMPC technique. The quality issues are ad-

dressed in [4, 15] for example.

Objective function- pumping cost control: It is a

very common control objective to achieve the least

pumping cost while satisfying constraints. More-

over, in order to achieve a sustainable operation day

after day, it is expected that tank levels can come

back to their original states after a certain period.

For the DWDS example, the network is operated

daily and the prediction horizon is Hp = 24h. It is

desired that after 24 hours, the tank level could have

a similar level.

Hence, the overall objective function at t = t
reads:

J = ∑t+Hp−1

t=t γ(t)Δt∑Gp
j=1∑

Uj
i=1

ξq j,i(t)Δh j(t)
η j,i(t)

+ρ∑S
s=1 |rs(t +Hp)− rs(t)|

where Hp is the prediction time horizon, ρ is a

weighting factors, γ(t) is a power unit charge in

/kWh for the (t + 1) time stage, rs is the sth reser-

voir/tank level, s= 1, ...,S, ξis a unit conversion fac-

tor for electrical power relating water quantities to

electrical energies, and ηi is the pump efficiency of

the ith pump in the jth pump group, i = 1, ...,Uj and

j = 1, . . . ,Gp.

The decision variables are the pump speed over
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the prediction horizon. They are automatically

computed by the optimization solver to minimize

the objective junction while satisfying the optimiza-

tion constraints. The optimization constraints com-

pose of equality constraints and inequality con-

straints. However, from the implementation point

of view, the optimization constraints could be clas-

sified into implicit and explicit ones.

Explicit constraints: are often the control input

constraints. It can be the sequence of the pump

speed schedule or the ON/OFF state of pumps and

need to satisfy the physical constraints. They are

explicitly embedded into the optimization solver i.e.

umin ≤ u(t + k|t)≤ umax.

Implicit constraints: are the ones that have to be

implicitly embedded into the optimization solvers.

Implicit constraints are nonlinear and consist of all

equality constraints defining the hydraulic equilib-

rium state of the system. They correspond to the

set of flow continuity equations, volume/mass bal-

ance equations, and energy conservation equations.

The output constraint such as tank heads and flows

are also considered as implicit constraints. Implicit

constraints are composed of:

– Nodal flow continuity equations: ∑ j∈J−i
q j −

∑ j∈J+i
q j−di =

{
0 for i ∈M

lqi for i ∈Ml

– Water elements head-flow equations: hN+
j
−

hN−j
= Δh j(q j,u j) where q j is the flow at arc j

(liter/sec); hi is the head at node i (m); di is

the demand flow at node i (liter/sec); lqi is the

leakage flow at node i (liter/sec); u jis the con-

trol variable representing the state of valve or

pump at arc j; Δh is the head-flow characteristic

function at arc j; M(Ml) is the set of non-leaky

(leaky) nodes; J+i (J−i ) is the set of arcs whose

start (end) node are i; and N+
j (N

−
j )is the start

(end) node j

– Volume mass balance equations of

tanks/reservoirs

– Output constraints. They are in the form of

lower and upper bounds on certain flows, junc-

tion heads, and on all tank heads in order to meet

the tank capacity constraints.

Figure 6. Flowchart of the standard GA

5.2 Genetic Algorithm – the Optimization
Solver

GA represents a discrete variable optimization

technique based on the principles of genetics and

natural selection. The method was originally pro-

posed by Holland in 1975 [9], and further devel-

oped by Goldberg in 1989 [7]. GA has been exten-

sively used in many industrial engineering applica-

tions and so far represents one of the most com-

monly employed natural optimization techniques

for design of water distribution networks as evi-

denced by use of GA for sizing of pipes [14, 17],

evaluation of system reliability [16], and place-

ment of early warning detection sensors [12]. GA

has successfully solved the discontinuous, the non-

differentiable, the non-convex, the multiple peaks,

or highly nonlinear function optimization problems

which traditional analytical and numerical methods

are not well suited [8]. Advantages of this method

include:
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– The GA searches from a population of decision

variable sets, not a single decision variable set.

– The GA can optimize discrete or continuous

variables.

– The GA uses the objective function itself, not the

derivative information. [8]

– The GA algorithm uses probabilistic (not deter-

ministic) search rules.

– GA does not require discretization of state vari-

ables.

– GA does not require transition probabilities.

– GA models results in optimal or near optimal so-

lutions.

However, GA has also some disadvantages:

– Cannot efficiently handle large number of con-

straints.

– Computationally difficult to provide very long

string length with binary coding.

– Every iteration needs objective function evalua-

tion.

– Global solutions are not guaranteed.

Briefly, the GA algorithm is initiated with a ran-

dom population of individuals in which each indi-

vidual is represented by a binary string (i.e., chro-

mosome) for one possible solution. The standard

structure of the GA is illustrated in Fig.6. The ma-

jor components of the algorithm are explained as

below:

1. At the beginning of the computation process,

users specify the initial population in advance or

GA randomly creates an initial population. For

each population generation, a measure of the fit-

ness with respect to an objective function is cal-

culated.

2. If one of the pre-established criteria of the al-

gorithm such as a number of generations, time

limit, fitness limit, stall generations, stall time

limit, and fitness tolerance are met, then the op-

timization terminate and the optimal results are

obtained. Otherwise, go to step 3.

3. Based on this fitness value, the individuals are

selected to create the next generation (Selec-

tion). They are called parents.

4. GA use operators to produce children (offspring)

for the next generation of population. There

are different operators e.g. crossover, mutation.

Children are produced either by making random

changes to a single parent (mutation) or by com-

bining the vector entries of a pair of parents

(crossover). In the mutation process, all children

are mutated with a certain probability, which

ensures the probability of searching a particu-

lar subspace of the problem, the space is never

zero. It is intended to prevent premature con-

vergence and loss of genetic diversity. Whereas

in the crossover process, the individuals are re-

combined to produce offspring. The purpose of

crossover is to let individuals exchange useful

information with each other, and get higher fit-

ness in order to have better individual in the next

generation and have preferable performance.

5. Use new generated population for a further run

of the algorithm. Go to step 2.

In order to obtain the best result from GA, users

usually need to experiment with different options.

Selecting the best options for a problem involves

trial and error. There are quite a number of different

ways/options to improve results. Few of the most

important factors that need to be tuned in order to

get the good result are described as below:

– Population Size: represents the diversity of the

population. It is one of the most important fac-

tors that determines the performance of the ge-

netic algorithm performs is the diversity of the

population. If the average distance between in-

dividuals is large, the diversity is high; if the

average distance is small, the diversity is low.

Getting the right amount of diversity is a mat-

ter of trial and error. If the diversity is too high

or too low, the genetic algorithm might not per-

form well. However, the Population size should

be at least the value of Number of variables, so

that the individuals in each population span the

space being searched.
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– Initial range: specifies the range of the vectors in

the initial population that is generated by a cre-

ation function. If users know or have knowledge

approximately where the solution to a problem

lies, the initial range should be specified so that

the guess for the solution is contained and it can

enable GA search more effectively. However,

the genetic algorithm can find the solution even

if it does not lie in the initial range, provided that

the populations have enough diversity.

– Crossover fraction and Mutation function:

Crossover fraction effect the ability of the al-

gorithm to extract the best genes from different

individuals and recombine them into potentially

superior children. Different crossover fractions

lead to different performances of GA. Similarly,

different mutation function adds to the diversity

of a population and thereby increases the likeli-

hood that the algorithm will generate individu-

als with better fitness values. For certain prob-

lems, adjusting the amount of mutation fraction

can possibly make significant improvement of

the solutions.

– Initial population: has significant impact on

GA’s performance in the complex nonlinear con-

strained problem. The optimizing control prob-

lem of DWDS consists of many variables and

nonlinear constraints that GA cannot directly

handle. For GA in order for GA to perform ef-

fectively, initial population needs to be provided.

Different initial population might lead to dif-

ferent solutions. Without knowledgeable initial

population, GA are still able to randomly create

initial population itself, but it could lead to the

situations of no feasible solution being found, or

take tremendous computing time to converge.

Regarding to the application of complex

DWDS, the standard GA needs to be enhanced in

order to exploit specific features of the optimiza-

tion task and achieve required computing efficiency

[11].

5.3 Simulation Environment Implementa-
tion

The computer implementation is based on

MATLAB-EPANET environment. The optimiza-

tion problems are solved by standard GA [6] which

can be called through MATLAB Genetic Algorithm

Toolbox [1]. The simulation implementation is il-

lustrated in Fig.7. In order to solve the DWDS prob-

lem efficiently, the reduced search space method-

ology was employed by means of which the water

distribution network simulator (EPANET) [13] is

embedded directly to the optimization solver (GA).

Specifically, in the Predictive Controller block,

starting with the feasible set of control inputs, the

optimization solver i.e. GA passes the control in-

put into the EPANET for use in explicitly satisfy-

ing the implicit system constraints (equality con-

straints) and in evaluating the implicit bound con-

straints (inequality constraints). The water network

information (i.e. nodal pressure, tank level, heads,

flows) that are obtained by the EPANET are passed

back to GA for determining the objective function.

This process iteratively runs until the optimal con-

trol inputs at the present time step are found. The

EPANET here plays as the model of the DWDS.

The flow path of the optimization procedure within

the Model Predictive Controller block is shown in

Fig.8.

Figure 7. Simulation environment implementation

At each time step only the first part of the con-

trol inputs is applied to the Water Distribution Net-

work (plant) block. The EPANET is used again as

the plant of the DWDS. Note that there is always a

model-plant mismatch i.e. disturbances (predicted

demand and actual demand). The plant generates

the massive output data in which only the states

(tank levels) are fed back to the Model Predictive

Controllers block for the next time step use.

The EPANET that is embedded into GA takes

care of all hydraulic equations of DWDS. In other

words, it reduces the number of equality constraints

of the optimization problem; hence GA will only

have to find the solution in the reduced search
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space. Consequently, the overall computing time

is reduced. It is an important feature of reduced
search space methodology since the online opera-

tion of the RFMPC requires a tremendous comput-

ing effort.

Figure 8. Optimization procedure of MPC

The main specifications of the software and

hardware in the simulation:

– EPANET : Version 2.0

– MATLAB: Version 7.6.0.324 (R2008a)

– GA-Toolbox: Version 2.3 (2008a)

– CPU/Memory: 2.00 GHz CPU, 2.00GB RAM.

– Operating System: Windows XP Professional

5.4 Application of RFMPC to Example
Case Study DWDS

The DWDS, which is depicted in Figure 9 in-

cludes 1 source reservoir and 1 storage tank. Water

is pumped from the reservoir source by the pump

station and can also be supplied by the storage tank

(node 7).

The assumed positive flow is expressed in the

way the link ID shows, e.g. link 203 denotes the

positive flow direction from Node 2 to Node 3. The

negative value of the flow indicates the flow direc-

tion is opposite to the assumed positive flow direc-

tion, e.g. q402 < 0 means the flow direction is from

Node 3 to Node 2.

The prediction horizon is Hp = 24. The inter-

ested control input is pump speed sequence over 24

hours period. RFMPC is applied to produce con-

trol the input sequence. The tank level limits are:

rmin
s ≤ rs ≤ rmax

s , and these are the output con-

straints. The demands are predicted with the error

of 10% at each consumption node.

Figure 9. Diagram of an DWDS example

For the operational control purposes, the con-

figuration of the DWDS example is given in the ta-

ble 1, 2, 3, and 4 which includes the nodal eleva-

tion, nodal base demand, the operating constraints

for nodal pressure, daily nodal demand profile, tank

initial level and level range pipe, pipe and pump in-

stallation data, and time dependant electricity tariff.
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Table 1. Nodal data for the pipe network

Node ID Elevation(m) Minimum head(m) Maximum head(m) Base demand(l/s)

2 15.0 18.0 32.0 5.0

3 14.0 16.0 30.0 5.0

4 12.0 12.0 28.0 5.0

5 14.0 14.0 30.0 5.0

6 8.0 10.0 28.0 30.0

1 5.0

7 —— Tank/Reservoir nodes ——

Table 2. Tank (Reservoir) data of the example DWDS

Node ID Elevation(m) Initial level

above bot-

tom(m)

Min level

above bot-

tom(m)

Max level

above bot-

tom (m)

Tank diame-

ter(m)

7 10.0 5.0 3.0 10 15.0

1 15.0 ——————

Table 3. Pipe data of the example DWDS

Pipe ID Start node End node Length(m) Diameter(mm) C Value

203 2 3 1000 400.0 100

205 2 5 1000 400.0 100

304 3 4 1000 400.0 100

504 5 4 1000 300.0 100

406 4 6 1000 500.0 100

607 5 7 1000 500.0 100

Table 4. Pump data of the example DWDS

Pump ID Head node Tail node Coefficient Ā (10−2) Coefficient B̄ Cut-off head C̄ (m)

1 1 2 -0.5419 0 200
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Figure 10. Daily demand profile

Optimization problems are formulated with a

moving horizon Hp = 24hours ahead of present

time and the sampling period is fixed to 1 hour.

Electricity tariff difference is taken into account:

low tariff is charged at 4.51p/kWh for the night

time between 10:00pm–6:00am and high tariff is

9.72p/kWh for the daytime between 10:00pm–

6:00am

5.4.1 Designing RFMPC

The MPC task is solved by GA solver with the

optimization search in the reduced space. In this

search, the GA is coupled to the EPANET simula-

tor solving the DWDS equality constraints.

Figure 11. Robust output prediction at t = 0, Hr = 7

A method for generating ROP is chosen by ob-

serving the simulation results shown in Fig.11 The

SWROP and the LCROP are applied at t = 0 over

7 time steps. It can be seen in Fig.11 that the

SWROP method generates envelopes that are out-

side the region determined by the LCROP method.

Hence, the SWROP is applicable to our example

DWDS. Moreover, the envelopes calculated by the

two methods are very close over the first 6 steps.

The ROP horizon therefore is further reduced to 2

steps and the SWROP method is to be applied.

Also the relaxation gained in the algorithm for

determining the robustly safety zones (RFSZ) is se-

lected by simulation where several gain values are

tried and the results are illustrated in Fig.12 The

equality (14) in the step (iii) of the RFSZ relaxation

algorithm has more than one solution. Clearly, the

smaller safety zones are, the less conservative con-

trol actions are, and consequently a better controller

performance is achieved. In Fig.12, this is obtained

for small gain values. On the other hand, the com-

puting time is essential; hence the number of iter-

ations needed to reach the RFSZ should be mini-

mized. This is obtained for high gain values as de-

scribed in Fig.8. Therefore, gain ν = 0.6 is chosen

in order to trade between the two aspects.

Figure 12. Robustly feasible safety zones and the

corresponding modified tank upper limit for

different relaxation gain values.

In the considered objective function of the

corresponding MPC that has been applied to the

DWDS, a long term sustainable operation of the dis-

tribution system is guaranteed by a periodical con-

trol of the tank level back to its original status. This
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issue is embedded into the optimization problem as

a suitable penalty term.

There are some parameters such as termination

criteria, initial range, and population size in the GA

options that have been chosen by experiments in or-

der to obtain good simulation results within a rea-

sonable period of computing time. The initial popu-

lation is also provided to GA rather than let it create

itself. The property settings of GA are listed as be-

low:

StallTimeLimit=500;

PopulationSize=48;

StallGenLimit=10;

PopInitRange=[0.2;1.6];

5.4.2 Simulation Results

Firstly, the RFMPC is applied to the example

DWDS at t = 0. Robust feasibility at the obtained

control sequence is checked over the horizon Hr = 2

and the first two control inputs are assessed as ro-

bustly feasible. Hence, there is no need to acti-

vate the “Safety Zone Generator”. In Fig.13 two

tank trajectories are illustrated: one in a dash line

is obtained by applying the control sequence to the

model with the demand prediction while the second

one in solid is the tank trajectory seen in the real

system where the demand may differ from the pre-

dicted one up to 10%.

It can be seen in Fig.13 that the upper limit tank

constraint is violated during 5 hour to 7 hour time

period. Clearly, we are not aware of this violation at

t = 0. However, a lesson to be learnt is that applying

a whole control sequence obtained at t = 0 to the

network is not recommended not only in this case

but in general. Therefore, the RFMPC is kept ap-

plying to produce the control actions on-line by em-

ploying feedback and all its mechanism described

in this paper.

Figure 13. Predicted tank level trajectory by

RFMPC over the horizon at time instant t = 0 and

Hr = 2

Figure 14. Control actions - relative pump speed
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Figure 15. Tank trajectory over the 24 hours

Figure 16. Zoom-in of Fig.10 during 4–9 hours

The results are illustrated in Fig.14–16. It can

be seen in Fig.15 that the upper tank level con-

straint had to be modified by robustly feedback

safety zones over 5, 6, and 7 time steps in order to

achieve robust feedback of the control action over

these time steps. Although the modification does

not tighten the constraints excessively, its conser-

vatism would be improved by extending the robust

prediction horizon. The details of the situation over

5, 6, and 7 time steps are illustrated in Fig.16.

In order to assess the RFMPC feedback

strength, the control actions generated on-line are

also applied to the DWDS model. The resulting

tank trajectory and the control input are shown in

Fig.15 and Fig.14, respectively. The two trajec-

tories are much closer in Fig.15 than in Fig.13.

Hence, the possible impact of the feedback in com-

pensating the demand error impact is noticeable.

Lastly, as shown in Fig.16, the modified con-

straints are satisfied in the model but not in real-

ity. However, the actual constraint is met in reality,

showing the effectiveness of the RFSZ mechanism.

6 Conclusions

This paper has further developed Robustly Fea-

sible Model Predictive Control Method for the on-

line optimizing control of nonlinear plants with out-

put constraints under uncertainty. The RFMPC has

been applied to quantity control in Drinking Water

Distribution Systems. It has been illustrated by sim-

ulation based on an example DWDS. The effects of

the robust output prediction, shortening the robust

output prediction horizon, robustly feasible safety

zones, and the feedback strength of RFMPC have

been shown.

The combination of GA and EPANET via the

reduced space methodology has been applied in the

implementation of the DWDS. Nevertheless, meet-

ing the requirement of computing time during on-

line operation is still a big challenge for RFMPC

designers. In addition to the reduced space method-

ology, the gradient-type optimization solvers can be

utilized due to its advantage of taking the derivative

information. This interesting and important topic is

currently under future research.
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