
* Corresponding author: pawel.kowalski2@pg.edu.pl

Overhead wires detection by FPGA real-time image processing

Paweł Kowalski1* and Robert Smyk1
1Gdansk University of Technology, 80-233 Gdansk, Poland

Abstract. The paper presents design and hardware implementation of real-time image filtering for
overhead wires detection divided on image processing and results presentation blocks. The image
processing block was separated from the whole implementation, and its delay and hardware complexity
was analysed. Also the maximum frequency of image processing of the proposed implementation was
estimated.

1 Introduction
Nowadays, electrical energy is widely available and
consumed. One of the main transmission mediums are
overhead lines. It is essential to minimize the influence
of potential failures of such lines by performing frequent
inspections. This task can be achieved manually or partly
automated using inspection robots like drones [1–4]. In
this case, the research is focused on the impact of
distance from the line on drones operation and the
possibility of landing on wires. Also the prototypes of
the systems for aircraft collision avoidance with lines [4]
are known. In both cases the precise information about
the relative position of the wire is required. In this paper
the fast image filtering for wire detection and the
analysis of its hardware implementation are shown.

2 Wire detection algorithm

The algorithm consists of two main steps: edge detection
and edge reduction. Edge detection procedure is based
on using the 3x1 mask in the following form

3 1

 1
 0

1
P

. (1)

The algorithm provides relatively high sensitivity in
strengthening horizontal edges and at the same time is
insensitive to vertical edges [1–6]. The advantage of the
algorithm is rapid execution and small amount of
resources necessary for its implementation in the FPGA
[4–5]. It allows to design a filter working with a delay of
two pixels. When the pixel on position y is received, the
filtration result for position y-2 is known. The formula
used for edge detection is in the following form

1,1,, yxyxyx vvz , (2)

where vx,y is a pixel of image V (matrix with grayscale
pixels) with coordinates (x, y). The result of filtration of
the image V (2) is the matrix Z. The final step of the edge

detection is thresholding performed on the matrix Z,
resulting in the matrix Z' (2) containing

,

, ,

1
' 1 1

0

x y

x y x y

if z T
z when if z T

otherwise

 (3)

where z'x,y is an element of the Z' matrix with coordinates
(x, y).
 The wire in the image is visible as a line with a
slight curvature. Such a line consists of two opposite
parallel edges, which in the case of (3) gives the result
with the opposite signs. In the edge reduction step the
opposite edges are detected. In this step two edges are
reduced to one line. At this stage new matrix W is
created with the same size as the Z array but initialized
by zeros

1'

1'
0':]1;1[

1
,

,

,

2/,

dyx

yx

hyx

dyx
z

z
zdh

ifw ,d=1,2,..dmax (4)

where dmax is the maximum thickness of the detecting
wire. This value can be selected based on the
approximate wire thickness, distance from the wire and
image parameters.

3 Hardware Implementation
The digital camera sends an image in a series of pixels.
In the standard approach using a PC, processing starts
ones the whole frame has been transmitted to memory.
In the FPGA environment, the processing can be
performed in the same time when the pixel data of frame
is being transmitting. In comparison, when the FPGA
finishes the processing, the processing in standard PC
only starts.

The whole processing path was implemented in the
Intel Cyclone V FPGA embedded in Terasic DE10-Nano
development board. The raw image data is obtained by a
digital camera OV7670.

ITM Web of Conferences 28, 01046 (2019) https://doi.org/10.1051/itmconf/20192801046
ZKwE´2019

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution
License 4.0 (http://creativecommons.org/licenses/by/4.0/).

Fig. 1. Block diagram of the hardware implementation.

 Fig. 1 shows a block diagram of the implemented
processing path. It consists of two main sections: image
processing and results presentation. A middle element is
the LineBuffer module (LB), where the incoming data in
the form of a raw image from the camera and the final
processed image are assembled into one line of the
output image.
 The lines are assembled, buffered and displayed on
the monitor during the result presentation procedure. The
combined image consists of a raw image from the
camera and a processed image. Buffering is needed due
to the frequency difference between the camera and the
monitor. The section of the result presentation was built
using Frame Buffer II IP Core (FB II) and Clocked
Video IP Core (CV). These cores are available in the
Altera Quartus 16.1 environment. FB II is buffering the
image in the DDR3 RAM. The FrameWriter (FW)
module takes subsequent pixels from the LB and sends
them to the FB II and the CV transmits the image from
FB II to the LCD monitor via HDMI.

 The image processing procedure begins by
collecting raw data from the camera. The camera sends
data via 8-bit parallel interface. A single pixel is sent in
two 8-bits data packets containing 15 significant bits, 5
bits per each RGB component. Collecting the data from
the camera has been carried out in the GetCamPix
module (GCP). It generates three signals at the output:

- pixel value (three RGB components, 5 bits each),
- x and y coordinates (11 bits each).

These signals are sent simultaneously to the LB and
RgbToGray (R2G) modules. R2G in real time converts
pixels to grayscale using a formula (5)

BlueGreenRedGray *6*3 (5)
The gray scale pixels are used in EdgeExtractor

(EE). The EE module performs edge extraction (2) on a
signal from R2G module. The resultant value generated
by the EE is in the SM code (sign-magnitude). Further
identification of the edge type is determined by the most
significant bit (MSB). MSB=0 denotes positive and
MSB=1 the negative edge. The result of the EE is used
in the ER module for opposite parallel edges detection.
The pixel position is the output from the module after
edge reduction. Every obtained non-zero position gives
detected line (pixel=1), where other pixels=0.

Fig. 6. Example of wire detection in the image, A – raw image
from the camera, B – filtered image.

Fig. 6 shows an example of wire detection using the
described method. In the experiment, the threshold T and

the maximum thickness of wire dmax were selected
experimentally.

4 Hardware analysis
The hardware amount and maximum operational
frequency for the implemented structure were
determined using TimeQuest Timing Analyzer from the
Quartus Prime package. The main modules:
EdgeExtractor and EdgeReductor were analyzed. Other
modules have been omitted. The maximum pipelining
frequency was 245 MHz for EE and 240 MHZ for ER.
This corresponds to an image stream with a maximum
frequency of 780 frames/s at a resolution of 640x480 or
115 frames/s for a FullHD video (1920x1280).

Tab. 1. Synthesis results in FPGA Cyclone V.

 ALM
block

memory
bits

registers Fmax
[Mhz]

max [fps]
640x480 FullHD

EE 15 0 5 245 797 118
ER 35 0 74 240 780 115

5 Conclusion
The paper presents the design and hardware
implementation of real-time image filtering for overhead
wires detection. The proposed procedure is characterized
by low latency and gives a small footprint in the FPGA
resources. Each significant stage of the algorithm is fully
pipelined. The effectiveness of the detection with the
proposed solution was tested experimentally in the real
environment.

References
1. P. Kowalski, R. Smyk, Pozn Univ Technol Acad J,

Electr Eng, 96, 255–266 (2018)
2. P. Kowalski, M. Czyżak, Pozn Univ Technol Acad

J, Electr Eng, 96, 243–254 (2018)
3. P. Kowalski, M. Czyżak, R. Smyk, ITM Web Conf.,

1044 (2018)
4. P. Kowalski, R. Smyk, Pozn Univ Technol Acad J,

Electr Eng, 100, 99–110 (2019)
5. P. Kowalski, R. Smyk, Zeszyty Naukowe Wydziału

Elektrotechniki i Automatyki Politechniki
Gdańskiej, 61, 49–52 (2018)

6. J. B. Burns, A. R. Hanson, E. M. Riseman, IEEE
Transactions on Pattern Analysis & Machine
Intelligence, 8, 4, 425–455 (1986)

A B

2

ITM Web of Conferences 28, 01046 (2019) https://doi.org/10.1051/itmconf/20192801046
ZKwE´2019

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

