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Abstract

The paired domination subdivision number sdpr(G) of a graph
G is the minimum number of edges that must be subdivided (where
an edge can be subdivided at most once) in order to increase the
paired domination number of G. We prove that the decision prob-
lem of the paired domination subdivision number is NP-complete
even for bipartite graphs. For this reason we define the paired domi-
nation multisubdivision number of a nonempty graph G, denoted by
msdpr(G), as the minimum positive integer k such that there exists
an edge which must be subdivided k times to increase the paired do-
mination number of G. We show that msdpr(G) ≤ 4 for any graph
G with at least one edge. We also determine paired domination mul-
tisubdivision numbers for some classes of graphs. Moreover, we give
a constructive characterizations of all trees with paired domination
multisubdivision number equal to 4.
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1 Introduction

For domination problems, multiple edges and loops are irrelevant, so we
forbid them. We use V (G) and E(G) for the vertex set and the edge set of
a graph G and denote |V (G)| = n, |E(G)| = m. The neighbourhood NG(v)
of a vertex v ∈ V (G) is the set of all vertices adjacent to v and NG[v] =



NG(v)∪ {v}. The private neighbourhood of a vertex u with respect to a set
D ⊆ V (G), where u ∈ D, is the set PNG[u,D] = NG[u]−NG[D − {u}]. If
v ∈ PNG[u,D], then we say that v is a private neighbour of u with respect
to the set D.

We say that a vertex v of a graph G is a leaf if |NG(v)| = 1. A vertex u
is called a support vertex if it is adjacent to a leaf. If u is adjacent to more
than one leaf, then we call u a strong support vertex.

A subset D of V (G) is a dominating set in G if every vertex of V (G)−D
has at least one neighbour in D.

A paired dominating set of a graph G is a set S of vertices of G such
that every vertex of G is adjacent to some vertex of S and the subgraph
G[S] induced by S contains a perfect matching M (not necessary induced).
Two vertices joined by an edge of M are said to be paired in S. A matching
in an induced subgraph G[S] we denote by MS . Every graph without an
isolated vertex has a paired dominating set since the leaves of any maximal
matching form such a set. The paired domination number of G, denoted
by γpr(G), is the minimum cardinality among all paired dominating sets in
G. A minimum paired dominating set of a graph G is called a γpr(G)-set.
Paired domination was studied for example in [3], [10] and [11].

For a graph G = (V,E), the subdivision of an edge e = uv ∈ E with
vertex x leads to a graph with vertex set V ∪ {x} and edge set (E −
{uv})∪{ux, xv}. Let Ge1,e2,...,ek denote the graph G with subdivided edges
e1, e2, . . . , ek, where each edge is subdivided once. Let Ge,t, t ∈ {1, 2, . . . }
denote graph G with subdivided edge e with t vertices (instead of the edge
e = uv we have a path (u, x1, x2, . . . , xt, v)). The influence of subdividing
an edge on the domination number is studied for example in [1], [2] and [4].

The spider S(`1, ..., `k), `i ≥ 1, k ≥ 2, is a tree obtained from K1,k by
subdividing the edge uvi `i − 1 times, i = 1, ..., k. Note that S(2, 2) ∼= P5.

A vertex u ∈ V (G) is said to be γpr(G)-critical if removing u from G
results in a graph with smaller paired domination number, i.e. γpr(G−u) <
γpr(G).

For a set U ⊆ V (G) and a vertex u ∈ V (G) − U let d(u, U) denote
the minimum distance between u and a vertex of U , that is d(u, U) =
min{d(u, v) : v ∈ U}.

The paired domination subdivision number, sdpr(G), of a graph G is the
minimum number of edges which must be subdivided (where each edge can
be subdivided at most once) in order to increase the paired domination
number. The paired domination subdivision number was defined in [6] and
is also studied for example in [5].

In [4] the domination multisubdivision number of a graph was intro-
duced. In this paper we define a similar parameter, denoted msdpr(uv),
to be the minimum number of subdivisions of the edge uv such that the
paired domination number of the graph with multisubdivided uv is greater
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than γpr(G). Moreover, let the paired domination multisubdivision number
of a graph G, having at least one edge, denoted by msdpr(G), be defined
as

msdpr(G) = min{msdpr(uv) : uv ∈ E(G)}.

Paired domination multisubdivision number is well defined for all graphs
without an isolated vertex. For any unexplained terms and symbols see [9].

2 NP-completeness of paired domination sub-
division problem

The decision problem of paired domination subdivision problem in this
paper is stated as follows:
PAIRED DOMINATION SUBDIVISION NUMBER (PDSN)
INSTANCE: Graph G = (V,E) and the paired domination number of G,
γpr(G).
QUESTION: Is sdpr(G) > 1?

Theorem 1 PAIRED DOMINATION SUBDIVISION NUMBER is NP-
complete even for bipartite graphs.

Proof. The proof is by a transformation from 3-SAT, which was proven
to be NP -complete in [7]. The problem 3-SAT is the problem of determining
if there exists an interpretation that satisfies a given Boolean formula. The
formula in 3-SAT is given in conjunctive normal form, where each clause
contains three literals. We assume that the formula contains the instance
of any literal u and its negation ¬u (in the other case all clauses containing
the literal u are satisfied by the true assignment of u).

Given an instance, the set of literals U = {u1, u2, . . . , un} and the set
of clauses C = {c1, c2, . . . , cm} of 3-SAT, we construct the following graph
G. For each literal ui construct a gadget Gi on 9 vertices, where ui and
¬ui are the leaves (however ui and ¬ui are not necessarily to be leaves in
G), see Fig. 1.

For each clause cj we have a clause vertex cj , where vertex cj is adjacent
to the literal vertices that correspond to the three literals it contains. For
example, if cj = (u1 ∨ ¬u2 ∨ u3), then the clause vertex cj is adjacent to
the literal vertices u1, ¬u2 and u3. Then add new vertices x0, x1 and x2 in
such a way that x2 is adjacent to every clause vertex cj and to x1, and x0
is adjacent x1. Hence x0 is of degree one, x1 is of degree two and x2 is of
degree m+ 1. Clearly we can see that G is a bipartite graph and it can be
built in polynomial time (see Fig. 2).

First observe that each support vertex is contained in any minimum
paired dominating set of G. Moreover, any two suport vertices are not
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ui ¬ui

Figure 1: A gadget Gi

adjacent. There are 2n+ 1 support vertices in G: two in each gadget and
x1. Thus, γpr(G) ≥ 4n+2. On the other hand, it is possible to construct a
paired dominating set of G of cardinality 4n+2. Therefore, γpr(G) = 4n+2.

Denote by G1, G2, . . . , Gm(G) the graph obtained from G by subdivid-
ing once edge e1, e2, . . . , em(G), respectively. For a given graph G and its
paired domination number γpr(G) it is possible to verify a certificate for
the PDSN problem, which are paired dominating sets of cardinality γpr(G)
in G1, G2, . . . , Gm(G), in polynomial time.

Assume first C has a satisfying truth assignment. If we subdivide any
edge belonging to a gadget Gi, then we may construct a minimum paired
dominating set of the resulting graph by adding to it four vertices from each
gadget Gi and additionally x1, x2. Hence the paired domination number
does not increase. The situation is similar if we subdivide any edge incident
with a clause vertex. Now let x be the new vertex obtained by subdividing
the edge x0x1 in G and denote by Gx the obtained graph. Since C has a
satisfying truth assignment, the minimum paired dominating set of Gx is
constructed by taking the vertices defined by the truth assignment together
with three more vertices from each gadget Gi and together with x and
x1. The situation is similar if we subdivide the edge x1x2. Therefore we
conclude that if C has a satisfying truth assignment, then sdpr(G) > 1.

Assume now C does not have a satisfying truth assignment. Then
subdivide the edge x0x1 to obtain the graph Gx. The minimum paired
dominating set of Gx must contain at least four vertices from each gadget
Gi and additionally x and x1. However, since C does not have a satisfying
truth assignment, no subset of 4n vertices of G1∪G2∪· · ·∪Gn can pairwise
dominate each gadget vertex and each clause vertex. Therefore if C does
not have a satisfying truth assignment, then sdpr(G) = 1.

The decision problem of paired domination multisubdivision problem
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u0 ¬u0 u1 ¬u1 u2 ¬u2 u3 ¬u3

c0 c1 c2 c3

x2

x1

x0

Figure 2: A construction of G for (u0 ∨ u1 ∨ u2)∧ (¬u0 ∨ u1 ∨ u2)∧ (¬u1 ∨
¬u2 ∨ u3) ∧ (¬u1 ∨ ¬u2 ∨ ¬u3)

may be stated similarly:
PAIRED DOMINATION MULTISUBDIVISION NUMBER (DMN)
INSTANCE: Graph G = (V,E) and the paired domination number γpr(G).
QUESTION: Is msdpr(G) > 1?

Observation 2 Let G be a graph. Then

sdpr(G) = 1 if and only if msdpr(G) = 1.

This observation implies that one may prove the following result in
similar manner as Theorem 1.

Theorem 3 PAIRED DOMINATION MULTISUBDIVISION NUMBER
is NP-complete even for bipartite graphs.
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3 Results and bounds for paired domination
multisubdivision number

In [6] the paired domination subdivision numbers of cycles and paths are
determined. Since any cycle (any path) with an edge subdivided k times
is isomorphic to the cycle (path) with k edges subdivided once each, we
obtain the following observation.

Observation 4 For a cycle Cn and a path Pn, where n ≥ 3,

msdpr(Cn) = sdpr(Cn) = msdpr(Pn) = sdpr(Pn) =


1 if n ≡ 0 (mod 4),
2 if n ≡ 3 (mod 4),
3 if n ≡ 2 (mod 4),
4 if n ≡ 1 (mod 4).

Proposition 5 For any connected graph G with at least one edge,

msdpr(G) ≤ 4.

Proof. We subdivide an edge uv ∈ E(G) with vertices w, x, y, z. Denote
by D′ any γpr(Guv,4)-set. Then x, y ∈ D′ or w, x ∈ D′ or w, z ∈ D′ or
y, z ∈ D′. In all these cases it is no problem to verify that γpr(G) < |D′|.
Hence, msdpr(G) ≤ 4.

Now we recall a result of Favaron et al. [6].

Theorem 6 [6] For every connected graph G on n ≥ 3 vertices and m
edges, sdpr(G) = m if and only if G is a spider S(2, . . . , 2).

This result implies that the difference between sdpr(G) and msdpr(G)
cannot be bounded from above by any integer in the general case. Moreover,
the inequality msdpr(G) ≤ sdpr(G) is not true in general, since for a corona
Cn◦K1, where Cn is an odd cycle, we have sdpr(Cn◦K1) = 2 and msdpr(Cn◦
K1) = 4.

Next two results are given without proof.

Proposition 7 For a complete graph Kn, n ≥ 3,

msdpr(Kn) = 2.

Proposition 8 For a complete bipartite graph Kp,q, p ≤ q,

msdpr(Kp,q) =

 1 for p > 1,
2 for p = 1, q > 1,
3 for p = q = 1.
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Proposition 9 If G contains a strong support vertex, then

msdpr(G) ≤ 2.

Proof. Let u, v ∈ V (G) be two leaves adjacent to a support vertex w.
Let us subdivide the edge uw with vertices x and y (we replace the edge
uw with the path (u, x, y, w)) and let D be a γpr(Guw,2)-set. Obviously,
x,w ∈ D. If w is paired with y in D, then x is paired with u in D and
then D−{x, y} is a paired dominating set in G. If w is paired with vertex
z 6= y, then x can be paired with a ∈ {u, y} and again D−{x, a} is a paired
dominating set in G. In all cases |D| > γpr(G), which completes the proof.

Lemma 10 Let G be a graph with msdpr(G) = 4 and let uv ∈ E(G) be
such that dG(u) = 1. Then

• u belongs to some γpr(G)-set;

• γpr(G− u) < γpr(G), i.e. u is γpr(G)-critical.

Proof. Let G be a graph with msdpr(G) = 4 and let uv ∈ E(G) be
such that dG(u) = 1. Denote by G′ the graph obtained from G by sub-
dividing uv with vertices x1, x2, x3 (we replace the edge uv with the path
(u, x1, x2, x3, v)). Since msdpr(G) = 4, clearly γpr(G′) = γpr(G).

Without loss of generality we may assume that x1, x2 belong to a
γpr(G′)-set denoted byD′ and u /∈ D′. If x3, v ∈ D′, then (D′−{x1, x2, x3})∪
{u} would be a smaller paired dominating set of G, which is impossible.
If x3 /∈ D′ and v ∈ D′, then D′ − {x1, x2} would be a smaller paired do-
minating set of G, a contradiction. We conclude (D′ − {x1, x2}) ∪ {u, v}
is a minimum paired dominating set of G and hence u belongs to some
γpr(G)-set. Moreover,

γpr(G− u) = γpr(G′ − {u, x1, x2, x3}) < γpr(G′) = γpr(G),

which implies that u is γpr(G)-critical.

Theorem 11 Let G be a connected graph with msdpr(G) = 4.Then each
edge of G belongs to a perfect matching in a subgraph induced by a minimum
paired dominating set in G.

Proof. Suppose G is a connected graph with msdpr(G) = 4 and suppose
there is an edge uv such that for any minimum paired dominating set D
and for any perfect matching MD in G[D], we have uv 6∈ MD. Then
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by Lemma 10, neither u nor v has degree 1. Denote by G′ the graph
obtained from G by subdividing uv with vertices x1, x2, x3 (we replace the
edge uv with the path (u, x1, x2, x3, v)). Let D be a γpr(G′)-set. Hence,
|D| = γpr(G′) = γpr(G) and D ∩ {x1, x2, x3} 6= ∅. We can assume that
D ∩ {x1, x2, x3} ≤ 2, because if |D ∩ {x1, x2, x3}| = 3, then we could
exchange one vertex from {x1, x2, x3} with u or v to obtain a minimum
paired dominating set of G′ such that |D ∩ {x1, x2, x3}| = 2.

If x2 ∈ D, then without loss of generality we assume that x1 ∈ D and
x3 6∈ D. If u 6∈ D and v 6∈ D, then D∗ = (D − {x1, x2}) ∪ {u, v} is a
minimum paired dominating set of G such that uv ∈ MD∗ , where MD∗

is a matching in G[D∗], a contradiction. Therefore, u ∈ D or v ∈ D.
However in each of these cases D − {x1, x2} is a paired dominating set in
G of cardinality smaller than γpr(G), which is not possible.

Assume now x2 6∈ D. Then, without loss of generality, {u, x1} ⊂ D.
If x3 ∈ D, then v ∈ D and D − {x1, x3} is paired dominating set in G
of smaller cardinality then γpr(G), which again is not possible. If x3 6∈
D, then v ∈ D and let us denote by v′ a vertex such that vv′ ∈ MD.
Hence, either D − {u, x1} is paired domination set in G of cardinality less
than γpr(G), which is not possible, or the graph G′ = Guv,3 contains a
vertex u′ ∈ PNG′ [u,D]. In the second case D′ = (D − {x1}) ∪ {u′} is a
paired dominating set of G. Moreover, v′ has a private neighbour, let us say
v′′, in relation to the set D′ (otherwise D′−{u′, v′} would be a γpr(G)–set,
which is not possible). Hence, we obtain that D∗ = (D′ − {u′}) ∪ {v′′} is
a paired dominating set in G and furthermore |D∗| = |D′| = |D| = γpr(G)
and uv ∈MD∗ , a contradiction.

The converse statement is not true. Each edge of a cycle belongs to a
matching of a minimum paired dominating set of the cycle, but the paired
domination multisubdivision numbers of cycles vary from 1 to 4. However
the converse of Theorem 11 is true for trees without strong support vertices,
see Lemma 15.

4 Paired domination multisubdivision num-
bers of trees

In this section we consider paired domination multisubdivision numbers of
trees. The main result of this section is a constructive characterization of
all trees T with msdpr(T ) = 4.

The label of a vertex v is also called its status and is denoted by sta(v).
Let the vertices of P5 have labels as follows: the two leaves have status A,
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the two support vertices have status B and the remaining vertex has status
C.

Let T be the family of all trees T that can be obtained from a sequence
T1, . . . , Tj (j ≥ 1) of trees such that T1 is the path P5 and T = Tj , and, if
j > 1, then Ti+1 can be obtained recursively from Ti by the operation T1,
T2 or T3:

Operation T1. Assume sta(v) = A. Then add a path (w, x, y, z) and the
edge vw. Let sta(x) = C, sta(w) = sta(y) = B and sta(z) = A.

Operation T2. Assume sta(v) = B. Then add a path (x, y, z) and the
edge vx. Let sta(x) = C, sta(y) = B and sta(z) = A.

Operation T3. Assume sta(v) = C. Then add a path (y, z) and the edge
vy. Let sta(y) = B and sta(z) = A.

Fig. 3 and 4 show examples of trees belonging to the family T .

A B C B A B C B A

Figure 3: Tree T2 obtained from P5 by operation T1

A B C B A B C B A

B

A

C

B

A

Figure 4: T4 obtained from T2 by operation T2 and operation T3

The next result follows immediately from the way in which each tree in
the family T is constructed. Denote by Ω(T ) the set of all leaves of T and
by A(T ) the set of all vertices of T with status A.

Observation 12 If a tree T belongs to the family T and x, y ∈ V (T ),
then:

1. Every leaf of T has status A and every support vertex has status B.

2. If d(x,Ω(T )) = 2, then sta(x) = C.

3. If d(x,Ω(T )) = 3, then sta(x) = B.
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4. If d(x,Ω(T )) = 4, then sta(x) ∈ {A,C}.

5. If sta(x) = A or sta(x) = C, then each neighbour of x has status B.

6. No two vertices with the same status are adjacent.

7. If sta(x) = B, then x is adjacent to exactly one vertex with status A
and at least one vertex of status C.

8. If sta(x) = sta(y) = A, then d(x, y) ≥ 4. Thus no paired vertices of
a minimum paired dominating set of T can dominate both x and y.
Therefore, γpr(T ) ≥ 2|A(T )|.

The following lemmas give some less obvious properties of trees in the
family T .

Lemma 13 Let T be a tree belonging to the family T . Then

γpr(T ) = 2|A(T )|.

Proof. Let T be a tree belonging to the family T . We proceed by induction
on the number s(T ) of operations T1, T2, T3 required to construct the tree
T . If s(T ) = 0, then clearly the statement is true.

Now let T be a tree with s(T ) = k for some positive integer k and
assume that for each tree T ′ belonging to the family T with s(T ′) < k, is
γpr(T ′) = 2|A(T ′)|. Then T can be obtained from a tree T ′ belonging to
T by operation T1, T2 or T3.

Clearly |A(T )| = |A(T ′)| + 1. Thus, by Observation 12(8) and the
induction hypothesis,

γpr(T ) ≥ 2|A(T )| = 2|A(T ′)|+ 2 = γpr(T ′) + 2.

On the other hand, it is possible to add to a minimum paired dominating
set of T ′ two vertices belonging to V (T )−V (T ′) in order to obtain a paired
dominating set of T . This implies that γpr(T ) ≤ γpr(T ′) + 2. Therefore,
γpr(T ) = 2|A(T )|.

Lemma 14 Let T be a tree belonging to the family T and let u ∈ V (T ).
Then

1. γpr(T − u) < γpr(T ) (or u is γpr(T )-critical) if sta(u) = A.

2. γpr(T − u) = γpr(T ) (or u is γpr(T )-stable) if sta(u) = C.

3. msdpr(T ) = 4.
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Proof. Let T be a tree belonging to the family T . We proceed by induction
on the number s(T ) of operations required to construct the tree T . If
s(T ) = 0, then T = P5 and clearly all statements are true.

Now let T be a tree with s(T ) = k for some positive integer k and
assume that for each tree T ′ belonging to the family T with s(T ′) < k, the
statements 1.-3. are true. Then T can be obtained from a tree T ′ belonging
to T by operation T1, T2 or T3.

Assume first that T is obtained from T ′ by operation T1, e.g. T is
obtained from T ′, where v ∈ V (T ′) and sta(v) = A, by adding a path
(w, x, y, z) and the edge vw, with sta(x) = C, sta(w) = sta(y) = B and
sta(z) = A.

Let u ∈ V (T ) be such that sta(u) = A. If u belongs also to V (T ′), then
by the inductive hypothesis, Lemma 13 and the construction of T from T ′,

γpr(T−u)−2 ≤ γpr(T−{w, x, y, z, u}) = γpr(T ′−u) < γpr(T ′) = γpr(T )−2,

which implies that γpr(T −u) < γpr(T ). If u /∈ V (T ′), then u = z and since
v is γpr(T ′)-critical, we obtain

γpr(T−u)−2 ≤ γpr(T−{w, x, y, u, v}) = γpr(T ′−v) < γpr(T ′) = γpr(T )−2.

Therefore, if u ∈ V (T ) and sta(u) = A, then u is γpr(T )-critical.
Let u ∈ V (T ) be such that sta(u) = C. If u belongs also to T ′, then by

the inductive hypothesis, Lemma 13 and the construction of T from T ′,

γpr(T−u)−2 ≤ γpr(T−{w, x, y, z, u}) = γpr(T ′−u) = γpr(T ′) = γpr(T )−2,

which implies that γpr(T − u) ≤ γpr(T ). Since T and T − u have the same
number of vertices with status A and each neighbour of a vertex of status
A is of status B, γpr(T − u) = γpr(T ). If u /∈ V (T ′), then u = x and since
u is γpr(T ′)-critical, we have

γpr(T−u)−4 ≤ γpr(T−{w, x, y, z, u}) = γpr(T ′−u) < γpr(T ′) = γpr(T )−2.

Hence γpr(T − u) ≤ γpr(T ). Since T and T − u have the same number
of vertices with status A and each neighbour of a vertex of status A is of
status B again we obtain that γpr(T −u) = γpr(T ). Therefore, if u ∈ V (T )
and sta(u) = C, then u is γpr(T )-stable.

Let ss′ be an edge of the tree T . If ss′ ∈ E(T ′), then by the induction
hypothesis applied to T ′ and the construction of T , we see that subdividing
ss′ three times will not increase the paired domination number of T . If
ss′ /∈ E(T ′), then the tree T ′′ obtained from T by subdividing ss′ three
times is isomorphic to the tree obtained from T ′ by attaching to v ∈ V (T ′)
a path P7 = (x1, x2, . . . , x7). Since v is γpr(T ′)-critical, we conclude that

11

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


any γpr(T ′ − v)-set may be extended to a paired dominating set of T ′′ by
adding x1, x2, x5, x6. Thus γpr(T ′′) ≤ γpr(T ). Therefore msdpr(T ) = 4.

Assume next that T is obtained from T ′ by operation T2, e.g. T is
obtained from T ′, where v ∈ V (T ′) and sta(v) = B, by adding a path
(x, y, z) and the edge vx, with sta(x) = C, sta(y) = B and sta(z) = A.

Let u ∈ V (T ) be such that sta(u) = A. If u belongs also to T ′, then by
the inductive hypothesis, Lemma 13 and the construction of T from T ′,

γpr(T −u)−2 ≤ γpr(T −{x, y, z, u}) = γpr(T ′−u) < γpr(T ′) = γpr(T )−2,

which implies that γpr(T −u) < γpr(T ). If u /∈ V (T ′), then u = z and since
sta(v) = B, v is adjacent in T ′ to a vertex with status A, say v′. Then v′

is γpr(T ′)-critical, so we obtain

γpr(T ′ − v′) < γpr(T ′) = γpr(T )− 2.

Since v′ is γpr(T ′)-critical, v does not belong to any γpr(T ′ − v′)-set. Thus
any γpr(T ′ − v′)-set may be extended to a paired dominating set of T − u
by adding to it x, v. Therefore,

γpr(T − u) ≤ γpr(T ′ − v′) + 2 < γpr(T ).

We conclude that if u ∈ V (T ) and sta(u) = A, then u is γpr(T )-critical.
Let u ∈ V (T ) be such that sta(u) = C. If u belongs also to T ′, then by

the inductive hypothesis, Lemma 13 and the construction of T from T ′,

γpr(T −u)−2 ≤ γpr(T −{x, y, z, u}) = γpr(T ′−u) = γpr(T ′) = γpr(T )−2,

which implies that γpr(T − u) ≤ γpr(T ). Since T and T − u have the same
number of vertices with status A, γpr(T − u) = γpr(T ). If u /∈ V (T ′), then
u = x and since sta(v) = B, v is adjacent in T ′ to a vertex with status A,
say v′. Then v′ is γpr(T ′)-critical, so we obtain

γpr(T ′ − v′) < γpr(T ′) = γpr(T )− 2.

Thus, γpr(T ′ − v′) ≤ γpr(T ) − 4. Since v′ is γpr(T ′)-critical, v does not
belong to any γpr(T ′−v′)-set. Hence, any γpr(T ′−v′)-set may be extended
to a minimum paired dominating set of T − u by adding v, v′ and y, z.
Therefore, γpr(T−u) = γpr(T ). We conclude that if u ∈ V (T ) and sta(u) =
C, then u is γpr(T )-stable.

Let ss′ be an edge of the tree T . If ss′ ∈ E(T ′), then by the induction
hypothesis applied to T ′ and the construction of T , we see that the subdivi-
sion of ss′ three times will not increase the paired domination number of T .
Thus assume ss′ /∈ E(T ′). Then the tree T ′′ obtained from T by subdivision
of ss′ three times is isomorphic to the tree obtained from T ′ by attaching
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to v ∈ V (T ′) a path P6 = (x1, x2, . . . , x6). Since sta(v) = B, v is adjacent
in T ′ to a vertex with status A, say v′. Moreover, γpr(T ′−v′) ≤ γpr(T )−4.
Since v′ is γpr(T ′)-critical, v does not belong to any γpr(T ′−v′)-set. Hence
any γpr(T ′ − v′)-set may be extended to a paired dominating set of T ′′ by
adding v, x1, x4, x5. Thus γpr(T ′′) ≤ γpr(T ). Therefore msdpr(T ) = 4.

Lastly, assume that T is obtained from T ′ by operation T3, e.g. T is
obtained from T ′, where v ∈ V (T ′) and sta(v) = C, by adding a path (y, z)
and the edge vy, with sta(y) = B and sta(z) = A.

Let u ∈ V (T ) be such that sta(u) = A. If u belongs also to T ′, then
similarly as in previous cases, we obtain that γpr(T − u) < γpr(T ). If
u /∈ V (T ′), then u = z and by the induction hypothesis, each edge of T ′

belongs to a matching of a minimum paired dominating set of T ′. Thus
there exists a γpr(T ′)-set containing v. Since vy ∈ E(T ),

γpr(T − u) = γpr(T ′) < γpr(T ).

We conclude that if u ∈ V (T ) and sta(u) = A, then u is γpr(T )-critical.
Let u ∈ V (T ) be such that sta(u) = C. Then u belongs also to T ′ and

similarly as in previous cases, we obtain that γpr(T − u) = γpr(T ). Thus u
is γpr(T )-stable.

Let ss′ be an edge of the tree T . If ss′ ∈ E(T ′), then by the induction
hypothesis applied to T ′ and the construction of T , we see that the subdivi-
sion of ss′ three times will not increase the paired domination number of T .
Thus assume ss′ /∈ E(T ′). Then the tree T ′′ obtained from T by subdivid-
ing ss′ three times is isomorphic to the tree obtained from T ′ by attaching
to v ∈ V (T ′) a path P5 = (x1, x2, . . . , x5). Since sta(v) = C, v belongs to
a γpr(T ′)-set, say D′. Then D = D′ ∪ {x3, x4} is a paired dominating set
of T ′′. Then γpr(T ′′) ≤ γpr(T ) and therefore msdpr(T ) = 4.

Lemma 15 Let T be a tree of order at least 4, without strong support
vertices and such that each edge of T belongs to a matching of a minimum
paired dominating set of T . Then T belongs to the family T .

Proof. The statement is clearly true for any tree T with 4 or 5 vertices.
We proceed by induction on the number of vertices of a tree.

Let T be a tree with at least six vertices, without strong support vertices
and such that each edge of T belongs to a matching of a minimum paired
dominating set of T . We assume that the result is true for each tree T ′

with n(T ′) < n(T ). Denote by (x1, x2, . . . , xk) a longest path contained in
T . Then d(x2) = 2.

If x3 is a support vertex, say x0 is of degree 1 and is adjacent to x3,
then by assumptions x0x3 are paired in some minimum paired dominating
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set D of T . But then x1, x2 ∈ D and D − {x0, x1} with x2, x3 paired is a
smaller paired dominating set of T , which is impossible. Thus x3 is not a
support vertex.

If d(x3) > 2, then more P2’s are attached to x3 and, since each edge of T
belongs to a matching of a minimum paired dominating set of T , each edge
of T ′ = T−{x1, x2} belongs to a matching of a minimum paired dominating
set of T ′. Further, by the construction of T ′ from T , T ′ also is without
strong support vertices. Thus T ′ belongs to the family T . Moreover, since
dT ′(x3,Ω(T ′)) = 2, Observation 12 implies that sta(x3) = C. Hence T
may be obtained from T ′ by operation T3. Therefore T ∈ T .

Assume d(x3) = 2. If x4 is a support vertex, then since each edge
of T belongs to a matching of a minimum paired dominating set of T ,
each edge of T ′ = T − {x1, x2, x3} belongs to a matching of a minimum
paired dominating set of T ′. Further, by the construction of T ′ from T ,
T ′ also is without strong support vertices. Thus T ′ belongs to the family
T . Moreover, since x4 is a support vertex, sta(x4) = B. Hence T may be
obtained from T ′ by operation T2. Therefore T ∈ T .

Assume x4 is not a support vertex and there exists a leaf, say x0, such
that dT (x4, x0) = 2. Denote by x′0 the neighbor of x4 and x0. Consider
a matching M of a paired dominating set D of T containing x3x4. Then
x1x2 ∈ M and x0x

′
0 ∈ M . However then D − {x1, x0} is a smaller paired

dominating set of T , a contradiction. We conclude that dT (x4,Ω(T )) = 3.
If dT (x4) > 2 and dT (x4,Ω(T )) = 3, then since each edge of T be-

longs to a matching of a minimum paired dominating set of T , each edge
of T ′ = T − {x1, x2, x3} belongs to a matching of a minimum paired do-
minating set of T ′. Further, by the construction of T ′ from T , T ′ also is
without strong support vertices. Thus T ′ belongs to the family T . More-
over, since dT ′(x4,Ω(T ′)) = 3 (otherwise there is a longer path in T than
(x1, x2, . . . , xk)), Observation 12 implies that sta(x4) = B. Hence T may
be obtained from T ′ by operation T2. Therefore in this case T ∈ T .

Therefore assume dT (x4) = 2. Denote T ′ = T − {x1, x2, x3, x4}. Then
any γpr(T ′)-set may be extended to a paired dominating set of T by adding
x2 and x3, so γpr(T ) ≤ γpr(T ′) + 2. On the other hand, there exists
a γpr(T )-set containing x2, x3 and not containing x1, x4, so γpr(T ′) ≤
γpr(T )− 2.

Since each edge of T belongs to a matching of a minimum paired do-
minating set of T , each edge of T ′ belongs to a matching of a minimum
paired dominating set of T ′. Suppose dT (x5) = 2 and x6 is a support ver-
tex. Then, by the assumptions, x3x4 belongs to a matching of a minimum
paired dominating set of T , say D, and therefore x1, x2, x6 ∈ D. However
in this situation D−{x1, x2, x3, x4} is a paired dominating set of T ′ of car-
dinality smaller than γpr(T )−2, a contradiction. Thus T ′ is without strong
support vertices. Hence T ′ ∈ T . By the assumption, x3x4 belongs to a
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matching M of a minimum paired dominating set D of T . Then x1x2 ∈M
and D − {x1, x2, x3, x4} is a paired dominating set of T ′ − x5. Hence

γpr(T ′ − x5) ≤ γpr(T )− 4 = γpr(T ′)− 2.

Thus x5 is γpr(T ′)-critical. By Lemma 14, sta(x5) 6= C. Observe that
if dT ′(x5,Ω(T ′)) ∈ {1, 2, 3}, then x5 would not be γpr(T ′)-critical. Thus
we obtain that either x5 is a leaf or dT ′(x5,Ω(T ′)) = 4. In both cases
Observation 12 implies that sta(x5) = A. Hence T may be obtained from
T ′ by operation T1. Therefore in this case T ∈ T .

Theorem 16 Let T be a tree with n(T ) ≥ 4. Then the following statements
are equivalent:

1. msdpr(T ) = 4.

2. T belongs to the family T .

Proof. If T belongs to the family T , then by Lemma 14, msdpr(T ) = 4.
If T is a tree of order at least 4 and msdpr(T ) = 4, then by Lemma 10,

T does not contain any strong support vertex and by Theorem 11, each
edge of T belongs to some matching of a minimum paired dominating set
of T . Therefore Lemma 15 implies that T belongs to the family T .

5 Open problems

We conclude with a short list of open problems for future work.

Question 1 Characterize other classes of graphs with the paired domina-
tion multisubdivision number equal to 4.

Question 2 Let G be a graph with msdpr(G) = 4 and let xy ∈ E(G) be
such that both x and y are γpr(G)-critical vertices. Is msdpr(G− xy) = 4?
This result is true for cycles. Is it true for all graphs?
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